五年级数学上册复习知识点归纳
- 格式:docx
- 大小:22.35 KB
- 文档页数:8
五年级数学上册知识点梳理归纳五年级数学上册知识点分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
(也就是把什么平均分什么就是单位“1”。
)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
如4/5的分数单位是1/5。
4、分数与除法A÷B=A/B(B≠0,除数不能为0,分母也不能够为0) 例如:4÷5=4/55、真分数和假分数、带分数1、真分数:分子比分母小的分数叫真分数。
真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。
假分数≧13、带分数:带分数由整数和真分数组成的分数。
带分数>1.4、真分数<1≤假分数真分数<1<带分数6、假分数与整数、带分数的互化(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:(2)整数化为假分数,用整数乘以分母得分子如:(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:(4)1等于任何分子和分母相同的分数。
如:7、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。
反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
如:24/30=4/510、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
如:2/5和1/4 可以化成8/20和5/2011、分数和小数的互化(1)小数化为分数:数小数位数。
一位小数,分母是10;两位小数,分母是100……如:0.3=3/10 0.03=3/100 0.003=3/1000(2)分数化为小数:方法一:把分数化为分母是10、100、1000……如:3/10=0.3 3/5=6/10=0.61/4=25/100=0.25方法二:用分子÷分母如:3/4=3÷4=0.75(3)带分数化为小数:先把整数后的分数化为小数,再加上整数12、比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。
五年级数学上册知识点归纳总结(一)负数的初步认识负数的初步认识(一)正负数及零的意义:像+20,+8848,+3260 这样的数都是正数(正数前面的“+”可以省略不写),像-20,-155,-422 这样的数都是负数.0 是正数和负数的分界线,0 既不是正数也不是负数.负数的初步认识(二)1.生活中具有相反意义的数量:像零℃以上与零℃以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股价的上涨和下跌等等都是由相反意义的量,都可以用正负数来表示.2.初步认识数轴:(1)0右边的数都是正数,0左边的数都是负数.(2)-2和2到0的距离相等.(3)正数都大于0,负数都小于0.(二)多边形的面积平行四边形的面积1.公式推导:沿着平行四边形任意一条边上的高,将平行四边形分成两部分,再经过平移或者旋转,可以将平行四边形转化成长方形.通过观察发现,长方形的长是原平行四边形的底,长方形的宽是原平行四边形的高.通过长方形的面积公式,我们可以得到平行四边形的面积公式,如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,可以得到平行四边形的面积为:S=a×h.2.平行四边形拉伸和平移问题:(1)把一个长方形框拉成平行四边形,周长不变,高变小,面积也变小;同理,把平行四边形框拉成长方形,周长不变,高变大了,面积也变大.(2)把一个平行四边形拼成长方形,面积不变,宽变小了,周长也变小.3.两平行四边形之间的关系:等底等高的两平行四边形面积一定相等,但面积相等的两个平行四边形形状不一定相同;三角形的面积:1.公式推导:用两个完全相同的三角形,可以拼成一个平行四边形.三角形的面积等于拼成的平行四边形的一半.观察可以发现,平行四边形的底和三角形的底相同,平行四边形的高和三角形的高相同.通过平行四边形的面积公式,可以推导出三角形的面积公式.如果S表示三角形的面积,用a和h分别表示三角形的底和高,三角形的面积公式为:S=a×h÷2.2.两三角形之间的关系:等底等高的两三角形面积一定相等,但面积相等的两个三角形形状不一定相同;3.三角形与平行四边形之间的关系:(1)一个平行四边形能分割成两个完全相同的三角形;两个完全相同的三角形能拼成一个平行四边形;(2)等底等高的三角形面积是平行四边形面积的一半;(3)等面积.等底(高)的三角形和平行四边形,三角形的高(底)是平行四边形的2倍;梯形的面积:1.推导公式:两个完全相同的梯形可以拼成一个平行四边形,梯形的面积等于拼成的平行四边形面积的一半.通过观察可以发现,拼成的平行四边形的底等于梯形的上底.下底之和,平行四边形的高等于梯形的高.根据平行四边形面积公式,可以推导出梯形的面积公式.用S 表示梯形的面积,a.b 和h 分别表示梯形的上底.下底和高,梯形的面积公式为:S=(a+b )×h÷2.2.梯形与平行四边形之间的关系:(1)一个平行四边形可以分成两个完全相同的梯形,注意两个不同的梯形也可以拼成一个平行四边形;(2)要从梯形中剪去一个最大的平行四边形,那么应把梯形的上底作为平行四边形的底,这样剪去才能最大.公顷和平方千米:1.公顷:1公顷就是边长100米的正方形的面积,1公顷=10000平方米.一个社区.校园的面积通常用“公顷”为单位;2.平方千米:1平方千米就是边长1000米的正方形的面积,1平方千米=100公顷=100万平方米=1000000平方米.表示一个国家.省市.地区.湖泊的面积是就要用“平方千米”作单位.3.