第四章 遗传算法
- 格式:ppt
- 大小:780.50 KB
- 文档页数:78
遗传算法为了增加实用性,直接使用代码进行讲解;通过前面两章,我们知道交叉的方式有:单点交叉、多点交叉、均匀交叉、算术交叉、部分映射交叉【private List<Integer> singlePointCrossover(List<Integer> parent1, List<Integer> parent2) {// 单点交叉int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(Collections.nCopies(parent1.size(), -1));for (int i = startPos; i <= endPos; i++) {int gene = parent1.get(i);child.set(i, gene);}for (int i = 0; i < parent2.size(); i++) {int gene = parent2.get(i);if (!child.contains(gene)) {for (int j = 0; j < child.size(); j++) {if (child.get(j) == -1) {child.set(j, gene);break;}}}}return child;}// 交叉操作(多点交叉)private List<Integer> multiPointCrossover(List<Integer> parent1, List<Integer> parent2) {int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(parent1.subList(startPos, endPos));for (Integer gene : parent2) {if (!child.contains(gene)) {int insertionIndex = random.nextInt(child.size() + 1);child.add(insertionIndex, gene);}}return child;}// 交叉操作(均匀交叉)private List<Integer> uniformCrossover(List<Integer> parent1, List<Integer> parent2) { List<Integer> child = new ArrayList<>();for (int i = 0; i < parent1.size(); i++) {if (random.nextBoolean()) {child.add(parent1.get(i));} else {child.add(parent2.get(i));}}return child;}// 交叉操作(算术交叉)private List<Integer> arithmeticCrossover(List<Integer> parent1, List<Integer> parent2) {List<Integer> child = new ArrayList<>();for (int i = 0; i < parent1.size(); i++) {int gene1 = parent1.get(i);int gene2 = parent2.get(i);child.add((gene1 + gene2) / 2);}return child;}// 交叉操作(部分映射交叉)private List<Integer> partiallyMappedCrossover(List<Integer> parent1, List<Integer> parent2) {int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(Collections.nCopies(parent1.size(), -1));for (int i = startPos; i <= endPos; i++) {int gene = parent1.get(i);child.set(i, gene);}for (int i = startPos; i <= endPos; i++) {int gene = parent2.get(i);int index = parent2.indexOf(gene);while (child.get(index) != -1) {gene = parent2.get(index);index = parent2.indexOf(gene);}child.set(index, parent2.get(i));}for (int i = 0; i < parent1.size(); i++) {if (child.get(i) == -1) {child.set(i, parent2.get(i));}}return child;}】。
遗传算法的基本原理
遗传算法是一种模拟自然进化过程的优化算法,它基于生物遗传学中遗传和进化的原理,通过模拟遗传信息的交叉、变异和选择等操作来搜索和优化问题的解。
