有理系数不可约多项式的判别
- 格式:docx
- 大小:37.28 KB
- 文档页数:1
有理数域不可约判别法
有理数域不可约判别法是指,在有理数域中,对于一个多项式$f(x)$,如果它不能分解为两个次数较低的多项式的乘积,则称$f(x)$在有理数域中是不可约的。
判断一个多项式是否在有理数域中不可约,可以使用以下方法:
1. 欧几里得算法:将多项式$f(x)$除以$x-a$,如果余数为0,则$x-a$是$f(x)$的一个因子。
重复这个过程直到无法继续除下去。
如果最后得到的余数是常数项,则$x-a$是$f(x)$的一个根。
如果最后得到的余数不是常数项,则$x-a$不是$f(x)$的因子。
2. 整除定理:如果$a$是多项式$f(x)$的一个根,则$(x-a)$一定是
$f(x)$的因子。
可以使用这个定理来判断多项式是否有有理根。
3. Eisenstein判别法:设多项式$f(x)=a_nx^n+a_{n-1}x^{n-
1}+\cdots+a_0$,其中$a_i\in\mathbb{Z}$且$a_n\neq 0$。
如果存在一个质数$p$使得$p|a_i(i=0,1,\cdots,n-1),p\nmid a_n,p^2\nmid a_0$且$p|a_{n-1}$,则$f(x)$在$\mathbb{Q}$中不可约。
以上三种方法都可以用来判断多项式是否在有理数域中不可约,但是具体使用哪种方法需要根据多项式的形式和系数来决定。
不可约多项式的判定及应用摘 要多项式理论是高等代数的重要组成部分,而不可约多项式是多项式中重要的概念. 本文主要对有理数域上不可约多项式的判别方法进行整理归纳, 较为系统的给出不可约多项式的判定方法。
对于一般的不可约多项式的判定有Eisenstein 判别法、Kronecker 判别法、Perron 判别法、Browm 判别法等。
研究了各判定方法的等价和包含关系。
此外,我们还给出了不可约多项式的一些应用。
关键词不可约多项式;判定方法;应用2. 不可约多项式的概念及性质2.1 整除的概念设P 是一个数域,对于[]P x 中任意两个多项式()f x 与()g x ,其中()0g x ≠,一定有[]P x 中的多项式()q x ,()r x 存在,使得()()()()f x q x g x r x =+成立,其中(())(())r x g x ∂<∂或者()0r x =,并且这样的()q x ,()r x 是唯一决定的。
定义2.1 数域P 上的多项式()g x 称为能整除()f x ,如果有数域P 上的多项式()h x 使等式()f x =()()g x h x成立,我们用“()g x |()f x ”表示()g x 整除()f x ,用“()g x ()f x ”表示()g x 不能整除()f x 。
定理 2.1[1] 对于数域P 上的任意两个多项式()f x ,()g x ,其中()g x 0≠,()g x |()f x 的充分必要条件是()g x 除()f x 的余式为零。
证明: 如果()r x = 0那么()f x =()()q x g x ,即()g x |()f x 。
反过来,如果()g x |()f x ,那么()f x =()()q x g x =()()q x g x +0,即()r x = 0。
注1: 带余除法中()g x 必须不为零。
下面介绍整除性的几个常用性质:(1) 如果()f x |()g x ,()g x |()f x ,那么()()f x cg x =,其中c 为非零常数。
第21卷 第1期 湖南理工学院学报(自然科学版) Vol.21 No.12008年3月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Mar. 2008有理数域上的一类不可约多项式张 卫,史滋福(湖南师范大学 数学与计算机科学学院,长沙 410081)摘 要: 首先介绍了判别有理数域上多项式不可约的常用结论,讨论了形如12()()()()()1n f x x x a x a x a ϕ=−−−+"的多项式的性质,并且得到了定理:若,6n >()0x ϕ>且它的次数小于的一半,则n 12()()()()()1n f x x x a x a x a ϕ=−−−+"在Q 上不可约.