面积单位换算进率:10010010010000100222222mm cm dm m hm km ÷÷÷÷÷−−−→−−−→−−−→−−−→−−−→【同步练习】单位换算8平方米=( )平方分米 3平方分米=( )平方厘米7平方分米=( )平方厘米 ( )平方分米=15平方米( )平方厘米=78平方分米 10平方千米=( )公顷120000平方米=( )公顷 7平方米=( )平方分米78公顷=( )平方米 55平方分米=( )平方厘米14平方米=( )平方分米 360000平方米=( )公顷3平方千米=( )平方米=( )公顷【同步练习】在括号里填上合适的单位名称.课桌的面积大约是44( ). 一枚邮票的面积大约是8( ). 教室的面积大约是48( ).我们校园的面积大约是2( ).江苏省的面积大约是10.26( ).简单组合图形的面积:1.求组合图形面积的常见方法:⑴分割法:可以把一个组合图形分成几个简单的图形,分别求出这几个简单图形的面积,再求和.⑵添补法:可以把一个组合图形看作是从一个简单图形中减去几个简单的图形,求出它们的面积差.2.计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积之和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差.【同步练习】求下面图形的面积(单位:m).你能想出几种方法.不规则图形的面积:1.要点:(1)把整格和半格分别涂上不同的颜色,避免重复和遗漏.(2)不满整格的可以全部看成半格计算;或者先数整格的个数,再把不满整格的也看成整格,数出一共有多少格.(3)有顺序地去数,做到不重复.不遗漏.2.方法:先数整格的,再数不满整格的,不满整格的除以2折算成整格,最后相加;若不规则图形为轴对称图形,可先算出一半图形的面积,再乘以2.【同步练习】图中每个小方格的面积为12m,请你估计这个池塘的面积.(三)小数的意义和性质小数的意义和读写方法:1.小数的意义:分母是10.100.1000……的分数都可以用小数表示.一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2.小数的读写:整数部分的0在每一级中间要读出来,在末尾不用读出来,而小数部分的0都要读出来(常考题)【同步练习】填空(1)506毫米=( )米; (2)23分=( )元;(3)148厘米=( )米; (4)8角5分=( )元;(5)0.023米=( )毫米 ; (6)3.09元=( )元( )分;(7)0.008= ()(); 0.621= ()(); 3.15=()(); 【同步练习】用0.0.2.6这四个数字和小数点组成小数.(1)组成最小的小数( ); (2)组成最大的小数( );(3)组成最小的两位小数( ); (4)组成最大的两位小数( );(5)组成只读一个0的两位小数( ); (6)组成一个0都不读的小数( ); 小数的计数单位和数位顺序表:【同步练习】在6.47这个数中,6在( )位上,表示( )个( );4在( )位上表示( )个( );7在( )位上,表示( )个( ).【同步练习】0.508是由( )个十分之一和( )个千分之一组成的,也可以看作是由( )个千分之一组成的.【同步练习】1里面有()个0.1,()个百分之一;50里面有()个0.01.【同步练习】1.45的计数单位是(),1.45含有()个这样的计数单位.1.450的计数单位是(),1.450含有()个这样的计数单位.【同步练习】一个小数的计数单位是0.001,它比0.01大,又比0.02小,这个小数可能是 .小数的性质:1.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变.2.易错点:①在小数点后面添上0或者去掉0,小数的大小不变.(×)②在一个数后面添上0或者去掉0,小数的大小不变.(×)【同步练习】把下面各数改写成小数部分是两位的小数.5元6角=()元 8分=()元1分米2厘米=()米 12厘米=()米【同步练习】在800,8.00,0.80,80.000这几个数中,不改变原数的大小,能去掉3个0的数是(),只能去掉2个0的数是(),只能去掉1个0的数是(),一个0也不能去掉的数是().小数的大小比较:先看整数部分,整数部分大的数就大;整数部分相同的,十分位上的数大的小数就大;十分位上的数相同的,再比较百分位上的数,以此类推.【同步练习】比较大小:0.76.0.067.0.706.0.076.0.67.0.607()<()<()<()<()<()【同步练习】7.□6>7.46 ,□里可填的数是().【同步练习】大于0.5而小于1的一位小数有()个.大于0.07而小于0.08的三位小数有()个;【同步练习】在□.□8的两个□里各填一个数字,使得到的小数分别符合下面的要求,(1)使这个小数尽可能大,这个小数是().(2)使这个小数尽可能小,这个小数是().(3)使这个小数尽可能接近5,这个小数是().大数值的改写1.用“万”作单位:a.从个位起,往左数四位,画“┆”,在“┆”下方点小数点;b.去掉小数末尾的“0”,添上“万”字;c.用“=”连接.2.用“亿”作单位:a.从个位起,往左数八位,画“┆”,在“┆”下方点小数点;b.去掉小数末尾的“0”,添上“亿”字;c.用“=”连接.【同步练习】把168000改写成用“万”作单位的数是();省略万位后面的尾数是();把995000000元改写成以“亿元”为单位的数是(),保留一位小数是(). 小数的近似数1.保留整数:就是精确到个位,要看十分位上的数来决定四舍五入.2.保留一位小数:就是精确到十分位,要看百分位上的数来决定四舍五入.3.保留两位小数:就是精确到百分位,要看千分位上的数来决定四舍五入. 【同步练习】求下面各数的近似数:1.5.064(精确到十分位)2.3.1449(精确到百分位)3.2.905(保留一位小数)4.2549880000(改写成用“亿”作单位的数,再保留两位小数)(四)小数加法和减法小数的加法和减法1.小数加法和减法的计算方法:要把小数点对齐,也就是相同数位对齐;从最低位算起,各位满十要进一;不够减时要向前一位借1当10再减.2.