2G,3G网络图
- 格式:pdf
- 大小:410.10 KB
- 文档页数:1
国内无线频谱资源分配图集(整理收藏版) - 无线移动 - 通信人家园国内移动通信频谱分布图:
三大运营商频谱分配情况说明
TDD
FDD
国内无线频谱分析
4G频段分配表
下一代通信系统频率
前不久,国家无线电监测中心与全球移动通信系统协会(GSMA)共同发布了关于未来宽带移动通信与频谱高效利用的合作研究报告。
报告显示,我国下一代移动网络将继续以6GHz以下相关频谱为主,包括现有2G/3G频谱的重耕、在《中华人民共和国无线电频率划分规定》中通过脚注标记给移动通信系统的频谱,比如3400-3600MHz、以及WRC-15上为移动通信系统新划分/规划的频谱,目前中国支持的主要有三段:3300-3400 MHz,4400-4500 MHz,4800-4990 MHz。
在此基础上,下一代移动网络还将可能使用6GHz以上频谱资源,目前主要面向6-100GHz。
结合中国的频率划分、规划、分配和使用情况,报告在6-100GHz提出了十余段值得研究的频率,如下图所示。
电磁波及无线电波段划分
中华人民共和国无线电频率划分图(高清图放大看)。
研究与探讨612012年第10期责任编辑:袁婷 *****************中国联通3G/2G系统间互操作陈 潜【摘要】文章首先介绍3G/2G系统间切换的基本原理;然后阐述了系统间互操作的设置方法及注意问题;最后针对不同场景下3G/2G互操作参数优化的侧重点进行了分析。
【关键词】WCDMA网 GSM网 互操作 小区重选收稿日期:2011-11-301 引言在目前3G和2G的发展中,3G的WCDMA网和2G的GSM/GPRS网应用最为广泛。
因此,在从GSM/GPRS网向WCDMA网演进的过程中,如何做到3G和2G之间的无缝连接,两者之间的共存互补是非常重要的一个因素。
所谓无缝连接,这里是指3G/2G的互操作,包括3G和2G之间的重选、切换。
在规划工程中,充分考虑3G/2G之间的互操作,对分析3G网络利用率以及2G负载都有很大的必要性,也能进一步实现部分场景下3G/2G互为补充。
2 系统间互操作介绍2.1 3G/2G网络拓扑结构3G/2G网络结构分无线侧以及核心网的电路域、分组域等,如图1所示为相关网元。
2.2 网络重选当移动台开机后或在漫游中,它的首要任务就是找到网络并和网络取得联系,以获得网络的服务。
移动台在空闲模式下的行为可以细分为PLMN网(Public Land Mobile Network,公共陆地移动网络)选择和重选、小区选择和重选、位置登记,这三个过程之间的关系如图2所示。
图1 3G/2G网络拓扑结构图3G研究与探讨622012年第10期责任编辑:袁婷 *****************当移动台开机后,首先应选择一个PLMN网,确认后选择属于这个PLMN网的小区,从该小区系统信息广播中可以知道邻近小区的信息,并选择一个信号最好的小区驻留下来。
接着移动台会发起位置登记过程。
当移动台驻留在小区中并登记成功后,随着移动台的移动,当前小区和邻近小区的信号强度都在不断变化,移动台要选择一个最合适的小区,这就是小区重选过程。
国无线频谱资源分配图集(整理收藏版)- 无线移动- 通信人家园国移动通信频谱分布图:
三大运营商频谱分配情况说明
TDD
FDD
国无线频谱分析
4G频段分配表
下一代通信系统频率
前不久,国家无线电监测中心与全球移动通信系统协会(GSMA)共同发布了关于未来宽带移动通信与频谱高效利用的合作研究报告。
报告显示,我国下一代移动网络将继续以6GHz以下相关频谱为主,包括现有2G/3G频谱的重耕、在《中华人民国无线电频率划分规定》过脚注标记给移动通信系统的频谱,比如3400-3600MHz、以及WRC-15上为移动通信系统新划分/规划的频谱,目前中国支持的主要有三段:3300-3400 MHz,4400-4500 MHz,4800-4990 MHz。
