运筹学基础知识讲解
- 格式:pptx
- 大小:397.30 KB
- 文档页数:71
应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。
引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。
现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。
但假如现在我们不⽣产产品,⽽是要把原料都卖掉。
设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。
对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。
第四章运输问题4.1 运输问题的数学模型4.1.1 运输问题的模型本章研究物资的运输调度问题,其典型情况是:设某种物品有m个产地,A1,A2,…,A m;各产地的产量分别是a1,a2,…,a m;有n个销地B1,B2,…,B n;各销地的销量分别是b1,b2,…,b n;假定从产地向销地运输单位物品的运价是c ij;问:怎样调运这些物品才能使总运费最小?设变量ij x为第i个产地运往第j个销地的产品数量。
为直观起见,可将产品产地、销地的产销量以及运输物品的单价为一个汇总表,如表4-1所示。
表4-11A2A1B2BmAnB"#11c12c1n c2ncmnc2mc1mc21c22c11x12x1n x21x22x2n x1mx2m x mn x1a2ama1b2b n b"#如果运输问题的总产量等于其总销量,即有∑∑===njjmiiba11(4-1)则称该运输问题为产销平衡运输问题;反之,称为产销不平衡运输问题。
产销平衡运输问题的数学模型可表示如下:m nij iji1i1nij ij1mij ji1ijmin z c xx a,i1,2,,mx b,j1,2,,nx0,i1,2,,m,j1,2,,n=====⎧==⎪⎪⎨⎪==⎪⎩≥==∑∑∑∑""""目标函数约束条件决策变量(4-2)其中,约束条件右侧常数a i,和b j,满足总量平衡条件。
在模型(4-2)中,目标函数表示运输总费用极小化;约束条件前m个约束条件的意义是:由某一产地运往各个销地的物品数量之和等于该产地的产量;中间n个约束条件是指由各产地运往某一销地的物品数量之和等于该销地的销量;后m×n个约束条件为变量非负条件。
运输问题模型是线性规划问题特例。
因而可用单纯形法求解,但是,需要引进很多个人工变量,计算量大而复杂。
应该寻求更简便的、更好的解法。
例4.1某公司经销甲产品。
运筹学单纯形法的迭代原理讲解
单纯形法是一种用于解决线性规划问题的常用方法,其基本思想是通过迭代的方式逐步接近最优解。
下面是单纯形法的迭代原理的讲解:
1. 初始解的选择:首先需要选择一个初始解,通常选择的方法是构造一个基可行解,即使所有的约束条件都满足的解。
2. 判断最优性:在每一次迭代中,需要判断当前解是否为最优解。
首先,计算当前解对应的目标函数值。
然后,检查是否存在非基变量的系数大于等于0(对于最小化问题)或者小于等于0(对于最大化问题),如果存在这样的非基变量,则当前解不是最优解;如果不存在这样的非基变量,则当前解是最优解。
3. 生成新解:如果当前解不是最优解,则需要生成新的解。
首先,选择一个非基变量,使得目标函数的值可以通过增加(对于最小化问题)或减少(对于最大化问题)该变量的值来改善。
然后,需要计算这个非基变量能够增加或减少的最大量,称为变量的进步长度。
最后,通过调整基变量的值来生成新的解。
4. 更新目标函数和约束条件:在生成新解之后,需要更新目标函数和约束条件,以便于下一次迭代。
具体操作包括计算新解对应的目标函数值,计算新解对应的约束条件的值,调整目标函数和约束条件的系数。
5. 重复迭代:根据判断最优性的结果,进行下一次迭代。
如果当前解是最优解,
则算法结束;否则,继续进行下一次迭代。
通过不断重复这一迭代过程,直到找到最优解或者确定问题无解为止。
单纯形法的迭代过程一般会在有限次数内结束,并且能够得到最优解。
名词解释运筹学
运筹学是现代管理学的一门重要专业基础课,起源于20世纪30年代初。
其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。
该学科应用于数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。
运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。
而在应用方面,多与仓储、物流、算法等领域相关。
因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业相关。
以上内容仅供参考,建议查阅运筹学书籍获取更全面和准确的信息。
课时:2课时教学目标:1. 了解运筹学的基本概念、研究对象和方法;2. 掌握线性规划的基本原理和求解方法;3. 能够运用线性规划解决实际问题。
教学重点:1. 线性规划的基本原理;2. 线性规划的求解方法。
教学难点:1. 线性规划问题的建模;2. 线性规划问题的求解。
教学过程:一、导入1. 介绍运筹学的基本概念和研究对象;2. 引入线性规划,说明其在实际生活中的应用。
二、基本概念1. 运筹学:是一门研究如何合理地使用人力、物力和财力等资源,以达到最佳效果的学科;2. 线性规划:是运筹学的一个重要分支,主要研究线性目标函数在一系列线性约束条件下的最优解。
三、线性规划的基本原理1. 目标函数:线性规划中的目标函数为线性函数,表示为f(x) = c1x1 + c2x2 + ... + cnxn,其中c1, c2, ..., cn为常数,x1, x2, ..., xn为决策变量;2. 约束条件:线性规划中的约束条件为线性不等式或等式,表示为Ax ≤ b或Ax = b,其中A为系数矩阵,x为决策变量,b为常数向量。
四、线性规划的求解方法1. 图解法:适用于二维线性规划问题;2. 单纯形法:适用于高维线性规划问题。
五、案例分析1. 引入一个实际案例,如生产问题、运输问题等;2. 对案例进行分析,建立线性规划模型;3. 运用线性规划求解方法求解案例,得出最优解。
六、总结与作业1. 总结本节课所学内容,强调线性规划的基本原理和求解方法;2. 布置作业,要求学生运用所学知识解决实际问题。
教学反思:1. 在讲解线性规划的基本原理和求解方法时,注意与实际生活相结合,提高学生的学习兴趣;2. 在案例分析环节,尽量选取具有代表性的案例,让学生更好地理解线性规划的应用;3. 在作业布置环节,注意难度适中,让学生在完成作业的过程中巩固所学知识。