被减数是整数时,要添上小数点,并根据减数的小数部分补上“0”后再减.3.用竖式计算小数加.减法时,小数点末尾的“0”不能去掉,把结果写在横式中时,小数点末尾的“0”要去掉.【同步练习】数字7在十位上比在十分位上表示的数大(),小于1的最大的三位小数比最小的两位小数大().【同步练习】3.6的计数单位是(),它有()个这样的单位,再加上()个这样的计数单位就得到4.【同步练习】在一个减法算式中,差是6.25,如果被减数增加0.5,减数减少0.5,则现在的差是().小数加减法简便计算:1.加法运算律:加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)2.减法的性质:a-b-c=a-(b+c) a-(b-c)=a-b+ca+b-c=a-c+b a+b-c+d=a-c+b+d【类型一】8.43+2.87+0.57+0.13 【类型二】6.52–3.44–2.56【类型三】9.6+6.7–9.6+3.3 【类型四】17.84–(5.84+11.79)(五)小数乘法和除法小数乘整数:小数乘整数,先按整数乘法计算,再看乘数里有几位小数,就从积的右边起数出几位,点上小数点.【同步练习】根据504×25=12600,直接写出下面每题的积.5.04×25= 50.4×25= 0.504×25=504×0.25= 504×2.5= 504×0.025=一个数乘10.100.1000……的计算规律1.规律:一个小数乘10.100.1000……小数点就分别向右移动一位.两位.三位……反过来.把小数的小数点向右移动一位两位.三位……就等于把这个小数乘10.100.1000 ……这就是小数点移动引起的小数大小变化规律.注意:如果当移动小数点但末尾数位不够时,可以用添“0”的办法补足数位,过去一个整数乘10就在末尾添1个“0”,乘100就在末尾添2个“0”……2.单位换算:例如求0.86吨=?千克时,可以这样想:把吨数改写成千克数,是把高级单位的数改写成低级单位的数,要乘以进率,进率是1000,只要把0.86的小数点向右移动三位.【同步练习】在括号里填上合适的数.0.04×()=4 0.978×()=978 5.08×()=50.846.5×()=4650 0.09×()=9 1.04×()=104【同步练习】单位换算.2.3米=()分米3.004升=()豪升7.07千克=( )克 21平方分米9平方厘米=( )平方厘米0.6平方米=( )平方厘米 4.3小时=( )小时( )分一个数除以整数除数是整数的小数除法,按整数除法算,商的小数点和被除数对齐;末尾有余数添0继续除;整数部分不够商1在个位商0.一个数除以10.100.1000……的计算规律1.规律:一个小数除以10.100.1000……小数点就分别向左移动一位.两位.三位……反过来,把一个数的小数点向左移动一位.两位.三位……就等于把这个小数除以lO.100 .1000……注意:如果当移动小数点数位不够时,可以用添“0”补足数位.整数实际上就是小数部分都是0的数,同样可以用这个规律求商.过去一个整十.整百数除似10或100,就在末尾去掉1个“0”或2个“0”……2.单位换算:例如求4.6分米=?米时,可以这样想:这道题是把分米数改写成米数,是把低级单位的数改写成高级单位的数,要除以进率,进率是10,只要把4.6的小数点向右移动一位.【同步练习】在括号里填上合适的数.139.8÷()=1.398 47.8÷()=0.478 1153÷()=1.153 8÷1000=()()÷100=7.5 ()÷10=0.01【同步练习】单位换算17分米=()米 1200毫升=()升3050米=()千米 350平方分米=()平方米710克=()千克 5030千克=()吨150分=()小时 720平方厘米=()平方分米小数乘以小数1.法则:小数乘小数先按整数乘洪乘,再看乘数里一共有几位小数,就从积的右边起数出几位,点上小数点.当小数位数不够时,在前面用0补足;末尾有0的要先点小数点再化简.2.积不变的规律:(1)一个乘数扩大多少倍,另一个乘数缩小相应的倍数,积不变;(2)当一个乘数不为0时,另一个乘数大于1,积就大于第一个乘数;另一个乘数小于1,积就小于第一个乘数.【同步练习】根据44×21=924 ,直接写出下面几个算式的积.4.4×2.1=( ) 0.44×0.21=( )0.44×2.1=( ) 4.4×0.21=()【同步练习】在括号填入合适的数,使等式成立.5.46×24=2.4×() 4.24×0.25=()×0.4246.4×0.53=5.3×() 18×0.42=0.18×()【同步练习】比较大小0.8×1.5○0.8;0.8×1.5○1.5.积的近似值求积的近似值,先计算乘法的积,根据要保留的位数看后一位上的数,用四舍五人的方法得出积的近似数.结果是近似值的,要用约等号表示.【同步练习】6.9628保留整数是();保留到十分位是();保留两位小数是();保留三位小数是()【同步练习】求一个小数的近似数,如果保留三位小数,要看小数第()位. 一个数除以小数1.被除数数位够:先划去除数的小数点,将除数变成整数,然后除数的小数点向右移动了一位,被除数的小数点也向右移动一位,划去被除数原来的小数点,再按照除数是整数的除法来计算.2.被除数数位不够:(1)先把除数转化成整数;(2)把除数转化成整数后,被除数的小数点也要向右移动相同位数.如果位数不够,要用0补足;(3)再按除数是整数的计算方法进行计算.3.商不变的规律:(1)除数和被除数扩大相同倍数,商不变;(2)当被除数不为0时,除数大于1,商就小于被除数;除数小于1,商就大于被除数.