北师大版2020初中数学:三角函数知识点总结
- 格式:doc
- 大小:199.93 KB
- 文档页数:2
张小只初中知识库张小只爱学习北师大版初三数学三角函数的计算知识点本文为学生介绍的是初三数学三角函数的计算,主要包括了幂级数、泰勒展开式、实用幂级数、三角函数恒等变形公式、课后习题与解析等内容,具体内容请阅读:三角函数知识点公式定理记忆口诀三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,.....及a都是常数, 这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f’(a)/1!*(x-a)+f’’(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...实用幂级数ex = 1+x+x2/2!+x3/3!+...+xn/n!+...ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|小于1)sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞)cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞)arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|小于1)arccos x = π - (x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... )(|x|小于1)arctan x = x - x /3 + x /5 - ... (x≤1)sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞)。
(完整版)三角函数知识点总结三角函数知识点总结正弦函数(Sine Function)正弦函数是一个周期函数,其值在区间[-1, 1]之间波动。
它的图像是一条连续的曲线,描述了角度和其对应的正弦值之间的关系。
* 正弦函数的定义域为所有实数。
* 正弦函数的最大值是1,最小值是-1。
* 正弦函数以360度或2π为周期。
余弦函数(Cosine Function)余弦函数也是一个周期函数,与正弦函数非常相似。
它的图像是一条连续的曲线,描述了角度和其对应的余弦值之间的关系。
* 余弦函数的定义域为所有实数。
* 余弦函数的最大值是1,最小值是-1。
* 余弦函数以360度或2π为周期。
正切函数(Tangent Function)正切函数是三角函数中最常用的函数之一。
它的定义域为除去所有余弦函数的零点的实数集合。
* 正切函数的值在整个数轴上都有定义。
* 正切函数的值没有上限或下限。
三角函数的性质三角函数有几个重要的性质:* 正弦函数是奇函数,即对于任何实数x,有sin(-x)=-sin(x)。
* 余弦函数是偶函数,即对于任何实数x,有cos(-x)=cos(x)。
* 正弦函数和余弦函数的关系可以通过三角恒等式sin²(x)+cos²(x)=1来表示。
* 正切函数是奇函数,即对于任何实数x,有tan(-x)=-tan(x)。
* 正切函数和正弦函数/余弦函数的关系可以通过三角恒等式tan(x)=sin(x)/cos(x)来表示。
总结三角函数是数学中重要的一部分,它们在几何、物理、工程等领域中有着广泛的应用。
本文介绍了正弦函数、余弦函数和正切函数的定义、性质以及其在数轴上的范围。
通过熟练掌握三角函数的相关知识,我们能够更好地理解和解决与角度和曲线相关的问题。
完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。
2)终边与角α相同的角可写成α+k·360°(k∈Z)。
3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。
弧度与角度可以互相转换。
2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。
3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。
注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。
和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。
二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。
2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。
新北师大版九年级数学下册知识点总结第一章直角三角形边的关系一•锐角三角函数 1.正切:定义:在Rt △ ABC 中,锐角/A 的对边与邻边的比叫做/A的正切,记作tanA ,① tanA 是一个完整的符号,它表示/A的正切,记号里习惯省去角的符号“/”;② tanA 没有单位,它表示一个比值,即直角三角形中/A 的对边与邻边的比;③ tanA 不表示"tan ”乘以"A ”;④ 初中阶段,我们只学习直角三角形中,/A是锐角的正切;⑤ tanA 的值越大,梯子越陡,ZA 越大;ZA 越大,梯子越陡,tanA 的值越大。