在此基础上,下一代移动网络还将可能使用6GHz以上频谱资源,目前主要面向
6-100GHz。
结合中国的频率划分、规划、分配和使用情况,报告在6-100GHz 提出了十余段值得研究的频率,如下图所示。
电磁波及无线电波段划分
中华人民国无线电频率划分图(高清图放大看)。
移动通信系统从第一代移动通信系统(1G)开始逐渐发展,目前已经发展到第四代移动通信系统(4G),第五代移动通信系统(5G)也已经开始标准化,预计2020年商用。
1、2G2G通信系统采用3级网络架构,即:BTS-BSC-核心网。
2G核心网同时包含CS域和PS域。
2G通信系统起初主要采用一体式基站架构。
一体式基站架构如下图所示,基站的天线位于铁塔上,其余部分位于基站旁边的机房内。
天线通过馈线与室内机房连接。
一体式基站架构需要在每一个铁塔下面建立一个机房,建设成本和周期较长,也不方便网络架构的拓展。
后来发展成为分布式基站架构。
分布式基站架构将BTS分为RRU和BBU。
其中RRU主要负责跟射频相关的模块,包括4大模块:中频模块、收发信机模块、功放和滤波模块。
BBU主要负责基带处理和协议栈处理等。
RRU位于铁塔上,而BBU位于室内机房,每个BBU可以连接多个(3-4个)RRU。
BBU和RRU之间采用光纤连接。
2、3G发展3G网络时,为了节约网络建设成本,3G网络架构基本与2G保持一致。
3G通信系统同样采用3级网络架构,即NodeB–RNC - 核心网。
3G 核心网同时包含CS域和PS域。
3G时代主要采用分布式基站架构。
类似地,分布式基站架构将NodeB分为BBU和RRU两部分。
3、4G4G时代到来时,基站架构发生了较大的变化。
为了降低端到端时延,4G采用了扁平化的网络架构。
将原来的3级网络架构“扁平化”为2级:eNodeB-核心网。
RNC的功能一部分分割在eNodeB中,一部分移至核心网中。
4G核心网只包含PS域。
5G微信公众平台(ID:angmobile)了解到,本文作者Weixingguang进一步介绍,4G基站基本采用分布式基站的架构。
同时,中国移动提出并推动的C-RAN架构也逐渐推广。
C-RAN架构将BBU的功能进一步集中化、云化和虚拟化,每个BBU可以连接10-100个RRU,进一步降低网络的部署周期和成本。
全面:一文看懂5G网络(接入网+承载网+核心网)本文以无线接入网为线索,梳理一下无线侧接入网+承载网+核心网的架构,主讲无线接入网,浅析承载网和核心网,帮助大家更深入的了解5G,也帮助新手更好的入门。
在我们正式讲解之前,我想通过这张网络简图帮助大家认识一下全网的网络架构,通过对全网架构的了解,将方便对后面每一块网络细节的理解。
这张图分为左右两部分,右边为无线侧网络架构,左边为固定侧网络架构。
无线侧:手机或者集团客户通过基站接入到无线接入网,在接入网侧可以通过RT N或者IP R A N或者PT N解决方案来解决,将信号传递给BS C/R N C。
在将信号传递给核心网,其中核心网内部的网元通过IP承载网来承载。
固网侧:家客和集客通过接入网接入,接入网主要是GP O N,包括ON T、OD N、OL T。
信号从接入网出来后进入城域网,城域网又可以分为接入层、汇聚层和核心层。
B R A S为城域网的入口,主要作用是认证、鉴定、计费。
信号从城域网走出来后到达骨干网,在骨干网处,又可以分为接入层和核心层。
其中,移动叫CM N E T、电信叫169、联通叫163。
固网侧和无线侧之间可以通过光纤进行传递,远距离传递主要是有波分产品来承担,波分产品主要是通过WD M+S D H的升级版来实现对大量信号的承载,OT N是一种信号封装协议,通过这种信号封装可以更好的在波分系统中传递。
最后信号要通过防火墙到达IN T E R N E T,防火墙主要就是一个N A T,来实现一个地址的转换。