【同步练习】把下面的式子变成除数是整数的除法算式0.75÷0.25=( )÷25 0.672÷4.2 =( )÷420.24÷4.8=( )÷48 14 ÷0.56 =( )÷( )76.8÷0.5=( )÷5 0.54÷0.18 =( )÷( )【同步练习】根据1664÷13=128写出下面各题的商.16.64÷0.13 =( ) 166.4÷0.13=( )1664 ÷0.013=( ) 1.664÷1.3 =( )166.4 ÷130 =( ) 16.64÷1.3 =( )【同步练习】巧比大小.12.01÷1.02○12.01 0.36÷0.36○0.367.8×0.98○0.98 10.8÷5.4○10.81.8×1.1○18×0.11 0.99÷1.1○0.99×1.1商的近似值1.求商的近似值:保留整数要除到( )位,保留一位小数要除到( ),保留两位小数要除到( ),也就是比保留的位数多除( )位,再按( )法取近似值.2.循环小数:⎧⎨⎩有限小数(小数部分位数是有限的)小数无限小数(小数部分位数是无限的) 循环小数: 0.378378…… 1.13636……(用循环节表示) 0.378g g 1.136g g3.进一法:有时候不管余下的数是多少,都还需要分1份,就要用进一法把结果添上1,比如只要油有余下的,不管余下多少都要有1个油壶才能装完,这就要在商里添上1个.4.去尾法:有时候不管余下的数是多少,都不能再得到1个或1份时,就要用去尾法舍去余数,比如余下的钱不够再买1个足球.余下的米数不够做1件衣服,这余数就舍去.【同步练习】一间教室长8.8米,宽6.5米,如果用0.38平方米的瓷砖铺地,至少需要多少块瓷砖?(得数保留整数)【同步练习】植物油厂的每个油桶最多装油4.5千克,要装600千克的油,需要多少个油桶?【同步练习】金星服装厂有一批布料,如果做儿童服装,每套用布2.2米,正好可以做100套;如果用来做成人服装,每套用布2.5米,那么可以做多少套成人服装呢?小数四则混合运算1.运算顺序:(1)同一级符号从左往右依次计算;(2)既有加减,又有乘除,先算乘除,再算加减;(3)有小括号的,先算小括号里面的.2.简便计算类型:(1)乘法结合律a b c a c b()()⨯⨯=⨯⨯基本方法:先交换因数的位置,再计算.【同步练习】4.36×12.5×8【例2】0.95×0.25×4 (2)乘法分配律乘法分配律()±⨯=⨯±⨯a b c a c b c【同步练习】(1.25-0.125)×8【例2】(20-4)×0.25 (3)乘法分配律逆应用乘法分配律逆向定律()⨯±⨯=±a b a c a b c【同步练习】3.72×3.5+6.28×3.5【例2】 15.6×2.1-15.6×1.1(4)乘法分配律拓展应用【例1】4.8×10.1【例2】0.39×199(5)拆分因数【同步练习】1.25×2.5×32【例2】3.2×0.25×12.5(6)添加因数“1”【例1】56.5×99+56.5【例2】4.2×99+4.2(7)更改因数的小数点位置【同步练习】6.66×3.3+66.6×67【例2】4.8×7.8+78×0.52(8)除法的性质字母表示:)÷=÷÷(ca⨯bbac【同步练习】420÷2.5÷4【例2】17.8÷(1.78×4)(六)统计表和条形统计图(二)复式统计表复式统计表其实就是由几张单式统计表合成的,所以从复式统计表中,不仅可以横向比较.纵向比较,还可以从“合并”和“总计”中看出总体的比较情况.复式条形统计图复式条形统计图的结构比单式条形统计图更复杂,表达的信息也比单式条形统计图更丰富,不仅便于对同一类数据进行比较,而且便于对两类相关数据进行比较. 与复式统计表相比,复式条形统计图表示的数据则更加直观.形象.(七)解决问题的策略例举法1.例表法:例举的特点:有顺序.不重复.不遗漏【同步练习】用18根1米长的栅栏围一个长方形的羊圈,怎样围成的面积最大?在周长不变的前提下,当长方形的长和宽的数值相差越大,面积就越小,反之,长方形的长和宽的数值相差越小,面积就越大.2.例举法:【同步练习】最少订1本,最多订3本,有多少种情况?订一本:A.B.C 订二本:AB.AC.BC 订三本:ABC 得出结论:要按一定顺序列举,才能做到既不重复,又不遗漏.当情况比较复杂时要先分类,再列举.列举时可以列表,也可以用文字或符号.字母等来表示.总之要把每种可能一一列举出来,并且要用尽可能简单的方法表示,让人一看就明白.3.画图法:【同步练习】小强.小华和小丽是好朋友,如果她们每两人之间通一次电话,一共要通多少电话?如果他们互相寄一张节日贺卡,一共要寄多少张?提问:“每两人之间通一次电话”和“两人互寄一张贺卡”有什么不同?【同步练习】一个平行四边形的面积是36平方米,它的底和高分别是多少(底.高取整米数)?请你列表看一看有几种情况.【同步练习】用36个1平方厘米的小正方形拼成长方形,有多少种不同的拼法?它们的周长各是多少?拼一拼,算出结果.【同步练习】面包房的面包有4个装和6个装两种不同的包装.妈妈要购买50个面包,一共有几种不同的选择方法?【同步练习】动物园售票规定,一人券2元一张,团体券15元一张(可供10人参观),六年级一班有58人.买门票最少要花多少元?(八)用字母表示数用字母表示数1.用含有字母的式子表示数量关系和计算公式:小结:用含有字母的式子表示数量关系和计算公式简洁.明了,让人一目了然. 字母在不同的情况下,表示数的范围不一样,有的时候可以表示任意的数,但在表示生活中的数的时候,有时会有一定的范围.【同步练习】如果用大写的C表示周长,a表示长方形的长吧,b表示长方形的宽,你能用字母表示长方形的周长公式吗?那么面积呢?解析:长方形的周长=(长+宽)×2,用字母分别代进去,为C=(a+b)×2,省略乘号为C=2(a+b)长方形的面积=长×宽,用S表示面积,则S=a×b.【同步练习】若a表示单价,b表示数量,c表示总价.(1)已知单价.数量,求总价:()(2)已知总价.单价,求数量:()(3)已知总价.数量,求单价:()【同步练习】若用m表示工作效率,t表示工作时间,n表示工作总量.(1)已知工作效率.工作时间,求工作总量:()(2)已知工作总量.工作效率,求工作时间:()(3)已知工作总量.工作时间,求工作效率:()【同步练习】你能用字母表示以前学过的运算律吗?加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律:a×(b+c)=a×b+a×c【同步练习】用含有字母的式子表示下面的数量:(1)水果店运来苹果X筐,每筐30千克.