两大类阻抗匹配原理和方法
- 格式:doc
- 大小:75.46 KB
- 文档页数:3
运放阻抗匹配电路1. 引言运放(Operational Amplifier)是一种常用的集成电路元件,广泛应用于信号放大、滤波、增益调节等电路中。
在实际应用中,运放阻抗匹配电路是非常重要的一类电路,用于实现不同电路之间的信号匹配和传递。
本文将介绍运放阻抗匹配电路的基本概念、原理、常见电路配置以及电路设计要点。
2. 运放基础知识回顾运放是一种差分放大器,由一个差动输入端和一个单端输出端组成。
输入端和输出端之间的放大倍数称为开环增益,通常非常大,可以达到几十万甚至几百万倍。
运放有两种常见的反馈方式:正反馈和负反馈。
其中,负反馈是最为常见的一种方式,通过负反馈可以调节运放的增益,改善电路的稳定性和线性度。
3. 运放阻抗匹配电路概述运放阻抗匹配电路是一种利用运放的特性和反馈原理实现输入输出阻抗匹配的电路。
在实际应用中,不同电路之间的阻抗差异会导致信号传递的损失或失真,因此需要通过运放阻抗匹配电路来解决这一问题,保证信号的传递质量。
运放阻抗匹配电路可以分为两类:输入阻抗匹配电路和输出阻抗匹配电路。
输入阻抗匹配电路用于将输入信号的高阻抗源与运放的输入端之间进行匹配,输出阻抗匹配电路则用于将运放的输出信号与负载之间进行匹配。
4. 输入阻抗匹配电路输入阻抗匹配电路的目的是将输入信号源的高阻抗与运放的输入端的低阻抗进行匹配,以保证信号的传递效果。
常见的输入阻抗匹配电路有电压跟随器和电压跟随器加缓冲放大器。
电压跟随器是一种简单的输入阻抗匹配电路,由一个运放和几个电阻组成。
其特点是输出端与输入端相连,输出电压等于输入电压,但输出电流可以较大,达到驱动负载的目的。
电压跟随器电路图如下所示:+--------+Vin --| || Op Amp |--- Vout| |+--------+电压跟随器的输入阻抗等于运放的输入阻抗,通常很高,可以达到几兆欧姆,因此可以很好地匹配输入信号源的阻抗。
4.2 电压跟随器加缓冲放大器电压跟随器加缓冲放大器是一种更加灵活的输入阻抗匹配电路,结合了电压跟随器和缓冲放大器的优点。
阻抗匹配的原理及应用1. 阻抗匹配的定义在电子电路设计中,阻抗匹配是指将输入和输出电路的阻抗调整为互相匹配的过程。
阻抗匹配可以使信号在电路之间传输时最大限度地传递能量,减少能量反射和损耗。
通过阻抗匹配,可以提高电路的性能和信号传输质量。
2. 阻抗匹配的原理阻抗匹配的原理是基于两个基本的电路理论:傅里叶变换和最大功率传输定理。
2.1 傅里叶变换傅里叶变换是将一个时域信号分解成不同频率的正弦和余弦分量的数学技术。
在阻抗匹配中,傅里叶变换用于将时域信号转换为频域信号,从而分析信号的频谱特性。
2.2 最大功率传输定理最大功率传输定理是指当负载电阻与源电阻相等时,电路能够以最大功率传输能量。
阻抗匹配通过调整电路的阻抗使其与源电阻或负载电阻相等,从而实现最大功率传输。
3. 阻抗匹配的应用阻抗匹配在电子电路设计和通信系统中有广泛的应用。
3.1 无线通信系统在无线通信系统中,阻抗匹配用于将天线阻抗与无线发射机或接收机的阻抗匹配。
这可以提高无线信号的传输效率,减少信号损失和反射。
3.2 放大器设计在放大器设计中,阻抗匹配被广泛应用于放大器的输入和输出端口。
阻抗匹配可以使信号在放大器中传输时最大限度地传递能量,提高放大器的增益和线性度。
3.3 系统集成在系统集成中,阻抗匹配用于连接不同的电路模块。
通过阻抗匹配,可以使各个模块之间的阻抗匹配,确保信号的正确传输和系统的正常运行。
4. 阻抗匹配的方法在实际应用中,有多种方法可用于实现阻抗匹配。
以下是几种常见的方法:•使用阻抗变换器:阻抗变换器可以将一个阻抗转换为另一个阻抗,以实现阻抗匹配。
常见的阻抗变换器有电感、电容、变压器等。
•使用匹配网络:匹配网络是由电感、电容和电阻等元件构成的网络,用于调整输入和输出电路的阻抗以实现匹配。
•使用负馈:负馈可以将一个电路的输出信号反馈到输入端,以调整输入电路的阻抗与负载电路的阻抗匹配。
负馈可以通过放大器或运算放大器来实现。
•使用传输线:传输线可以通过调整传输线的长度或特性阻抗来实现阻抗匹配。