关键词: 有理数域; 不可约多项式; 次数中图分类号:O151.23 文献标识码:A 文章编号: 1672-5298(2008)01-0005-03A Class Irreducible Polynomials on Rational Number FieldZHANG Wei , SHI Zi-fu(Department of Mathematics, Hunan Normal University, Changsha 410081, China)Abstract: Some common results which used to decide a polynomial on rational number field irreducible are explained in this paper. Some properties of polynomial such as 12()()()()()1n f x x x a x a x a ϕ=−−−+"are discussed and some theorem is obtained if ,6n >()0x ϕ>and the degree of ()x ϕ is less than a half of ,then n ()f x is irreducible on rational number field.Key words: rational number field; irreducible polynomial; degree研究数域上不可约多项式就如研究整数中的素数一样重要. 如果F 是代数闭域,则F 上的不可约多项式就是全体的一次多项式,而在素域F 上的不可约多项式研究却是一个复杂的工作. 在我们熟悉的有理数域Q 上,存在着任意次的不可约多项式. 到目前为止,在有理数域Q 上,判断多项式不可约的方法主要有以下几类:Ⅰ 通过多项式的系数与某素数的整除关系来判定不可约,如Eisenstein 判别法及其推广形式[1][2]. Ⅱ 通过多项式的系数与某素数的大小关系来判定不可约,如命题1[3]设是一个素数,且整数适合p 12,,,n a a a "10nk k a =p <<∑,则多项式212()n n f x p a x a x a x =++++"在Q 上不可约.Ⅲ 将多项式作为函数所得到的一些特殊取值来判定不可约,如命题2[4] 若整系数多项式()f x 对于无限个整数值x ,其函数值()f x 都是素数,那么多项式()f x 在Q 上不可约.Ⅳ 通过辅助多项式的根的取值来判定不可约,如 命题3[5] 设是n 个两两不同的整数,那么多项式12,,,n a a a "1()()1ni i f x x a ==−−∏在Q 上不可约.本文给出一类可以通过的多项式的次数或者多项式在某点的取值来进行判定的不可约多项式.收稿日期:2007-12-20 基金项目: 湖南省自然科学基金项目(04JJ40003) 作者简介:张 卫(1963− ), 男,江西赣州人,博士,湖南师范大学讲师. 主要研究方向: 多项式代数和环论命题4[5]设是n (n ≥2)个两两不同的整数,如果多项式12,,,a a a "n 1()()1ni i f x x a ==−+∏在Q 上可约,则n 是一个偶数.引理1 设是n (n ≥3)个两两不同的整数,若多项式12,,,n a a a "212()()()()1n f x x a x a x a =−−−"+在Q 上可约,则存在整系数多项式h x ,使得()2()()f x h x =.证明 因为n ,对于任何整数3≥0x ,或者()201020()()0n x a x a x a −−="或者−2201020010203()()()()()()n x a x a x a x a x a x a −−−≥−−−"2≥,所以,因此0()0f x ≠()f x 没有一次有理因式.现设()()()f x g x h x =是()f x 的真因式分解,其中()g x 与都是整系数多项式,且()h x ()g x 与的次数都小于,令()h x n ()()()x g x h x ϕ=−,由()1i f a =,()()1i i g a h a ==±,于是()0,1,2,,i a i n ϕ==".如果()0x ϕ≠,则必有deg(())x n ϕ<,这是不可能的,所以()0x ϕ=. 因此()()g x h x =,即有2()()f x h x =. 由引理1立即可得.定理1 设是n (n ≥3)个两两不同的整数,则当是偶数时,多项式12,,,n a a a "n 212()()()()1n f x x a x a x a =−−−"+在Q 上不可约.定理2 设是n (n ≥3)个两两不同的整数,且12,,,n a a a "212()()()()1n f x x a x a x a =−−−+".若存在0x , 使得,则0()0f x <()f x 在Q 上不可约.