卖去50筐,还剩()千克.(2)水果店运来苹果X筐,每筐30千克.卖去50千克,还剩()千克.(3)一本书X元,买10本同样的书应付()元.(4)搭一个正方形要4根小棒,一行搭n个正方形要()根小棒.(5)一件衣服用布2米,X米布可做的件数为().(6)一个正方形花坛长5米,四周有一条a米宽的小路.小路的面积()平方米.小路外边一周长()米.2.含有字母的式子的书写(1)当字母与数字相乘时,去掉乘号,把数字写在字母的前面,也可以用点表示乘号,如:a×2通常可以写成2a或2• a.(2)当字母与字母相乘时,省略乘号,用点表示或直接去掉乘号,如:a×b写作a•b或ab;相同字母的话就写一个字母,再在字母的右上角写上2,如:ɑ×ɑ通常写成ɑ•ɑ或ɑ2,读作:ɑ的平方,表示2个ɑ相乘;(3)字母与1相乘省略1不写,只写字母本身,如:1×ɑ写做ɑ.要特别注意的是:加号.减号和除号不能用小圆点代替,也不能省略不写.【同步练习】省略乘号,写出下面各式:a×x= x×x= 5×x= x×3=y×8= x×2= y×b= 4×b×5=5x×2= 1×a= 4×m×n=3.把数代入含有字母的式子求值当给出式子中每个字母表示的数量是多少时,就可以把数字带进去算出这个式子表示的数值.注意要对应相应字母的的数值.【同步练习】煤气公司铺设一段管道,3米长的钢管用了x根,5米长的钢管用了y根.(1)用式子表示这段管道的长度.(2)当x=40根,y=30根时,这段管道长多少米?【同步练习】甲.乙两船分别从两个码头同时向下游出发,甲船每小时行a千米,乙船每小时行b千米,经10小时甲追上了乙.(1)用式子表示10小时甲.乙两船共行过的路程.(2)若a=58,b=41,求两个码头的距离.4.化简含有字母的式子化简形如“ax±bx”的式子,形如“ax±bx”的含有字母的式子,可以运用乘法分配律进行化简.【同步练习】计算下面各题:3x+5x=10y-9y=15a+10a=8b+2b=1×a=y+4y=15b-14b=15x-x=6a-a=y×y=.。
五年级上册数学知识点归纳一、小数乘法1、小数乘整数意义:求几个相同加数的和的简便运算。
计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
如果积的小数位数不够,要在前面用 0 补足,再点上小数点。
2、小数乘小数意义:就是求这个数的几分之几是多少。
计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
如果乘得的积的小数位数不够,要在前面用 0 补足,再点上小数点。
3、积的近似数求积的近似数时,先按照小数乘法的计算方法算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”法求出结果,并用“≈”连接。
4、整数乘法运算定律推广到小数乘法交换律:a×b = b×a乘法结合律:(a×b)×c = a×(b×c)乘法分配律:(a + b)×c = a×c + b×c二、位置1、用数对表示位置数对是一个表示位置的概念,相当于坐标。
数对由两个数字组成,中间用逗号隔开,括号括起来。
括号里面的左边数字表示列数,右边数字表示行数。
三、小数除法1、小数除以整数按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添 0 再继续除。
2、一个数除以小数先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用 0补足);然后按照除数是整数的小数除法进行计算。
3、商的近似数计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
4、循环小数一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
5、用计算器探索规律先用计算器计算,观察发现规律,再根据规律写商。
四、可能性1、确定性事件和不确定性事件在一定条件下,有些事件的结果是可以预知的,具有确定性,确定的事件用“一定”或“不可能”来描述。
第一章小数乘法1,当一个数乘比1小的数,积比这个数小。
当一个数乘比1大的数,积比这个数大。
例: 2.4× 0.5 < 2.4 0.97× 8.2 < 8.22.4× 1.02 > 2.4 0.97× 0.84 < 0.972,两数相乘,一个因数不变,另一个因数扩大到原来的多少倍,积也扩大到原来的多少倍。
一个因数不变,另一个因数缩小到原来的几分几,积也缩小到原来的几分之几。
3,两数相乘,一个因数扩大到原来的m倍,另一个因数扩大到原来的n倍,积扩大到原来的m乘以n倍。
4,小数乘法计算法则:一算:小数乘小数,先按整数乘法算出积;二看:看因数中一共有几位小数,就从积的右边起数出几位,点上小数点;三点:当乘得的积的小数位数不够时,要在前面用0补足,再点上小数点,如果积的小数末尾有0,就根据小数的基本性质把0去掉!5、小数点的位移规律:把一个小数扩大10倍、100倍、1000倍、……只要把小数点向右移动一位、两位、三位……位数不够时,要用“0”补足。
把一个小数缩小为原来的1/10、1/100、1/1000、……只要把小数点向左移动一位、两位、三位……位数不够时,要用“0”补足。
6、根据因数判断积的小数位数:两个因数一共有几位小数,积就是几位小数。
7、整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
乘法的交换律:a×b=b×a乘法的结合律:( a×b)×c= a×(b×c)乘法的分配律:(a+b)×c=a×c+b×c8、积的近似数:保留a位小数,就看第a+1位,再用四舍五入的方法取值。
①保留整数:表示精确到个位,看十分位上的数;②保留一位小数:表示精确到十分位,看百分位上的数;③保留两位小数:表示精确到百分位,看千分位上的数;生活中人民币最小单位常常是“分”,因此以元为单位一般保留两位小数。