阻抗匹配的原理和应用1. 引言阻抗匹配是电子电路设计中的一种重要技术,用于确保信号的最大功率传输和防止信号反射。
本文将介绍阻抗匹配的基本原理和应用。
2. 阻抗匹配的基本原理阻抗匹配是指将不同阻抗的两个电路或电子设备连接在一起,使得信号在两者之间传输时的阻碍最小化。
阻抗匹配的基本原理涉及到两个重要概念:输入阻抗和输出阻抗。
2.1 输入阻抗输入阻抗是指电路或电子设备向外部信号源提供的阻力。
当信号源的输出阻抗与电路的输入阻抗匹配时,输入的功率能够被完全传输到电路中,最大化利用信号源的能量。
2.2 输出阻抗输出阻抗是指电路或电子设备与外部负载之间的阻力。
当电路的输出阻抗与负载的输入阻抗匹配时,电路能够向外部负载提供最大功率传输。
3. 阻抗匹配的应用阻抗匹配在实际电路设计中有许多应用。
以下是阻抗匹配的一些常见应用场景:3.1 通信系统在通信系统中,阻抗匹配非常重要。
例如,在无线电发射器和天线之间实现阻抗匹配可以最大程度地传输信号,并减少信号的反射。
这种阻抗匹配通常是通过天线调谐器或发射器的输出网络来实现的。
3.2 音频放大器阻抗匹配在音频放大器中也是必不可少的。
音频放大器通常将低阻抗的音频源连接到负载阻抗较高的扬声器。
通过阻抗匹配,可以确保音频信号的最大功率传输,并避免信号反射。
3.3 无线电频率调谐在无线电接收器和调谐器中,阻抗匹配用于确保信号从天线输入到调谐电路时的最大功率传输。
匹配电路通常使用变压器或匹配网络来实现。
3.4 高频电路设计阻抗匹配在高频电路设计中也是非常重要的。
例如,在微波射频电路中,通过匹配网络将信号源的输出阻抗与负载的输入阻抗匹配,可以实现信号的最大功率传输。
4. 阻抗匹配技术为了实现阻抗匹配,有几种常用的技术和电路可供选择:4.1 变压器变压器是一种常用的阻抗匹配器。
通过选择适当的变压器变比,可以实现输入阻抗和输出阻抗之间的匹配。
4.2 匹配网络匹配网络是一种通过电容、电感和电阻等被动元件连接而成的网络。
总线传输时阻抗匹配的原理总线传输是一种常用的通信方式,它可以实现多个设备之间的数据传输。
在总线传输中,为了保证信号的最佳传输质量,阻抗匹配是一项非常关键的技术。
本文将从总线传输的基本原理、阻抗的概念以及阻抗匹配的原理进行详细介绍。
一、总线传输的基本原理总线传输是一种共享传输介质的通信方式。
它通过在传输介质上同时发送和接收信号来实现多个设备之间的数据传输。
总线传输有许多不同的实现方法,如并行总线、串行总线等。
在总线传输中,数据的传输速率和传输距离常常受到干扰和衰减的影响。
为了提高传输质量,减少传输错误和噪声,阻抗匹配技术应运而生。
二、阻抗的概念阻抗是指电路对交流电流和电压的阻碍程度。
在电路中,当交流电压或电流通过电路时,电路的阻抗会导致电路中的电压和电流发生改变。
阻抗由两个主要组成部分构成:电阻和电抗。
电阻是阻止电流通过电路的电性质,它以欧姆(Ω)为单位表示。
电抗是阻碍交流电流通过电路的电性质,它包括电容性抗性(电容器)和感性抗性(电感器)。
阻抗可以用公式表示为:Z=R+jX其中,Z表示阻抗,R表示电阻,X表示电抗。
在总线传输中,阻抗匹配的目标是使传输线上的阻抗与信号源和接收器的阻抗相匹配。
阻抗匹配的原理是为了最大限度地减小信号在总线传输线上的反射和干扰,提高信号的传输质量。
阻抗匹配可以通过两种方法实现:电气调节和机械调节。
1.电气调节:电气调节是通过改变传输线和信号源/接收器之间的电气特性来实现阻抗匹配的。
其中一个常用的方法是在传输线上添加终端电阻。
终端电阻与传输线上的特性阻抗相等,可以有效地消除信号在传输线上的反射。
2.机械调节:机械调节是通过改变传输线上的物理特性来实现阻抗匹配的。
其中一个常用的方法是调节传输线的长度,使其与信号的波长相匹配。
通过这种方式,可以减小信号在传输线上的反射和损耗,提高信号的传输质量。
阻抗匹配的具体实现方法有很多种,例如使用匹配网络、负载均衡器、缓冲放大器等。
不同的应用场景和传输要求需要选择不同的阻抗匹配技术。
阻抗匹配设计原理及⽅法阻抗匹配(Impedance matching)是微波电⼦学⾥的⼀部分,主要⽤于传输线上,来达⾄所有⾼频的微波信号皆能传⾄负载点的⽬的,⼏乎不会有信号反射回来源点,从⽽提升能源效益。