引理2 设是n (n ≥3)个两两不同的整数,且12,,,n a a a "222121()()()()()()1r r n f x x a x a x a x a x a +=−−−−−+"".若()f x 有真因式()g x ,则()g x 的次数至少是的一半.n 证明 设()()()f x g x h x =,且deg(())g x <[2n],由于()1,1,2,,i f a i n ==",所以, ,于是()1i g a =±1,2,,i n ="()g x 至少在[个点恒取值]deg(())12ng x ≥+1+或者1−,此时()g x 是常数,矛盾.推论1 设是n (n ≥3)个两两不同的整数,若多项式12,,,n a a a "222121()()()()()()1r r n f x x a x a x a x a x a +=−−−−−+""有真因式()g x ,则()g x 的次数deg(())[]2ng x r n ≤+−.引理3 设是n (n ≥3)个两两不同的整数, 12,,,n a a a "[]2nr <,且222121()()()()()()1r r n f x x a x a x a x a x a +=−−−−−+"".如果()f x 在Q 上可约,则一定存在整系数多项式,使得()h x 2()()f x h x =.证明 设()f x 的真因式分解()()()f x g x h x =,(),()g x h x 都是整系数多项式,且次数[]2n deg(()),deg(())g x h x r n ≤≤+−[]2n . 令()()()x g x h x ϕ=−,和引理1相仿,由于也有deg(())x n ϕ<,所以()0x ϕ=,即2()()f x h x =.类似地可以证明引理4设是n (n ≥3)个两两不同的整数,且12,,,n a a a "12()()()()()1n f x x x a x a x a ϕ=−−−"+ 6 湖南理工学院学报(自然科学版) 第21卷.第1期 张 卫等:有理数域上的一类不可约多项式 7如果deg(())[]2nr x ϕ=<,且()f x 在Q 上可约,则一定存在整系数多项式,使得()h x 2()()=f x h x .定理3 设是n (n ≥3)个两两不同的整数,且12,,,n a a a "12()()()()()1n f x x x a x a x a ϕ=−−−"+.如果deg(())[]2nr x ϕ=<,且 deg(())x n ϕ+是奇数,则()f x 在Q 上不可约.定理4 设是n (n ≥3)个两两不同的整数,且12,,,n a a a "12()()()()()1n f x x x a x a x a ϕ=−−−"+.如果deg(())[]2nr x ϕ=<,且存在实数0x ,使得0()0f x <,则()f x 在Q 上不可约.定理5 设是n (n >6)个两两不同的整数,且12,,,n a a a "12()()()()()1n f x x x a x a x a ϕ=−−−"+,如果deg(())[]2nr x ϕ=<,且()0x ϕ=没有有理根,则()f x 在Q 上不可约.证明 不妨设,令12n a a a <<<"012n x a =−,因为0()0x ϕ≠,所以01()2r x ϕ≥,从而0001010()()()()()1ϕ−=−−−+"n n f x x x a x a x a <123311()()()()122222124211()()()(122222−⋅⋅⋅⋅⋅−+<−⋅⋅⋅⋅⋅−+""r r n n =222((2)!122−++−−⋅−+=−+n n r r n n 2)!1>. 因为当n 时,62deg(())[]log (2)!22nr x ,所以n ϕ=<<−−0()0f x <,再由定理4即得定理5.鉴于在定理证明中关于()x ϕ其实只利用了01()2r x ϕ≥,所以有推论2 若, 且,那么212()()()()1n f x x a x a x a =−−−+"6n >()f x 在Q 上不可约.最后提出两个问题作为本文的结束. 问题1 定理5在的时候是否也成立?6n =问题2 推论2中由于()x ϕ的次数仅等于1,是否的条件可以去掉? 6n >参考文献[1] 张海山. Eisenstein 判别法的推广[J]. 首都师范大学学报(自然科学版), 2001,22(3):13~15 [2] 陈 侠. 关于整系数不可约多项式[J]. 沈阳航空工业学院学报, 2004,21(1): 77~78 [3] 冯克勤,余红兵. 整数与多项式[M]. 北京: 高等教育出版社, 1999: 138~142[4] 黎伯堂,刘桂真. 高等代数解题技巧与方法[M]. 济南: 山东科学技术出版社, 1999:154~171 [5] 王品超. 高等代数新方法[M]. 济南: 山东教育出版社, 1989: 11~44李克安教授被评为第三届湖南省“双十佳期刊编辑”为了进一步加强编辑队伍建设,鼓励期刊出版行业出人才,出好人才,繁荣和发展期刊出版事业,中共湖南省委宣传部、湖南省新闻出版局联合组织评选了第三届湖南省“双十佳期刊编辑”。