2. 正弦:定义:在Rt △ ABC 中,锐角/A 的对边与斜边的比叫做/A 的正弦,记作sinA ,即sin AA的对边................................... """■ 斜边3. 余弦:定义:在Rt △ ABC 中,锐角/A 的邻边与斜边的比叫做/A 的余弦,记作cosA ,即cosA A的邻边 .............................. ■■■■■斜边之变化三•三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为 仰角2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为 俯角值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大 < sin a< 1, 0< cos a< 1。
4. 坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度i tan Al5. 方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
如图3,OA OB OC 的方位角分别为 45 °、135 °、225 °。
6. 方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角.。
初中数学三角函数基础知识点总结初中数学三角函数基础知识点总结总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可以使我们更有效率,因此,让我们写一份总结吧。
我们该怎么去写总结呢?下面是小编为大家整理的初中数学三角函数基础知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
初中数学三角函数基础知识点总结篇1三角和的公式sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)倍角公式tan2A = 2tanA/(1-tan2 A)Sin2A=2SinA?CosACos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A三倍角公式sin3A = 3sinA-4(sinA)3;cos3A = 4(cosA)3 -3cosAtan3a = tan a ? tan(π/3+a)? tan(π/3-a)三角函数特殊值α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞三角函数记忆顺口溜1三角函数记忆口诀“奇、偶”指的是π/2的倍数的`奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
北师大版九年级三角函数在我们的数学学习旅程中,九年级的三角函数就像是一座神秘而又充满魅力的山峰,等待着我们去攀登和探索。
三角函数不仅是数学中的重要概念,也是解决实际问题的有力工具。
接下来,让我们一起走进北师大版九年级三角函数的奇妙世界。
一、什么是三角函数三角函数是描述三角形中边与角之间关系的函数。
在一个直角三角形中,我们通常会用到三个主要的三角函数:正弦(sin)、余弦(cos)和正切(tan)。
正弦函数(sin)是指一个锐角的对边与斜边的比值。
比如,在一个直角三角形中,如果一个锐角为 A,它的对边为 a,斜边为 c,那么 sin A = a / c 。
余弦函数(cos)是指一个锐角的邻边与斜边的比值。
仍以上面的三角形为例,角 A 的邻边为 b,那么 cos A = b / c 。
正切函数(tan)则是指一个锐角的对边与邻边的比值,即 tan A =a /b 。
二、三角函数的性质1、周期性正弦函数和余弦函数都具有周期性。
正弦函数 sin x 的周期是2π,余弦函数 cos x 的周期也是2π。
这意味着,每隔2π 的长度,函数的值会重复出现。
2、奇偶性正弦函数是奇函数,即 sin(x) = sin x ;余弦函数是偶函数,即cos(x) = cos x 。
3、值域正弦函数和余弦函数的值域都在-1, 1 之间,而正切函数的值域是全体实数。
三、三角函数的应用三角函数在实际生活中有广泛的应用。
比如,在测量建筑物的高度时,如果我们知道测量点到建筑物底部的距离以及测量点观察建筑物顶部的仰角,就可以通过三角函数来计算建筑物的高度。
在航海中,通过测量船只与灯塔之间的角度以及距离,可以确定船只的位置。
在物理学中,三角函数也经常用于描述周期性的运动,如简谐振动。
四、如何求解三角函数要准确求解三角函数的值,需要掌握一些特殊角度的三角函数值。
比如,30°、45°、60°等常见角度的正弦、余弦和正切值,我们应该牢记于心。
三角函数的性质知识点总结三角函数是数学中重要的一部分,主要涉及到正弦函数、余弦函数和正切函数。
它们在数学、物理、工程等学科中都有广泛的应用。
本文将对三角函数的性质进行总结,包括周期性、对称性、函数值范围等方面的内容。
一、正弦函数的性质1. 周期性:正弦函数的周期是2π,即sin(x+2π) = sin(x),其中x表示角度。
2. 对称性:正弦函数关于原点对称,即sin(-x) = -sin(x)。
3. 函数值范围:正弦函数的函数值范围在[-1, 1]之间。
二、余弦函数的性质1. 周期性:余弦函数的周期也是2π,即cos(x+2π) = cos(x)。
2. 对称性:余弦函数关于y轴对称,即cos(-x) = cos(x)。
3. 函数值范围:余弦函数的函数值范围同样在[-1, 1]之间。