这就是整个网络的架构。
看完宏观的架构,让我们深入进每个部分,去深入解读一下吧。
什么是无线接入网?首先大家看一下这个简化版的移动通信架构图:无线接入网,也就是通常所说的RAN(Radio Access Network)。
简单地讲,就是把所有的手机终端,都接入到通信网络中的网络。
大家耳熟能详的基站(Ba s e S t a t i o n),就是属于无线接入网(RA N)。
2/3/4G互操作简介一、4G/3G/2G互操作方案示意图二、2G/3G/4G互操作参数原理简介1.重选测量启动与门限判决2/3/4G系统间、E/D/F频点系统内重选首先需要确定优先级。
其它条件相同的情况下,设置的优先级越高,配套参数带来的效果是:终端越容易驻留在该小区。
为了确保用户尽量驻留4G,将优先级最高的5、6、7分配给4G,4G中的室外D/F频点和室内E频点可根据不同的目的选择5、6、7不同优先级,如希望室分尽量多吸收业务,可设置E频点优先级高于D、F,希望控制室分信号外泄,可将D、F频点优先级设置高于E。
重选分两个过程:测量启动判决和重选门限判决启动条件:●同频重选,服务小区电平低于SIntraSearch;●向高优先级的异频/异系统重选,始终进行测量;●向低优先级的异频/异系统重选,服务小区电平低于SNonIntraSearch。
判决条件:●同频、同优先级重选,目标小区比服务小区高于某一相对值(Qhyst(服务小区)、Qoffset(目标小区)),则触发重选;●对高优先级重选,当目标小区高于某绝对门限(ThreshXHigh),则触发重选;●对低优先级重选,当服务小区低于绝对门限1(ThreshServlow)、目标小区高于绝对门限2(ThreshXlow),则触发重选。
注:4G对低优先级小区的异频重选和异系统重选,启动测量门限(SNonIntraSearch)和服务小区判决门限(ThreshServlow)是同一套参数,同时影响异频和异系统重选,仅依靠不同的目标小区判决门限(ThreshXlow)进行区分,故参数配置需兼顾异频和异系统性能。
如:高优先级D频点向低优先级F 频点、3G重选2 切换测量启动与门限判决切换策略与重选策略的原理相似。
■测量启动判决:A1、A2:◇A1事件:当服务小区电平(或质量,下同)高于某门限,则停止上报测量事件◇A2事件:当服务小区电平低于某门限,则开始上报测量事件(与SIntraSearch / SNonIntraSearch 相同)■切换门限判决:A3、A4、A5,三者选其一:◇A3事件:当邻区比服务小区高于某一相对值,则触发切换(与同优先级小区重选门限判决相同)◇A4事件:当邻区高于某绝对门限,则触发切换,(与对高优先级小区重选门限判决相同)◇A5事件:当服务小区低于绝对门限1、邻区高于绝对门限2,则触发切换,(与对低优先级小区重选门限判决相同)■A3、A4、A5均可以用于LTE系统内同频、异频判决门限,为确保空闲态和连接态的一致性,在确定两个小区之间的优先级高低后,同频/同优先级切换使用A2+A3,优先级低到高使用A2+A4,优先级高到低使用A2+A5。
第四代目前认为4G网络体系的分层结构大致可分为3层,自上而下分为:物理层(又称物理网络层或接入层)、网络层(又称中间环境层或承载层)、应用层(又称应用网络层或业务控制层),如图2所示。
其中物理层提供接入和选路功能,网络层作为桥接层提供QoS 映射、地址转换、即插即用、安全管理、有源网络。
物理层与网络层提供开放式IP接口。
应用层与网络层之间也是开放式接口,用于第三方开发和提供新业务。
图2 4G/B3G网络架构的层次和模块模型4G的关键技术主要包括:OFDM(正交频分复用)、AMC(自适应编码调制)、SA/IA (智能天线,原名为自适应天线阵列AAA)、MIMO(多入多出)、SDR(软件无线电)、IPv6(下一代的互联网协议)、定位技术和切换技术。