小学五年级数学上册35个重要知识点归纳五年级数学上35个重要知识点归纳第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(1)四舍五入法;(2)进一法;(3)去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
一、数的认识
二、数的运算
1.100以内数的加减法:口算、竖式运算、列竖式加减法。
三、几何图形
1.图形的分类:点、线段、射线、直线、水平线、竖直线、直角、平
行线、相交线、三角形、四边形、多边形、圆等。
2.图形的辨认:正方形、长方形、平行四边形、菱形、梯形等。
3.图形的性质:边长、角度、对称性、平行关系等。
四、长度量和时间
1.长度量:米、分米、厘米、毫米的换算,测量长度,比较长度大小。
2.时间:小时、分钟的认识,时、分之间的换算,计算时间的长短。
五、数据统计
1.数据的调查与收集:设计问卷和表格进行统计,对数据进行整理。
2.数据的分析与展示:对数据进行分类、构造条形图、折线图、饼状
图等进行展示和分析。
五年级数学上册各单元知识点归纳第一单元小数乘法1、小数乘法的计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数;就从积的右边起数出几位点上小数点。
乘得的积小数位数不够时;就在积的前面用0来补足;再点小数点。
2、计算结果中;小数部分末尾的0要去掉;把小数化简。
3、规律:一个数(0除外)乘大于1的数;积比原来的数大。
一个数(0除外)乘小于1的数;积比原来的数小。
一个数(0除外)乘1;积等于原来的数。
4、求近似数的方法有三种:⑴四舍五入法;⑵进一法;⑶去尾法。
5、计算钱数;保留两位小数;表示计算到分。
保留一位小数;表示计算到角。
6、小数四则运算顺序跟整数是一样的。
乘法交换律、乘法结合律、乘法分配律对于小数乘法同样适用。
五年级数学上册各单元知识点归纳加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c) 减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c 除法:除法性质:a÷b÷c=a÷(b×c)五年级数学上册各单元知识点归纳1、用数对表示位置时;一般列数在前面;行数在后面。
第三单元小数除法1、小数除以整数的计算方法:小数除以整数;按整数除法的方法去除。
商的小数点要和被除数的小数点对齐。
整数部分不够除;商0;点上小数点。
如果有余数;要添0再除。
2、小数除以小数的计算方法:先将除数和被除数扩大相同的倍数;使除数变成整数;再按“小数除以整数的计算方法”进行计算。
3、如果被除数的位数不够;在被除数的末尾用0补足。
4、在实际应用中;小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数;求出商的近似数。
人教版五年级上册全册数学知识点归纳第一单元:小数乘法。
、小数乘整数------重点:理解小数乘整数的算理。
2、小数乘小数------重点:小数乘小数的计算方法。
3、积的近似数------重点:会用“四舍五入”法取积是小数的近似数。
难点:根据实际情况取近似值。
4、连乘、乘加、乘减------重点:小数连乘、乘加、乘减的运算顺序。
难点:引导学生理解解决问题中出现的解题思路。
、整数乘法运算定律推广到小数------重点:理解整数乘法的运算定律在小数乘法中同样适用。
第二单元:小数除法。
、小数除以整数------重点:小数除以整数的计算方法。
难点:让学生理解商的小数点是如何确定的。
2、一个数除以小数------重点:掌握除数是小数除法的计算方法。
3、商的近似数------重点:求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。
4、循环小数------重点:理解循环小数的意义,会用简便方法读写循环小数。
难点:怎样判断除得的商是循环小数。
、解决问题------重点:训练学生解决问题的思路,让学生掌握分析问题的基本步骤。
第三单元:观察物体。
观察物体(一)------重点:从不同位置观察物体,所看到的形状是不同的。
观察物体(二)------重点:正确辨认从上面、侧面、正面观察到的立体组合图形。
第四单元:简易方程。
、用字母表示数------重点:会用字母表示数、运算定律及计算公式。
2、用含有字母的式子表示数量及数量关系------重点:用含有字母的式子表示数量。
3、方程的意义------重点:初步理解方程的意义。
4、解方程------重点:利用天平平衡的道理理解解比较简单的方程的方法。
、稍复杂的方程(一)------重点:学生自主探索通过列方程解决较复杂应用题的方法。
6、稍复杂的方程(二)------重点:分析数量关系。
难点:列方程和解方程。
7、稍复杂的方程(三)------重点:正确设未知数,找出等量关系列方程并解决问题。
1.数的认识与数的读写-认识整数、自然数、正数、负数、零-数的读法和写法(百位数、十位数、个位数)-数的比较大小和数的顺序-数的数量进位和退位2.取整与分数的认识-整数的概念和特点-分数的概念和特点-分数的读法和写法(分子和分母)-分数与整数的相互转化3.取整与分数的加减法-分数的相加和相减的规律和方法-带分数的加法和减法-分数运算中的化简、通分和约分-分数的运算顺序4.分数的乘法与除法-分数的相乘和相除的规律和方法-带分数的乘法和除法-分数之间的倒数关系-分数的乘法与除法的简便计算法5.分数与小数的认识-小数的概念和特点-分数和小数的相互转化-小数的读法和写法-分数和小数的大小比较6.小数的加法与减法-小数的相加和相减的规律和方法-带小数的加法和减法-通过列竖式计算小数的加减法-小数运算中的进位和退位7.小数的乘法与除法-小数的相乘和相除的规律和方法-带小数的乘法和除法-分数和小数之间的乘除关系-小数的乘法和除法的简便计算法8.图形的平移与旋转-图形的平移和旋转的概念和特点-图形的平移和旋转的判断方法-图形的平移和旋转的画法-图形的平移和旋转的应用9.线段和角的认识-线段和角的概念和特点-线段和角的读法和写法-线段和角的比较和顺序-线段和角的度量和单位10.线段和角的比较与度量-线段和角的大小比较-线段和角的度量和表示-通过直尺和量角器测量线段和角的长度-通过比较和度量解决实际问题11.三角形的认识与性质-三角形的概念和特点-三角形的分类和命名-三角形的性质和判断方法-三角形的勾股定理和海伦定理12.简单的代数式和方程-代数式和方程的概念和特点-简单代数式的构造和计算-简单方程的解法和应用-代数式和方程在实际问题中的应用以上是五年级上册数学各单元的知识点归纳,希望能对你的学习有所帮助。