三、正切函数的性质1. 周期性:正切函数的周期是π,即tan(x+π) = tan(x),其中x表示角度。
2. 对称性:正切函数关于原点对称,即tan(-x) = -tan(x)。
3. 函数值范围:正切函数的函数值范围是整个实数集。
1. 正弦函数和余弦函数的特殊角度值如下: sin(0) = 0, cos(0) = 1;sin(π/6) = 1/2, cos(π/6) = √3/2;sin(π/4) = √2/2, cos(π/4) = √2/2;sin(π/3) = √3/2, cos(π/3) = 1/2;sin(π/2) = 1, cos(π/2) = 0;2. 正切函数的特殊角度值如下:tan(0) = 0;tan(π/4) = 1;tan(π/3) = √3;tan(π/2) 没有定义。
五、三角函数的基本关系1. 正切函数与正弦函数和余弦函数的关系: tan(x) = sin(x) / cos(x)。
2. 正弦函数和余弦函数的关系:sin^2(x) + cos^2(x) = 1。
1. 正弦函数和余弦函数的图像是波形振动,具有周期性和对称性。
三角函数相关知识点三角函数知识点学习资料一、基本概念1. 角的概念推广正角、负角和零角:按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角,不作任何旋转形成的角为零角。
象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边落在第几象限,就说这个角是第几象限角。
终边在坐标轴上的角不属于任何象限。
终边相同的角:所有与角α终边相同的角(连同α在内),可构成一个集合S ={β|β=α + k·360^∘,k∈ Z}。
2. 弧度制定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示。
弧度与角度的换算:180^∘=π rad,所以1^∘=(π)/(180) rad,1 rad = ((180)/(π))^∘。
弧长公式:l =|α|r(其中l为弧长,α为圆心角弧度数,r为半径)。
扇形面积公式:S=(1)/(2)lr=(1)/(2)|α|r^2。
二、三角函数定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=y,cosα = x,tanα=(y)/(x)(x≠0)。
对于角α终边上任意一点P(x,y)(r=√(x^2)+y^{2}),则sinα=(y)/(r),cosα=(x)/(r),tanα=(y)/(x)(x≠0)。
2. 三角函数值在各象限的符号正弦函数y = sin x:一、二象限为正,三、四象限为负。
余弦函数y=cos x:一、四象限为正,二、三象限为负。
正切函数y = tan x:一、三象限为正,二、四象限为负。
三、同角三角函数的基本关系1. 平方关系sin^2α+cos^2α = 1。
2. 商数关系tanα=(sinα)/(cosα)(cosα≠0)。
四、诱导公式1. α + 2kπ(k∈ Z)与α的三角函数关系sin(α + 2kπ)=sinα,cos(α+2kπ)=cosα,tan(α + 2kπ)=tanα。
sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα。
三角函数知识点归纳 一、任意角与弧度制 1.任意角 (I)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. J 按旋转方向不同分为正角、负角、零角. (2)分类[按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角a 终边相同的角,连同角a 在内,可构成一个集合S={缈=a+ 2kιt, Λ∈Z!.(3)象限角与轴线角 今1(第一象限角)卜| 第二致限角阳2A"专VaV2痴 2⅛π<α<2⅛π+-g-,⅛∈z} +π,⅛∈ZT 第三敛限角)卜性"τrVaV2"+等"刃 第四象限角]{α∣2⅛π+^<α<2⅛π+2π,⅛∈z}2.弧度制的定义和公式 角a 的弧度数公式 IaI=%/表示弧长)角度与弧度的换算 ①1。
=念 rad ;② 1 rad=, 弧长公式 l=∖a ∖r 扇形面积公式S=»=如/ (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 3.任意角的三角函数 一、定义:设α是一个任意角,它的终边与单位圆交于点P(x, y),那么Sina=y, cos α=x, tan α=^(x≠()).二、常用结论汇总——规律多一点(1)一个口诀:三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广:设点P(x, y)是角Q终边上任意一点且不与原点重合,r=∣OP∣,则• V X V,1八、sin a= , COSa=-, tanα=-(Xw0).r rχ∖ ,三、特殊角的三角函数:3.1 象限角及终边相同的角例1、若角。
是第二象限角,则辞()A.第一象限角B.第二象限角C.第一或第三象限角D.第二或第四象限角∩例2、一的终边在第三象限,则。
