运筹学基础知识讲解
- 格式:pptx
- 大小:397.30 KB
- 文档页数:71
应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。
引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。
现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。
但假如现在我们不⽣产产品,⽽是要把原料都卖掉。
设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。
对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。
第四章运输问题4.1 运输问题的数学模型4.1.1 运输问题的模型本章研究物资的运输调度问题,其典型情况是:设某种物品有m个产地,A1,A2,…,A m;各产地的产量分别是a1,a2,…,a m;有n个销地B1,B2,…,B n;各销地的销量分别是b1,b2,…,b n;假定从产地向销地运输单位物品的运价是c ij;问:怎样调运这些物品才能使总运费最小?设变量ij x为第i个产地运往第j个销地的产品数量。
为直观起见,可将产品产地、销地的产销量以及运输物品的单价为一个汇总表,如表4-1所示。
表4-11A2A1B2BmAnB"#11c12c1n c2ncmnc2mc1mc21c22c11x12x1n x21x22x2n x1mx2m x mn x1a2ama1b2b n b"#如果运输问题的总产量等于其总销量,即有∑∑===njjmiiba11(4-1)则称该运输问题为产销平衡运输问题;反之,称为产销不平衡运输问题。
产销平衡运输问题的数学模型可表示如下:m nij iji1i1nij ij1mij ji1ijmin z c xx a,i1,2,,mx b,j1,2,,nx0,i1,2,,m,j1,2,,n=====⎧==⎪⎪⎨⎪==⎪⎩≥==∑∑∑∑""""目标函数约束条件决策变量(4-2)其中,约束条件右侧常数a i,和b j,满足总量平衡条件。
在模型(4-2)中,目标函数表示运输总费用极小化;约束条件前m个约束条件的意义是:由某一产地运往各个销地的物品数量之和等于该产地的产量;中间n个约束条件是指由各产地运往某一销地的物品数量之和等于该销地的销量;后m×n个约束条件为变量非负条件。
运输问题模型是线性规划问题特例。
因而可用单纯形法求解,但是,需要引进很多个人工变量,计算量大而复杂。
应该寻求更简便的、更好的解法。
例4.1某公司经销甲产品。
运筹学单纯形法的迭代原理讲解
单纯形法是一种用于解决线性规划问题的常用方法,其基本思想是通过迭代的方式逐步接近最优解。
下面是单纯形法的迭代原理的讲解:
1. 初始解的选择:首先需要选择一个初始解,通常选择的方法是构造一个基可行解,即使所有的约束条件都满足的解。
2. 判断最优性:在每一次迭代中,需要判断当前解是否为最优解。
首先,计算当前解对应的目标函数值。
然后,检查是否存在非基变量的系数大于等于0(对于最小化问题)或者小于等于0(对于最大化问题),如果存在这样的非基变量,则当前解不是最优解;如果不存在这样的非基变量,则当前解是最优解。
3. 生成新解:如果当前解不是最优解,则需要生成新的解。
首先,选择一个非基变量,使得目标函数的值可以通过增加(对于最小化问题)或减少(对于最大化问题)该变量的值来改善。
然后,需要计算这个非基变量能够增加或减少的最大量,称为变量的进步长度。
最后,通过调整基变量的值来生成新的解。
4. 更新目标函数和约束条件:在生成新解之后,需要更新目标函数和约束条件,以便于下一次迭代。
具体操作包括计算新解对应的目标函数值,计算新解对应的约束条件的值,调整目标函数和约束条件的系数。
5. 重复迭代:根据判断最优性的结果,进行下一次迭代。
如果当前解是最优解,
则算法结束;否则,继续进行下一次迭代。
通过不断重复这一迭代过程,直到找到最优解或者确定问题无解为止。
单纯形法的迭代过程一般会在有限次数内结束,并且能够得到最优解。
名词解释运筹学
运筹学是现代管理学的一门重要专业基础课,起源于20世纪30年代初。
其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。
该学科应用于数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。
运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。
而在应用方面,多与仓储、物流、算法等领域相关。
因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业相关。
以上内容仅供参考,建议查阅运筹学书籍获取更全面和准确的信息。
课时:2课时教学目标:1. 了解运筹学的基本概念、研究对象和方法;2. 掌握线性规划的基本原理和求解方法;3. 能够运用线性规划解决实际问题。
教学重点:1. 线性规划的基本原理;2. 线性规划的求解方法。
教学难点:1. 线性规划问题的建模;2. 线性规划问题的求解。
教学过程:一、导入1. 介绍运筹学的基本概念和研究对象;2. 引入线性规划,说明其在实际生活中的应用。
二、基本概念1. 运筹学:是一门研究如何合理地使用人力、物力和财力等资源,以达到最佳效果的学科;2. 线性规划:是运筹学的一个重要分支,主要研究线性目标函数在一系列线性约束条件下的最优解。