第三代1、WCDMA的方案分为两类WCDMA的FDD方式WCDMA的TDD方式2、WCDMA的信道可以划分为物理信道.传输信道和逻辑信道。
其中物理信道是以物理承载特性定义,传输信道以数据通过空中接口的方式和特征来定义的,逻辑信道则是按信道的功能来划分。
3、WCDMA系统的物理信道总体结构WCDMA是一类数字式码分直扩体制,他主要是通过码分多址CDMA直接数字扩频,即采用不同形式的正交或准正交码划分信道实现传递不同用户的信息。
因此在WCDMA中码分多址是最基本的特色。
在WCDMA系统中是采用码分为主体.码分.频分相结合的方式来实现。
WCDMA上.下行在IMT-2000占用一定频段,然后将这一频段分配给不同的5MHz信道,即每个码分信道只占用5MHz的信道,而且在组网时,不仅可以在使用频段中占用不同的5MHz信道,而且还可以类似与GSM进行空间小区群复用,不过复用的不是频率而是导频码的相位。
⏹逻辑信道划分为控制信道CCH 和业务信道TCH⏹控制信道CCH包括:⏹广播控制信道:BCCH,下行广播系统控制信息⏹寻呼控制信道:PCCH,下行传送寻呼信息⏹公共控制信道:CCCH,上/下行,传递网络与移动台间控制信息⏹ DCCH,点对点双向信道传递移动台与网络间专用控制信道⏹专用控制信道:OCCCH,双向信道,在移动台间传输控制信息⏹ODCCH,点对点双向通信,传递移动台之间的专用控制信道⏹共享信道控制信道,CDMA专用控制信道和CDMA公共控制信道⏹业务信道TCH包括:⏹专用业务信道,公共业务信道和CDMA专用业务信道⏹DTCH,点对点信道,由移动台专用,传递用户信息。
网格划分及排序方法介绍1.概述1.1引入网格的目的在地理维度的基础上叠加用户维度,综合用户分布、用户行为、终端等方面的分析,通过存量和增量市场等维度查找价值区域,并根据不同区域的价值大小确定建设目标和全国42%的面积聚集了95%的人口,人口及经济发展呈现不均衡分布情况,所以部分区域(如沙漠、大面积水域、山脉等)建站效益难以保障,于是引入有效面积与无效面积的概念,量化衡量具有建站需求的区域。
图1.3.1 无效覆盖区域示例有效面积定义如下:基站覆盖范围内人口密度达到100人/Km2或单站覆盖人口达到2000人的区域(以收支平衡为目标进行测算)所占面积定义为有效面积;收支平衡测算标准:10*站点年收入 /(建设成本+10*站点年运维成本)≥ 1计算期为10年,考虑到铁塔公司成立,新增基站配套投资按照1/3计列。
不符合以上标准的的为无效面积。
在进行网格划分时首先就要明确有效面积、无效面积各自的区域范围。
1.1.2物理网格与逻辑网格有效面积为已完成网络覆盖或将要进行覆盖的区域,对于这一部分区域需要进行连续的更细化的网格划分。
结合传统的“点、线、面”概念,将地理上连续的栅格化的网格划分称之为“物理网格”,将交通干线定义为“逻辑网格”,如下图所示:图1.3.2物理网格与逻辑网格示意图(此图不含无效面积)需要注意的是,在无效面积区域内也可能有交通干线分布,所以逻辑网格可以在有效面积、无效面积分布,而物理网格只能在有效面积内划分。
1.1.3小结有效面积、无效面积、物理网格、逻辑网格关系如下图所示:图1.3.4各名词概念逻辑关系图注:本地网面积=本地网有效面积+本地网无效面积本地网有效面积=本地网所有物理网格面积之和无效面积与有效面积无重叠区域物理网格之间无重叠区域逻辑网格与物理网格、无效面积可重叠2.网格划分原则网格划分总体原则如下:12345工业园区等功能区),将无线网络环境相似的区域划分为一个网格;6)网格的划分应便于人口和经济等基础信息数据的统计,便于进行网络覆盖、网络质量、业务量等方面的评估;7)网格应具有一定的完整性,最好以完整的一个(或相关的几个)校园、住宅区、城中村、工业区等定义为一个网格;8)不需要覆盖的区域不包含在网格内。