不可约多项式的判定及应用多项式理论是高等代数的重要组成部分,而不可约多项式是多项式中重要的概念.本文主要对有理数域上不可约多项式的判别方法进行整理归纳,较为系统的给出不可约多项式 Perron 判别法、Browm 判别法等。
研究了各判定方法的等价和包含关系。
此外,我们还给 出了不可约多项式的一些应用。
关键词不可约多项式;判定方法;应用2.不可约多项式的概念及性质2.1整除的概念设P 是一个数域,对于P[x]中任意两个多项式f(x)与g(x),其中g(x)H0,定有P[x]中的多项式q(x), r(x)存在,使得f(x) =q(x)g(x)+ r(x)成立,其中c(r(x))<c(g(x))或者r(x)=0,并且这样的q(x),r(x)是唯一决定的。
定义2.1数域P 上的多项式g(x)称为能整除f(x),如果有数域P 上的多项式h(x)使等式f (x) = g(x)h(x)我们用g(x)|f(x) ”表示g(x)整除f(x),用g(x) f (x) ”表示g(x)不能整除 f (x)。
定理2.1⑴ 对于数域P 上的任意两个多项式f(x) , g(x),其中的判定方法。
对于一般的不可约多项式的判定有 Eisenstein 判别法、Kronecker 判别法、 成立,H0, g(x) | f (x)的充分必要条件是g(x)除f (x)的余式为零。
证明:如果r(x) = 0那么f(x) = q(x)g(x),即g(x) | f (x)。
反过来,如果g(x) | f(x),那么 f(x) = q(x)g(x) = q(x)g(x) +0, 即卩 r(x) = 0。
注1:带余除法中g(x)必须不为零。
F 面介绍整除性的几个常用性质:(1)如果 f(x) | g(x), g(x) | f (x),那么 f(x)=cg(x),其中 c 为非零常数。
(2)如果 f(x) | g(x), g(x) |h(x),那么 f(x) | h(x)(整除的传递性)。
不同域上的不可约多项式不同域上的不可约多项式摘要:判断一个多项式是否可约是很困难的,在前人的基础上,采用了类比分析的方法,讨论了复数域、实数域、有理数域、有限域上的不可约多项式的状况,对不可约多项式进行了比较完善的总结归纳。
关键字:复数域实数域有理数域有限域不可约多项式中图分类号:O151Irreducible polynomials in the different fields Abstract:It is difficult to judge a polynomial irreducible.In this paper,we discuss the irreducible polynomials in the real number field, complex field,rational number field and finite field.This is a more perfect summary about irreducible polynomials.What is more,this is a simply analysis about irreducible polynomials.Key Words:Complex field Real number field Rational number field Finite field Irreducible polynomials不同域上的不可约多项式1、前言一个多项式是否不可约是依赖于系数域的,虽然因式分解定理在理 论上有其基本重要性,但是它并没有给出一个具体的分解多项式的方法,对于一般的情形,普遍可行的分解多项式的方法是不存在的,即使只是判别一个多项式是否可约都很困难。
所以我们只能在不同的域上讨论多项式是否不可约。
本文主要在前人研究的基础上,将复数域、实数域、有理数域、有限数域上的多项式是否可约的问题进行归纳,采用类比分析的方法进行总结。