阻抗匹配有两种,⼀种是透过改变阻抗⼒(lumped-circuit matching),另⼀种则是调整传输线的波长(transmission line matching)。
要匹配⼀组线路,⾸先把负载点的阻抗值,除以传输线的特性阻抗值来归⼀化,然后把数值划在史密斯图上。
改变阻抗⼒把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿着代表实数电阻的圆圈⾛动。
如果把电容或电感接地,⾸先图表上的点会以图中⼼旋转180度,然后才沿电阻圈⾛动,再沿中⼼旋转180度。
重复以上⽅法直⾄电阻值变成1,即可直接把阻抗⼒变为零完成匹配。
阻抗匹配:简单的说就是「特性阻抗」等于「负载阻抗」。
调整传输线由负载点⾄来源点加长传输线,在图表上的圆点会沿着图中⼼以逆时针⽅向⾛动,直⾄⾛到电阻值为1的圆圈上,即可加电容或电感把阻抗⼒调整为零,完成匹配。
阻抗匹配则传输功率⼤,对于⼀个电源来讲,单它的内阻等于负载时,输出功率最⼤,此时阻抗匹配。
最⼤功率传输定理,如果是⾼频的话,就是⽆反射波。
对于普通的宽频放⼤器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远⼤于电缆长度,即缆长可以忽略的话,就⽆须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产⽣反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
⾼速PCB布线时,为了防⽌信号的反射,要求是线路的阻抗为50欧姆。
这是个⼤约的数字,⼀般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整⽽已,为了匹配⽅便.阻抗从字⾯上看就与电阻不⼀样,其中只有⼀个阻字是相同的,⽽另⼀个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延⼀点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。
阻抗匹配与功率传输优化方法在电子电路和通信系统中,阻抗匹配是一个重要的概念,可以有效提高功率传输效率。
本文将介绍阻抗匹配的基本原理,并探讨一些常用的功率传输优化方法。
一、阻抗匹配的基本原理阻抗匹配是指在电路中通过选择合适的电阻、电容或电感等元件,使得信源的内阻与负载的外阻之间能够实现最佳的阻抗匹配。
当信源和负载之间阻抗匹配良好时,能够最大程度地减少能量的反射和损耗,从而提高功率传输效率。
阻抗匹配的基本原理可由阻抗匹配公式描述:Zs = Z0 × (1 + Γ) / (1 - Γ)其中,Zs表示由信源提供的总阻抗,Z0为传输线的特性阻抗,Γ为负载反射系数。
通过调整负载的阻抗,使得反射系数Γ尽可能接近零,可以实现阻抗匹配。
二、传输线理论与阻抗匹配传输线理论是阻抗匹配中的重要理论基础。
传输线的特性阻抗与负载阻抗之间的差异会导致能量的部分反射,从而损耗功率。
因此,为了最大程度地减少反射损耗,我们需要通过调整负载阻抗来实现阻抗匹配。
常用的传输线类型包括同轴电缆、微带线和带状线等。
对于同轴电缆,一种常用的优化方法是通过调整电缆的特性阻抗和负载阻抗之间的比例关系来实现阻抗匹配。
对于微带线和带状线,其特性阻抗可以通过变换线宽和介质厚度等参数来调整,从而实现阻抗匹配。
三、功率传输优化方法为了进一步提高功率传输效率,除了进行阻抗匹配外,还可以采用一些其他方法进行优化。
1. 变压器耦合阻抗匹配:通过变压器实现阻抗变化,将高阻抗转换为低阻抗或者反之,以实现阻抗匹配。
2. 负载调整网络:引入负载调整网络,通过调整网络中的元件参数,使得整体电路的阻抗与负载相匹配。
3. 调谐网络:通过调谐网络中元件的参数来调节电路的谐振频率,以实现阻抗匹配。
4. 反馈系统:通过引入反馈系统,可以实时监测和调整负载的阻抗,从而实现动态的阻抗匹配。
这些方法可根据具体应用场景的需求进行选用,以达到最优的功率传输效率。