北师大版小学数学五年级上册知识点归纳1.北师大版小学数学五年级上册知识点归纳篇一1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
3、在小数除法中的发现:①当除数大于1时,商小于被除数。
如:3.5÷5=0.7②当除数小于1时,商大于被除数。
如:3.5÷0.5=72.北师大版小学数学五年级上册知识点归纳篇二1、小数除法的验算方法:①商×除数=被除数(通用)②被除数÷商=除数2、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。
例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来…如此类推。
3、循环小数问题:①小数部分的位数是有限的小数,叫做有限小数。
如:0.37、1.4135等。
②小数部分的位数是无限的小数,叫做无限小数。
如:5.3、7.145145...等。
③一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
如:5.3...、3.12323...、5.7171...④一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。
如:5.333...的循环节是34.6767...的循环节是676.9258258...的循环节是258⑤用简便方法写循环小数的方法:⑴只写出一个循环节,并在这个循环节的首位和末位上面记一个小圆点。
⑵例如:只有一个数字循环节的,就在这个数字上面记一个小圆点。
五年级数学上册复习知识点归纳第一单元小数乘法1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:(1)计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
(2)计算小数加减法先把小数点对齐,再把相同数位上的数相加。
(3)计算小数乘法末尾对齐,按整数乘法法则进行计算。
(4)计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数因数末尾对齐。
2、一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
3、求积的近似数:先求出积,在根据需要求近似数。
求近似数的方法一般有三种:⑴四舍五入法 (常用) ;⑵进一法;⑶去尾法。
后两种多用于解决实际问题求近似数中。
4、计算钱数,保留两位小数,表示精确到分。
保留一位小数,表示精确到角。
5、小数四则运算顺序跟整数四则运算顺序是一样的。
(只有同级运算,从左到右依次计算;两级都有,先乘除后加减;有括号,先算括号里面。
)6、运算定律和性质:方法1、看(观察算式)2、想(思考能否简便计算)3、做(确定定律按运算律简便计算。
)整数乘法的交换律、结合律和分配律,同样适用于小数乘法。
常见乘法计算(敏感数字):25×4=100 125×8=1000加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变. (a×b)×c=a×(b×c) 乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。
(a+b)×c=a×c+b ×c或 (a-b)×c=a×c-b×c减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。
a-b-c=a-(b+c) a-b-c=a-c-b除法性质:从一个数里连续除数两个数,我们可以除以两个除数的积,或者交换两个除数的位置。
a÷b÷c=a÷(b×c) a÷b÷c=a÷c÷b去括号:加减(乘除)混合时,括号前是加号(乘号)的,去掉括号后,括号内的符号不变号;括号前是减号(除法)的,去掉括号后,括号内的符号要变号。
a+(b-c)=a+b-c a-(b-c)=a-b+c a (b÷c)=ab÷c a÷(b÷c)=a÷b×c 加法交换律:加法结合律乘法交换律:乘法结合律:0.75+9.8+0.25 48.5=0.4=0.6 2.5×5.6×0.4 99×12.5×0.8加法交换律与结合律加法交换律与结合律6.5+0.28+3.5+0.72 2.5×1.25×0.4×0.8乘法分配律(提取式)1.35×12-1.35×2 95.5÷1.6-15.5÷1.6乘法分配律(添项)99×25.6+25.6 3.5×8+3.5×3-3.5数字换加法数字换减法数字换乘法4.5×102 99×2.65.6×125减法1 减法2 减法352.8-6.5-3.5 5.28-0.89-1.28 7.63-(1.9+2.63)连除1 连除2 连除33200÷2.5÷0.4 370÷2.5÷3.7 210÷(12.5×2.1)同级运算中,第一个数不动,后面的数可以带着符号搬家。
2.56-0.58+0.44 5.88+1.62-0.88 2.5÷0.2×0.4 290×2.5÷0.29第二单元位置1、数对:一般由两个数组成。
作用:数对可以表示物体的位置,也可以确定物体的位置。