三、线性规划的基本原理1. 目标函数:线性规划中的目标函数为线性函数,表示为f(x) = c1x1 + c2x2 + ... + cnxn,其中c1, c2, ..., cn为常数,x1, x2, ..., xn为决策变量;2. 约束条件:线性规划中的约束条件为线性不等式或等式,表示为Ax ≤ b或Ax = b,其中A为系数矩阵,x为决策变量,b为常数向量。
四、线性规划的求解方法1. 图解法:适用于二维线性规划问题;2. 单纯形法:适用于高维线性规划问题。
五、案例分析1. 引入一个实际案例,如生产问题、运输问题等;2. 对案例进行分析,建立线性规划模型;3. 运用线性规划求解方法求解案例,得出最优解。
六、总结与作业1. 总结本节课所学内容,强调线性规划的基本原理和求解方法;2. 布置作业,要求学生运用所学知识解决实际问题。
教学反思:1. 在讲解线性规划的基本原理和求解方法时,注意与实际生活相结合,提高学生的学习兴趣;2. 在案例分析环节,尽量选取具有代表性的案例,让学生更好地理解线性规划的应用;3. 在作业布置环节,注意难度适中,让学生在完成作业的过程中巩固所学知识。
《运筹学》教案(2014 年2 月)授课班级:2010级农林经济管理教材:《运筹学》,熊伟,机械工业出版社学分:4学分学时:64学时教学过程1.运筹学与线性规划基本概念(10分钟)2.应用模型举例(60分钟)生产计划问题、人员安排问题、合理用料问题、配料问题、投资问题教学过程3•线性规划的一般模型(10分钟)4.课堂练习(10分钟)5.课堂小结(5分钟)6.布置作业教学过程教学过程 1. 引例:(P41)两个模型的对应关系:(20分钟) 2. 线性规划的规范形式(10分钟) 3. 对偶模型(5分钟)4. 对称型对偶关系的一般形式(5分钟)5. 对称型对偶关系的一般形式(三个特点)(10分钟)非对称型对偶关系 对于非对称型且具有对偶关系的两个PL 问题,总结得出:定理:互为对偶的两个PL 问题,如果原问题中第k 个约束条件 是等式,则它的对偶规划中的第k 个变量无非负限制,反之亦然.线性规划的原始问题和对偶问题的对应关系可归纳为下表5. 6. 课堂小结,布置作业教学过程【性质1】(对称性)对偶问题的对偶是原问题。
(5分钟)【性质2】(弱对偶性)设F、r分别为LP(max)与DP (min)的可行解,则CX°<Y°b(10分钟)由性质2可得到下面几个推论:推论1:的任一可行解的目标值是(龙)的最优值下界;(龙)任一可行解的目标是(2乃的最优值的上界;推论2:在互为对偶的两个问题中,若一个问题具有无界解,则另一个问题无可行解;推论3:若原问题可行且另一个问题不可行,则原问题具有无界解。
【性质3](最优性)设F与尸分别是(2P)与(莎)的可行解,则F、尸是JLP)与(矿)的最优解当且仅当C X0 =卩呢(10分钟)【性质4】(对偶性)若互为对偶的两个问题其中一个有优解,则另一个也有最优解,且最优值相同。
(20分钟)教学过程由性质4还可推出另一结论:若(2P)与(矿)都有可行解,则两者都有最优解;若一个问题无最优解,则另一问题也无最优解。
通俗讲解运筹学
运筹学是一门科学,它的目的是通过数学方法来解决实际问题。
这些问题可以是任何类型的,例如生产、运输、排队、决策等等。
运筹学所涉及的主要技术包括线性规划、整数规划、图论、随机模型、决策分析等等。
线性规划是一种用于优化问题的数学模型。
它的目标是最大化或最小化一个线性函数,同时满足一组线性不等式或等式的限制条件。
整数规划是线性规划的一个扩展,它要求最优解必须是整数。
这种类型的问题通常涉及到离散决策,如生产数量等。
图论是研究网络结构的数学分支。
它描述了一个由节点和边组成的图形,可以用来解决诸如路线规划、电信网络设计等问题。
随机模型则考虑了不确定性因素,例如随机变量的概率分布等。
决策分析则通过评估决策所带来的可能结果来帮助人们做出最佳决策。
总的来说,运筹学是一种强大的工具,可以帮助人们在不同领域做出最佳决策,提高效率和经济效益。
- 1 -。
运筹学单纯形法讲解一、单纯形法基本概念在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。
设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。
单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。
由单纯形求出的最优解就叫做单纯形的最优解。
在实际应用中,一般用来求最优解的都是单纯形。
二、单纯形法适用条件和范围在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。
但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。
非线性规划只能得到对象最优解。
三、单纯形法具体步骤和算法介绍1、明确问题的目标。
2、计算出所有解,按确定的先后顺序排列。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
四、单纯形法的误差和精度1、明确问题的目标。
一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。
但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。
2、计算出所有解,按确定的先后顺序排列。
首先,找出最优解,再在这个最优解附近寻找另外的比最优解更好的最优解,直到所有点都达到满意的精度。
这种方法称为“穷举法”。
穷举法通常用于没有更好的方法时,常用于工程实际中。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。
5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。
单纯形法的精度可达0.01或0.05。