结论阻抗匹配是电子电路和通信系统中重要的技术,能够有效提高功率传输效率。
天线阻抗匹配方法天线阻抗匹配是无线通信领域中一个重要的技术,它能够提高天线系统的传输效率和性能。
本文将介绍天线阻抗匹配的基本概念、原理和常用方法。
一、天线阻抗匹配的概念天线阻抗匹配是指将发射端和接收端的天线阻抗与传输线或射频电路的阻抗进行匹配,以提高能量传输的效率。
在无线通信系统中,天线的阻抗往往与传输线或射频电路的阻抗不匹配,导致信号的反射和损耗,从而降低了传输效率和性能。
二、天线阻抗匹配的原理天线阻抗匹配的原理是通过调整天线的结构或使用匹配网络来改变天线的输入阻抗,使其与传输线或射频电路的阻抗相匹配。
实现天线阻抗匹配的目的是最大限度地减小信号的反射和损耗,从而提高能量传输效率和信号质量。
1. 长度匹配法:通过调整传输线或射频电路的长度,使其与天线的输入阻抗相匹配。
这种方法适用于频率较低的天线系统,例如LF、MF和HF波段的天线。
2. 变压器匹配法:利用变压器原理来实现天线与传输线或射频电路的阻抗匹配。
通过改变变压器的匝数比,可以实现天线阻抗与传输线或射频电路阻抗的匹配。
这种方法适用于频率较高的天线系统,例如VHF和UHF波段的天线。
3. 管线法:通过在传输线或射频电路上串联或并联电感或电容,改变其阻抗特性,以实现与天线阻抗的匹配。
这种方法适用于频率较高的天线系统,例如VHF和UHF波段的天线。
4. 电桥法:通过使用电桥电路来测量天线的输入阻抗,并根据测量结果进行阻抗匹配。
这种方法适用于各种频率的天线系统。
5. 理论分析法:通过使用电磁场理论和传输线理论,对天线与传输线或射频电路的阻抗进行理论分析,从而设计出阻抗匹配电路。
这种方法适用于各种频率的天线系统,但需要较高的理论水平和计算能力。
四、总结天线阻抗匹配是无线通信系统中提高传输效率和性能的关键技术之一。
通过调整天线的结构或使用匹配网络,可以实现天线阻抗与传输线或射频电路的匹配,从而减小信号的反射和损耗,提高能量传输效率和信号质量。
常用的天线阻抗匹配方法包括长度匹配法、变压器匹配法、管线法、电桥法和理论分析法等。
一、50ohm特征阻抗终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。
终端电阻示图B.终端电阻的作用:1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。
2、减少噪声,降低辐射,防止过冲。
在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。
C.终端电阻取决于电缆的特性阻抗。
D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容.E.有高频电路经验的人都知道阻抗匹配的重要性。
在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。
高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。
同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er决定:另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。
这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。
图1 同轴传送线路的终端电阻构成只有当同轴电缆的特性阻抗Zo和终端阻抗RT的值相等时,即ZIN=Zo=RT称为阻抗匹配。
Zo≠RT时随着频率f,ZIN变化。
作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。
图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。
当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.二、怎样理解阻抗匹配?阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。