2、行和列的意义:竖排叫做列,横排叫做行。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上(横轴)的坐标表示列,y轴上(竖轴)的坐标表示行。
如:数对(3,2)表示第三列,第二行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上6、图形平移变化规律:(1)图形向左平移,行数不变,列数减去平移的格数;图形向右平移,行数不变,列数加上平移的格数。
(2) 图形向上平移,列数不变,行数加上平移的格数;图形向下平移,列数不变,行数减去平移的格数。
第三单元小数除法1、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。
整数部分不够除,商0,点上小数点。
如果有余数,要添0再除。
2、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数(把小数点向右移动相同的位数),使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:向右移动小数点时,如果被除数的位数不够,在被除数的末尾用0补足。
3、除法中的变化规律:①商不变性质:被除数和除数同时乘或除以同一个数(0除外),商不变。
②除数不变,被除数乘或除以几,商随着乘或除以几。
③被除数不变,除数乘或除以几,商就除以或乘几。
④被除数大于除数,商就大于1;被除数小于除数,商就小于1。
⑤一个非0的数除以大于1的数,商就小于被除数;一个非0的数除以小于1的数,商就大于被除数。
⑥积不变性质:一个因数乘一个数,另一个除以同一个数(0除外),积不变。
⑦一个因数不变,另一个数乘几,积就乘几。
⑧一个因数不变,另一个因数除以几,积就除以几。
4、求商时有时也需要求近似数。
方法三种。
取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。
没有要求时,除不尽的一般保留两位小数。
5、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
一个循环小数的小数部分,依次不断重复出现的数字,叫循环节。
如6.3232……的循环节是32,注意不是23一定要是第一次重复出现的数字是3在前2在后重复出现!6、循环小数的记法:(1)用省略号表示。
写出两个完整的循环节,加省略号。
如:3.55…,2.0321321…(2)简便记法。
在循环节的首位和末位上加小圆点。
如0.36,2.587循环小数是无限小数,无限小数不一定是循环小数。
7、小数部分的位数是有限的小数,叫做有限小数。
小数部分的位数是无限的小数,叫做无限小数。
无限小数分为无限循环小数和无限不循环小数。
第四单元可能性1、可能性:无论在什么情况下都会发生的事件,是“一定”会发生的事件;在任何情况下都不会发生的事件,是“不可能”发生的事件;在某种情况下会发生,而在其他情况下不会发生的事件,是“可能”会发生的事件。
2、可能性的大小:在可能发生的事件中,如果出现该事件的情况较多,我们就说该事件发生的可能性较大;如果出现该事件的情况较少,我们就说该事件发生的可能性较小。
3、游戏规则的公平性:公平性就是只参与游戏活动的每一个对象获胜的可能性是相等的。
第五单元简易方程1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
加号、减号、除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a²,a²读作a的平方2a表示a+a或2×a (1a=a这里的“1”我们不写)3、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式必须有未知数,两者缺一不可)。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、解方程原理:天平平衡。
等式性质一:方程两边同时加上或减去同一个数,左右两边仍然相等。
等式性质二:方程两边同时乘或除以同一个不为0数,左右两边仍然相等。
5、所有的方程都是等式,但等式不一定都是方程。
6、方程的检验过程:方程左边 = 方程右边7、方程的解是一个数;解方程式是一个计算过程。
所以,X=…是方程的解。
常见的等量关系:①路程=速度×时间②工作总量=工作效率×工作时间③总价=单价×数量列方程解决问题方法步骤:1、读题、分析题意(从要求入手)。
【找出已知信息(包括隐含信息剔除无用信息)和未知(即要求信息);注意单位是否一致;不一致先转化】 2、解:设未知数。
【有两个未知数,通常设小的那个,另一个用含设的未知数的关系式表示。
】3、思考并列出方程。
【根据题意和找出的信息建立已知和未知的等量关系列出方程。
】4、解方程。
5、检验反思后作答。
第五单元多边形的面积1、长方形周长=(长+宽)×2 字母公式:C=(a+b)×2长方形面积=长×宽字母公式:S=ab2、正方形周长=边长×4 字母公式:C=4a正方形面积=边长×边长字母公式:S=a23、平行四边形的面积=底×高字母公式: S=ah4、三角形的面积=底×高÷2 字母公式: S=ah÷2(三角形的底=面积×2÷高;三角形的高=面积×2÷底)5、梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2(上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底))注明:求三角形的底或高和梯形的上下底或高时,可根据公式列方程求解。
这样容易列出方程,也好理解。
6、三角形面积公式推导:平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;因为长方形面积=长×宽,所以平行四边形面积=底×高,长方形的面积等于平行四边形的面积。
平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于等底等高三角形面积的2倍。