有理数域上一类不可约多项式的简单推广黎智【摘要】若a1,a2,…,an是n-1个不同的整数,证明了当n≥4时,f(x)=(x-a1)(x--n2)...(x-an)-1在有理数域Q上不可约;当n≥3时,f(x)=(x-a1)2(x-a2)2 (x)an)2+1在有理数域Q上不可约.【期刊名称】《重庆工商大学学报(自然科学版)》【年(卷),期】2015(032)005【总页数】3页(P23-25)【关键词】有理数域;多项式;不可约;系数;次数【作者】黎智【作者单位】重庆师范大学数学学院,重庆401331【正文语种】中文【中图分类】O156有理系数多项式、整系数多项式是数论研究的重要类容,研究数域上的不可约多项式就好比研究整数中的素数一样重要.在代数中已经证明如果一个非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积.也就是说,在Z上不可约的整系数多项式,在Q上也不可约.因此,关于有理数域上多项式的可约性问题,可以简化为讨论整系数多项式在整数环上的可约性问题.而判别一个整系数多项式是否可约,常常是困难的.在这方面比较著名的方法有以下几类:Ⅰ通过多项式的系数和某素数的整除关系来判定不可约,如Eisenstein判别法及其推广形式[1-2].Ⅱ通过比较多项式系数的大小来判别不可约,如Perron判别法及其改进形式[3-4].Ⅲ通过计算f( x)在Z上的取值来判别不可约,如命题1.命题1[3]设f( x)是n次整系数多项式,S( f) ={…,,…},Ni表示S( f)中1的个数,Np表示S( f)中素数的个数,如果Np+2N1-4>n,则f( x)在Q上不可约.Ⅳ通过辅助多项式根的取值来判别不可约,如命题2.命题2[3]设a1,a2,…,an是彼此不相同的整数,则1) f( x) = ( x-a1) ( x-a2)…( x-an)-1在有理数域Q上不可约;2) f( x) = ( x-a1)2( x-a2)2…( x-an)2+1在有理数域Q上不可约.定理及其证明如下:命题2实则是Schur本世纪初提出的两个简单问题,已经得到了证明,此处在此基础上做了一个简单的推广,主要结果是:定理1设a1,a2,…,an是n-1个不同的整数,则1)当n≥4时,f( x) = ( x-a1) ( x-a2)…( x-an)-1在有理数域Q上不可约;2)当n≥3时,f( x) = ( x-a1)2( x-a2)2…( x-an)2+1在有理数域Q上不可约.证明1)不妨设an=a1,则f( x) = ( x-a1)2( x-a2)…( x-an-1)-1.若f( x)在Q上可约,可设f( x) = f1( x) f2( x),fi( x)是整系数多项式; 1≤°( fi( x) )<n( i= 1,2),其中,( f( x) )表示f( x)的次数,由于f( ai) =-1,i= 1,2,…,n,故f1( ai) =±1,f2( ai) =1,i= 1,2,…,n,即f1( ai) +f2( ai) = 0,i= 1,2,…,n.若f1( x) +f2( x)的次数小于n-1,则f1( x) +f2( x) = 0,即f1( x) =-f2( x),f( x) =-( x),因为f( x)的最高项系数是1,此不可能.故f1( x) +f2( x)的次数只能等于n-1.不妨令( f1( x) ) = n-1,则( f2( x) ) = 1,此不可能.因为根据文献[5]引理1的证明可知,当n≥4时,即n-1≥3,对于任何整数x',要么( x'-a1)2( x'-a2)…( x'-an-1) = 0,要么式,与( f2( x) ) =1矛盾.综上,当n≥4时,f( x) = ( x-a1) ( x-a2)…( x-an)-1在有理数域Q上不可约.2)不妨设an=a1,则f( x) = ( x-a1)4( x-a2)2…( x-an-1)2+1.显然f( x)没有实根,若f( x)在Q上可约,类似1)可设f( x) = f1( x) f2( x),fi( x)是整系数多项式,1≤( fi( x) )<n( i=1,2).因为对任意实数,f( x)>0,不妨设对所有实数f1( x)>0,f2( x)>0,由于f( ai) = 1,i=1,2,…,n,故f1( ai) = f2( ai) = 1,i=1,2,…,n.若fi( x) ( i= 1,2)的次数小于n-1,则fi( x)≡1( i=1,2),与所设不和,故只可能是以下两种情形:,所以f( x')≠0,因此f( x)没有一次有理因或者当n≥3时,对于式( 1),可令其中a,b,p,q为整数,由f( x) = f1( x) f2( x)可知比较左右两端系数得即化简得( x-a1)2+1=0,此不可能.对于式( 2),类似式( 1),可令其中c,d,m,n为整数,由f( x) = f1( x) f2( x)可知比较等式左右两边系数得即解得x=a1,与xai矛盾.