的终边可能在() 2A.第一、三象限B.第二、四象限C.第一、二象限或y轴非负半轴D.第三、四象限或y轴非正半轴3.2 三角函数的定义例1、已知角α的终边经过点P(一χ, — 6),且COSa=—/,则1;+%½= _________________ .1J SlIl (A IdIl (A例2、已知角α的终边经过点(3, -4),则Sin a+»^=.3.3 、三角函数符号的判定例1、已知Sina < 0旦cosa > 0,则a的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限3.4 扇形面积问题1.已知一个扇形的弧长和半径都等于2,则这个扇形的面积为().A. 2B. 3C. 4D. 6二、同角三角函数的基本关系与诱导公式1 .同角三角函数的基本关系(1)平方关系:siMα+cos2α=l; (2)商数关系:tan α=黑吃.同角三角函数的基本关系式的几种变形(l)sin2α= 1 — cos2α=(l + cos «)(1 —cos a); cos2a= 1 - sin2a=(l ÷sin a)(l — sin a); (sin a±cos a)2 =l±2sin acos a.(2)sin a=tan acos a(a≠5+E, &WZ).2 .诱导公式“奇变偶不变,符号看象限”公式一:sin(a+2⅛π)=sin a, cos(a÷2hc)=cos a»la∏(6Z + <λkτf)= t∏∏OC其中公式二:sin(π+ct)= ~sin a> cos(π+cc)=~cos ct> Ian(Tr+a)=Ian a.公式三:sin(π~a)=sin a,cos(π-a) = — cos ct, ta∏(^-6Z)= —ta∏ OC ∙公式四:sin(-ct)=—sin a, cost—«)=cos a,t<l∏) = -13∏ CX .公式五:Sine-a) =cos a, COSe—a) =Sina 公式六:SinC+a)=cos a,CoSC+«) = -sin a.诱导公式可概括为〃∙]±a的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指方的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把a看成锐角时,根据在哪个象限判断厚三曲函数值的符号,最后作为结果符号.8.方法与要点一个口诀I、诱导公式的记忆。
完整版)三角函数知识点总结三角函数知识要点:1.角度集合:①与角度α(0°≤α<360°)终边相同的角的集合:β|β=k×360°+α,k∈Z②终边在x轴上的角的集合:β|β=k×180,k∈Z③终边在y轴上的角的集合:β|β=k×180+90,k∈Z④终边在坐标轴上的角的集合:β|β=k×90°,k∈Z⑤终边在y=x轴上的角的集合:β|β=k×180°+45°,k∈Z⑥终边在y=-x轴上的角的集合:β|β=k×180°-45°,k∈Z2.角度关系:⑦若角度α与角度β的终边关于x轴对称,则α=360°k-β⑧若角度α与角度β的终边关于y轴对称,则α=360°k+180°-β⑨若角度α与角度β的终边在一条直线上,则α=180°k+β⑩角度α与角度β的终边互相垂直,则α=360°k+β±90°3.角度与弧度的互换关系:360°=2π,180°=π,1°=0.≈57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
4.弧长与扇形面积公式:弧长公式:l=|α|×r扇形面积公式:s=lr=|α|×r²5.三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y),与原点的距离为r,则sinα=y/r;cosα=x/r;tanα=y/x;cotα=x/y;secα=r/x;cscα=r/y。
6.三角函数在各象限的符号:(一全二正弦,三切四余弦)7.三角函数线:正弦线:MP;余弦线:OM;正切线:AT。
8.重要结论:sinx|>|cosx|。
三角函数的定义域:对于三角函数f(x)=sinx、f(x)=cosx、f(x)=tanx、f(x)=cotx、f(x)=secx、f(x)=cscx,它们的定义域分别为{x|x∈R}、{x|x∈R}、{x|x∈R且x≠kπ+π,k∈Z}、{x|x∈R且x≠kπ,k∈Z}、{x|x∈R且x≠kπ+π/2,k∈Z}、{x|x∈R且x≠kπ,k∈Z}。
【文库独家】
九下三角形边角关系知识点总结
1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
6、正弦、余弦的增减性:
当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:
A
90B 90∠-︒=∠︒=∠+∠得由B A 对边
邻边 A
90B 90∠-︒=∠︒
=∠+∠得由B A
当
0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)
2、应用举例:
(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线
水平线
视线
视线俯角
(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即h i l
=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan h
i l
α==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向),
南偏西60°(西南方向), 北偏西60°(西北方向)。
:i h l =h
l
α。