阻抗匹配分为低频和高频两种情况讨论。
我们先从直流电压源驱动一个负载入手。
由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。
阻抗匹配原理
阻抗匹配是一种用于电路设计中的技术,旨在实现电路之间的最大功率传输。
阻抗匹配原理通过调整电路内部阻抗的数值,使其与外部电路的阻抗相等,以达到能量传输的最佳效果。
阻抗匹配的基本原理是根据电路的特性和Ohm定律,电路的功率传输最大化是在源电阻和负载电阻的阻抗相等时实现的。
换句话说,当源电阻和负载电阻的阻抗相匹配时,电流和电压可以被完全传递,从而提高系统的效率。
阻抗匹配可以通过几种方式来实现。
其中一种常见的方式是使用一种称为“返阻”的器件,它可以在电路中引入附加的阻抗来调整总体阻抗值。
返阻器件通常是电阻或电容器,在电路中起到帮助调整阻抗的作用。
另一种常见的阻抗匹配方法是使用变压器。
变压器可以通过改变输入和输出电压之间的比例来实现阻抗匹配。
变压器的工作原理是基于电感的性质,通过将电流传递到较高或较低的电压绕组,从而调整阻抗值。
阻抗匹配在电路设计中非常重要。
如果在电路中没有正确的阻抗匹配,将导致不完全的能量传输和信号失真。
因此,在设计电路时,阻抗匹配要被认真考虑,以确保最佳功率传输和系统效率。
总之,阻抗匹配原理通过调整电路内部阻抗值,使其与外部电路的阻抗相等,以最大化功率传输。
这可以通过使用返阻器件
或变压器来实现。
阻抗匹配在电路设计中非常重要,可以确保能量传输的最佳效果和系统的高效性。
电路基础原理理解电路中的阻抗与阻抗匹配电路基础原理:理解电路中的阻抗与阻抗匹配1. 引言电路是现代科技不可或缺的基础,而电路中的阻抗与阻抗匹配是电路设计与优化的重要一环。
本文将从理论与实践两个方面探讨电路中的阻抗概念以及如何实现阻抗匹配,以帮助读者更好地了解电路基础原理。
2. 阻抗概念在电路中,阻抗是电流和电压之间关系的一种描述方式。
其定义为电压与电流之比,通常用Z来表示。
对于直流电路,电阻是其中最常见的阻抗形式,其阻抗值等于电阻的大小。
而在交流电路中,由于电压和电流的频率变化,阻抗的概念变得更加复杂。
除了电阻外,电感和电容也会对电路产生阻碍作用,因此也存在交流阻抗,分别为电感阻抗和电容阻抗。
3. 阻抗匹配阻抗匹配在电路设计中起着至关重要的作用。
当电路连接两个不同的子系统时,为了保证信号传输的有效性,需要将前级与后级的阻抗匹配。
阻抗不匹配会导致信号的反射、损耗以及传输效率下降。
阻抗匹配的目的是使电路中各个部分的阻抗相互匹配,以实现最大功率传递。
为了实现阻抗匹配,可以采用两种方法:一是添加补偿元件,二是调整电路参数。
4. 添加补偿元件添加补偿元件是实现阻抗匹配的一种常见方法。
在电路连接的两个不同子系统之间,可以添加特定的电阻、电容或电感元件,以改变电路的总阻抗,并使其与相邻子系统的阻抗相匹配。
这样可以最大限度地减少信号的反射和损耗。
同时,补偿元件的选择应根据具体情况,比如频率响应、功耗等因素综合考虑。
5. 调整电路参数除了添加补偿元件,还可以通过调整电路参数来实现阻抗匹配。
比如,改变电路中的电阻、电容或电感元件的数值,以使得总阻抗与相邻子系统的阻抗相匹配。
这种方法可以在电路设计阶段进行,以确保信号的无损传输。
6. 阻抗匹配的应用阻抗匹配的应用广泛存在于各个领域中。
在无线通信中,天线与电路之间的阻抗匹配可以提高信号传输效率,减少信号丢失。
在音频系统中,阻抗匹配可以确保音频信号质量的高保真传输。
在电力传输中,阻抗匹配可以减少能量损耗,提高能源利用率。
题目:请阐述两大类阻抗匹配的原理和方法;试用导纳圆图讨论三株线匹配器的匹配原理。
答:一、两大类阻抗匹配原理及方法:
1、利用λ/4阻抗变换器进行匹配:
原理:利用λ/4传输线的阻抗变化作用。
方法:(1)、利用λ/4线对纯电阻性负载进行匹配,当一个特性阻抗为Z c的λ/4传输线终端接以纯电阻性负载Rl时,其始端输入阻抗Zin=Zc2/Rl,即其具有变换电阻值的作用。
(2)、利用λ/4线对复数阻抗的负载进行匹配,需要先将复阻抗变为实阻抗,然后再利用方法一对其进行变换。