综上所述,当n≥3时,f( x) = ( x-a1)2( x-a2)2…( x-an)2+1在有理数域Q上不可约.在上述定理中,若把f( x)换成f( x) = k-1,k>0,结论显然也是成立的.【相关文献】[1]王萼芳,石生明.高等代数[M].3版.北京:高等教育出版社,2007[2]赵敦,罗彦峰,雷鹏.Eisenstein判别法的一个推广[J].高等理科教育,2005( 6) : 38-39[3]柯召,孙琦.数论讲义(下)[M].北京:高等教育出版社,1987[4]王瑞.判定Q上多项式不可约的一种方法[J].数学研究与评论,2002,22( 4) : 679-684 [5]张卫,史滋福.有理数域上的一类不可约多项式[J].湖南理工学院学报:自然科学版,2008,21( 1) : 5-7。
关于有理系数多项式可约性的一个判别定理
有理系数多项式可约性是数论中一个重要的概念,它可以用来判断一个
多项式是否可以经过简化算出一个简单的形式。
在数学上,可约性判别定理
规定了有理系数多项式可约性的情况。
首先,有理系数多项式可约性判别定理的条件是,已知一个有理系数多
项式。
其次,定义在一个域K上的有理系数多项式f (x),已知f (x)为一
个次数为n的多项式并且其系数在K上不恒为零。
给定以上条件,有理系数多项式可约性判别定理认为,如果存在一个复
数a,使得多项式f (a)=0,则此有理系数多项式是可约的。
反之,如果f (a)≠0,则此有理系数多项式是不可约的。
有理系数多项式可约性判别定理是判断一个多项式是否可约的一种有效
的方法。
它可以使用上述定理检查可约性,以尽快确定一个多项式是否可约。
此外,它能根据除可约性外的条件预测一个多项式是否可得到简化形式,对
进行数学计算极其有价值。
从而可以看出,有理系数多项式可约性判定定理是一个重要的定理,它
不仅有助于确定一个有理系数多项式是否可约,还能降低计算量,为数学计
算提供有效的帮助。
§7.8 有理数域上的不可约多项式定义 设)(x g 是非零的整系数多项式111()nn n n g x b x b xb x b −0−=++++"若 ,则称1),,,,(011=−b b b b n n ")(x g 是本原多项式。
注(1)任一非零的有理系数多项式都与一个本原多项式相伴;(2)两个本原多项式)(),(x h x g 在][x Q 中相伴当且仅当)()(x h x g ±=;(3)零次本原多项式只有1和 -1。
引理(Gauss 引理) 两个本原多项式的乘积还是本原多项式。
证明 设)(),(x g x f 是两个本原多项式,111111()()n n n n mm m m 00f x a x a x a x ag x b x b xb x b −−−−=++++=++++""令+111()()() m nm n m n m n h x f x g x c xc xc x c ++−++−==+++"反证 设)(x h 不是本原多项式,则存在一个素数 p ,使得012|,,,,,i p c i m n =+"因是本原的,故存在()f x n k ≤≤0使0121|,|,|,,|,k a a a p p a p p p −" |k a同理可得,存在m l ≤≤0使0121|,|,|,,|,l b b b p p b p p p −"|l b又p 是素数,故 |。
p l k b a因为lk l k l k l k l k l k l k b a b a b a b a b a b a c ++−−+−++++++++++=01111110 ""故有0111111011 l k l k l k l k l k l k l k la ab b b a a a b b a a bc ++−++−+−−+k b +=−−−−−−−−""而p 可整除上式等号右端的所有项,即能整除上式等号右端,但不可整除上式等号左端,于是产生矛盾。
不可约多项式的判定及应用摘 要多项式理论是高等代数的重要组成部分,而不可约多项式是多项式中重要的概念. 本文主要对有理数域上不可约多项式的判别方法进行整理归纳, 较为系统的给出不可约多项式的判定方法。
对于一般的不可约多项式的判定有Eisenstein 判别法、Kronecker 判别法、Perron 判别法、Browm 判别法等。
研究了各判定方法的等价和包含关系。
此外,我们还给出了不可约多项式的一些应用。