该算法通常包括以下几个步骤:
1. 初始化种群:随机生成一组初始解(个体),构成初始种群。
2. 适应度评估:对种群中的每个个体,计算其适应度,即问题的目标函数值。
3. 选择操作:根据种群中个体适应度的大小,采用一定策略从当前种群中选择一部分个体作为父代。
4. 交叉操作:将所选的父代个体进行交叉操作,生成一组子代个体。
5. 变异操作:对子代个体中的一部分个体进行变异操作,即随机改变其基因(解)的值。
6. 替换操作:将新生成的子代个体替换掉原来种群中适应度较差的个体。
7. 终止条件判断:判断是否满足终止条件,如达到最大迭代次数或找到满意的解。
8. 迭代操作:如果未满足终止条件,则返回步骤2,进行下一
次迭代。
在每次迭代中,通过选择、交叉和变异等操作,优秀的个体逐渐筛选出来,不断进化和改进,最终找到问题的近似最优解。
这种自然选择和进化的方式能够有效地避免陷入局部最优解,提高问题求解的全局搜索能力。
遗传算法的基本原理就是通过模拟自然界中的遗传和进化过程,通过不断的迭代和选择,逐渐搜索到问题的最优解。
遗传算法是计算数学中用于解决最优化的搜索算法,是进化算法的一种。
进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。
遗传算法通常实现方式为一种计算机模拟。
对于一个最优化问题,一定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。
传统上,解用二进制表示(即0和1的串),但也可以用其他表示方法。
进化从完全随机个体的种群开始,之后一代一代发生。
在每一代中,整个种群的适应度被评价,从当前种群中随机地选择多个个体(基于它们的适应度),通过自然选择和突变产生新的生命种群,该种群在算法的下一次迭代中成为当前种群遗传算法的机理在遗传算法里,优化问题的解被称为个体,它表示为一个变量序列,叫做染色体或者基因串。
染色体一般被表达为简单的字符串或数字串,不过也有其他的依赖于特殊问题的表示方法适用,这一过程称为编码。
首先,算法随机生成一定数量的个体,有时候操作者也可以对这个随机产生过程进行干预,以提高初始种群的质量。
在每一代中,每一个个体都被评价,并通过计算适应度函数得到一个适应度数值。
种群中的个体被按照适应度排序,适应度高的在前面。
这里的“高”是相对于初始的种群的低适应度来说的。
下一步是产生下一代个体并组成种群。
这个过程是通过选择和繁殖完成的其中繁殖包括交配(crossover,在算法研究领域中我们称之为交叉操作)和突变(mutation)。
选择则是根据新个体的适应度进行的,但同时并不意味着完全的以适应度高低作为导向,因为单纯选择适应度高的个体将可能导致算法快速收敛到局部最优解而非全局最优解,我们称之为早熟。
作为折中,遗传算法依据原则:适应度越高,被选择的机会越高,而适应度低的,被选择的机会就低。
初始的数据可以通过这样的选择过程组成一个相对优化的群体。
之后,被选择的个体进入交配过程。
一般的遗传算法都有一个交配概率(又称为交叉概率),范围一般是0.6~1,这个交配概率反映两个被选中的个体进行交配的概率。
遗传算法算法原理(原创实用版)目录1.遗传算法的概述2.遗传算法的原理3.遗传算法的应用正文一、遗传算法的概述遗传算法(Genetic Algorithm,简称 GA)是一种模拟自然界生物进化过程的优化算法。
其核心思想是基于自然选择、遗传和突变等生物学原理,通过群体中的个体在不断迭代中进行优胜劣汰,达到解决问题和优化目标的效果。
遗传算法在解决复杂问题、非线性问题和全局最优解问题等方面具有较强的优势,广泛应用于各个领域。
二、遗传算法的原理1.遗传操作遗传算法的基本操作包括选择、交叉和变异。
选择操作是根据适应度函数对当前群体中的个体进行评估,选择优秀个体进行繁殖。
交叉操作是将选中的优秀个体进行染色体互换,产生新的后代。
变异操作是在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。
2.适应度函数适应度函数是遗传算法中的重要概念,用于评估每个个体的优劣程度。
适应度函数的取值范围为 [0, 1],其中 1 表示最优解,0 表示最劣解。
在遗传算法中,适应度函数的取值会直接影响到个体的选择和淘汰。
3.遗传算法的基本流程遗传算法的基本流程如下:(1)初始化种群:创建一个初始种群,包括多个随机生成的个体,每个个体表示一个解。
(2)评估适应度:计算种群中每个个体的适应度值。
(3)选择操作:根据适应度值对种群进行选择,选择一定数量的优秀个体进行繁殖。
(4)交叉操作:对选中的优秀个体进行染色体互换,生成新的后代。
(5)变异操作:在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。
(6)更新种群:将新产生的后代替换掉原种群中一些适应度较低的个体,形成新的种群。
(7)重复步骤 2-6,直至满足停止条件。
三、遗传算法的应用遗传算法在许多领域都取得了显著的应用成果,如机器学习、控制系统、信号处理、图像处理、运筹学等。