复阻抗变为实阻抗方法有两种,法一:将λ/4线接于主传输线中的电压波节点或波腹点处;法二:将λ/4线仍接在终端,但在终端再并联长为l的短路线等。
2、利用并联电抗性元件进行匹配:
方法:单株线匹配器进行匹配、双株线匹配器进行匹配和三株线匹配器进行匹配。
原理:(1)、单株线匹配器:在主传输线上距负载d处,并联一长度为l的短路(或开路)支节。
具体工作原理是:在距离负载d(d<λ/2)处的线上找到归一化导纳为y1=1+jb1的点,由此可确定d;再在该处并联一个归一化电纳y2=-jb1,由此可确定l,进而实现与主传输线的匹配,y=y1+y2=1。
(2)、双株线匹配器:距负载两个固定的位置处各并联一个短路线(或开路线)支节。
具体工作原理是:在AA'和BB'截面处各并联一个短路支线(A和B),支线A距终端负载的距离d1可选定,两支线距离d2可选取λ/4,λ/8,3λ/8等,为了得到系统匹配,应有y b=1,且需y b'=1+j b',即应使yb'落在导纳圆图的g=1的电导图上,即实部为1,其虚部可利用调节枝节B的长度,使其产生的导纳抵消虚部的影响,从而在截面BB'处得到y BB'=1,使传输线得到匹配。
(3)、三株线匹配器:距负载三个固定的位置处,各并联一个短路线(或开路线)支节。
具体工作原理是:在传输线截面AA'、BB'和CC'处各并联着短路支线A、B、C,A与B,B与C之间距离均为d2
通常取d2=λ/4或λ/8,。
归一化
,
导纳中的电导总是大于1或小于1,如下图,若电导小于1,若取d2=λ/4,则y iA 不在盲区之内,此时可用支线A 和B 进行调配,而支线C 不起作用;若电导大于1,则y iA 已落在A 和B 两支线不能起调配作用的盲区内,此时可利用支线B 和C 调配到匹配状态,A 不起作用。
双株线调配器原理示意图 双株线调配器等效电路 三株线调配器等效电路 二、导纳圆图讨论三株线匹配器的匹配原理:
在传输线截面AA'、BB'和CC'处各并联着短路支线A 、B 、C ,A 与B ,B 与C 之间距离均为d 2,通常取d2=λ/4或λ/8,。
归一化导纳中的电导总是大于2或小于2。
电导小于2时(如下图),若取d2=λ/8,则y iA 不在盲区之内,此时可用支线A 和B 进行调配,而支线C 不起作用,为使其不对传输线产生影响,可令其长度为λ/4,此时对于支线A 和B 组成的调配系统用双株线导纳原图进行分析:首先d2=λ/8时,其辅助圆为g=1的电导圆逆时针旋转π/2所得的圆。
根据负载导纳Y l (Y l =1/Z l )在导纳图上找到表示归一化负载导纳的点,以此点到坐标原点的距离为半径,以坐标原点为圆心画等反射系数圆,因在信号源侧,所以沿圆周将此点顺时针旋转(4πd 1/λ)rad ,得到表示截面AA'处未考虑支线A 的作用时的归一化输入导纳y iA 的点。
然后,调节支线A 的长度L1,使该点沿着等g 圆移动,直至与辅助圆相较于一点,此点即表示截面AA'处总的归一化输入导纳y AA',以此点到坐标原点的距离为半径,以原点为圆心画等反射系数圆,沿圆周顺时针将此点旋转π/2,落在g=2的圆上的一点,此点即表示截面BB'处未考虑支线B 的作用时的归一化输入导纳y iB 。
然后调解支线B 使它所产生的电纳与y iB 中的电纳相抵消,从而使截面BB'处总归一化输入导纳y BB'=1,是传输得到匹配。
若电导大于2,则y iA 已落在A 和B 两支线不能起调配作用的盲区内,此时可利用支线B 和C 调配到匹配状态,A 不起作用。
此时将AA'开路,这时从负载端到BB'的距离为d 1+d 2,旋转的角度增大能转出死区,以下的的方法同上。
Z L
d 1
d 2l 2
l 1
Z L
d 1
jB 1
A ’
B ’jB 2
d 2B A
Z L
d 1
jB 1
jB 2d 2
jB 3
d 3
A ’
B ’
B A
C ’
C
三株线调配器等效电路 导纳圆图
B
B ’
A ’
A
死区
d 2=λ/8和3λ/8时
死区
d 2=λ/4时
Z L
d 1
jB 1
jB 2
d 2
jB 3d 3
A ’
B ’
B A
C ’
C。