关键词不可约多项式;判定方法;应用2. 不可约多项式的概念及性质2.1 整除的概念设P 是一个数域,对于[]P x 中任意两个多项式()f x 与()g x ,其中()0g x ≠,一定有[]P x 中的多项式()q x ,()r x 存在,使得()()()()f x q x g x r x =+成立,其中(())(())r x g x ∂<∂或者()0r x =,并且这样的()q x ,()r x 是唯一决定的。
定义2.1 数域P 上的多项式()g x 称为能整除()f x ,如果有数域P 上的多项式()h x 使等式()f x =()()g x h x成立,我们用“()g x |()f x ”表示()g x 整除()f x ,用“()g x ()f x ”表示()g x 不能整除()f x 。
定理 2.1[1] 对于数域P 上的任意两个多项式()f x ,()g x ,其中()g x 0≠,()g x |()f x 的充分必要条件是()g x 除()f x 的余式为零。
证明: 如果()r x = 0那么()f x =()()q x g x ,即()g x |()f x 。
反过来,如果()g x |()f x ,那么()f x =()()q x g x =()()q x g x +0,即()r x = 0。
注1: 带余除法中()g x 必须不为零。
下面介绍整除性的几个常用性质:(1) 如果()f x |()g x ,()g x |()f x ,那么()()f x cg x =,其中c 为非零常数。
有理系数不可约多项式的判别有理系数多项式的可约性判定定理如下:设 f(x) 是一个在有理数域 Q 上的多项式函数,次数为 n,如果f(x) 在 Q 上不能表示成两个低于 n 次的多项式的乘积形式,则f(x) 是不可约多项式。
根据这个定理,我们可以通过范德蒙德(Vandermonde)判别法或者 Eisenstein 定理来判断一个有理系数多项式的可约性。
1. 范德蒙德判别法:设 f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n,其中 a_0, a_1, ...,a_n 是有理数。
首先,找出 f(x) 的所有根 r1, r2, ..., rm,这些根可能是有理数,也可能是复数。
然后,将这些根按照从小到大的顺序排列,得到 r1 < r2 < ... < rm。
最后,我们计算差商 f[r1, r2, ..., rm] = (f(r1) - f(r2))/(r1 - r2) *(f(r1) - f(r3))/(r1 - r3) * ... * (f(r1) - f(rm))/(r1 - rm) * (f(r2) -f(r3))/(r2 - r3) * ... * (f(r2) - f(rm))/(r2 - rm) * ... * (f(r(m-1)) -f(rm))/(r(m-1) - rm)。
如果差商 f[r1, r2, ..., rm] 不等于 0,则 f(x) 是不可约多项式;否则, f(x) 是可约多项式。
2. Eisenstein 定理:设 f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n,其中 a_0, a_1, ...,a_n 是有理数。
如果存在一个质数 p,满足以下三个条件:(1) p 不能整除 a_n;(2) p 能整除 a_i,其中0 ≤ i ≤ (n-1);(3) p^2 不能整除 a_0;那么,f(x) 是不可约多项式。
有理系数不可约多项式的判别
对于一个多项式 f(x),如果它的次数小于等于 3,那么它一定
是可约的,因为任何次数小于等于 3 的多项式都可以通过因式分解为
线性因式乘积。
对于次数大于 3 的多项式 f(x),要判断它是否为不可约多项式,可以使用以下方法之一:
1. 尝试寻找 f(x) 的有理根。
如果 f(x) 的有理根存在,则
f(x) 是可约的,因为有理根可以转化为一次因式。
2. 使用 Eisenstein 判别法:如果存在一个素数 p,使得 p
能够整除多项式 f(x) 的所有非首项系数,但不能整除首项系数,并
且 p^2 不能整除多项式的常数项系数,那么 f(x) 是不可约的。
3. 使用约化多项式的方法。
假设 f(x) 是不可约的,那么根据
整系数多项式的性质,可以将 f(x) 看作是有理数系数多项式。
为了
判断 f(x) 是否可约,可以考虑将 f(x) 通过符号替换,转化为一个
整系数多项式 g(x) = f(ax+b),其中 a 和 b 是整数。
如果 g(x) 是
可约的,则 f(x) 也是可约的。
这些方法可以帮助我们判断一个多项式是否是不可约多项式,但
需要注意的是,并不是所有的不可约多项式都可以通过这些方法判断
出来。
对于高次多项式,判别它是否为不可约多项式可能会更加困难。