微专题3 一次函数与实际问题(1)
- 格式:ppt
- 大小:973.50 KB
- 文档页数:7
中考复习专题三一次函数图象的实际应用类型一行程问题命题角度❶单人行程问题(2019·吉林省实验模拟)从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少 5 km,下坡的速度比在平路上的速度每小时多5 km,设小明出发x h后,到达离乙地y km的地方,图中的折线ABCDEF表示y 与x之间的函数关系.(1)小明骑车在平路上的速度为________km/h,他在乙地休息了________h;(2)分别求线段AB,EF所对应的函数关系式;(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85 h,求丙地与甲地之间的路程.【分析】(1)分别计算出小明骑车上坡的速度,小明在平路上的速度,小明下坡的速度,小明在平路上所用的时间,小明下坡所用的时间,即可解答;(2)根据上坡的速度为10 km/h,下坡的速度为20 km/h,所以线段AB所对应的函数关系式为y=6.5-10x,线段EF所对应的函数关系式为y=4.5+20(x-0.9),即可解答;(3)设小明出发a小时第一次经过丙地,根据题意得到6.5-10a=20(a+0.85)-13.5,求出a的值,即可解答.【自主解答】1.快递员张师傅从快递公司出发骑电动车匀速前往幸福家园小区投送快递,到达小区后将快递投放到快递专柜,然后原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,张师傅距离快递公司的路程y(千米)与从公司出发所用时间x(小时)的函数图象如图所示,根据图象回答问题:(1)合理解释线段AB表示的实际意义________;(2)图中a=______,直线BC的函数解析式为______;(3)出发x小时,快递员距离快递公司10千米,求x的值.命题角度❷双人行程问题(2019·松原模拟)“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=________;b=________;m=________;(2)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100米,此时小军骑行的时间为______分钟.【分析】(1)根据题意和函数图象中的数据可以求得a,b,m的值;(2)根据题意可以列出相应的方程,从而可以解答本题;(3)根据题意可以列出相应的方程,从而可以求得t的值.【自主解答】2.(2019·白山一模)周末,甲、乙两名大学生骑自行车去距学校6 000米的净月潭公园,两人同时从学校出发,以a米/分的速度匀速行驶,出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙,甲追上乙后,两人以相同的速度前往净月潭,乙骑自行车的速度始终不变,设甲,乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.(1)求a,b的值;(2)求甲追上乙时,距学校的路程;(3)当两人相距500米时,直接写出t的值是______.3.(2019·白山二模)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟,发现忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与姐姐出发时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮骑共享单车返回家所用的时间是______分钟,他骑共享单车从家到图书馆所用的时间为________分钟;(2)求小亮骑共享单车从家出发去图书馆时,距家的路程y(米)与姐姐出发时间x(分钟)之间的函数关系式;(3)当小亮追上姐姐时,他距图书馆的路程是____米.类型二 注水问题(2019·吉林名校模拟)游泳池换水清洗的整个过程为“排水——清洗——注水”.一个长方体的游泳池在一次换水清洗的过程中,排水速度是注水速度的2倍,清洗的时间为50 min ,这次换水清洗过程中游泳池水量y(m 3)与时间x(min)之间的函数图象如图所示.(1)这次换水清洗的过程中排水的速度为______m 3/min ;(2)求“注水”过程中y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)在该游泳池换水清洗的整个过程中,当池水的水位高度恰好是注满水的池中水位高度的13时,直接写出x 的值.【分析】(1)分析图象可得;(2)根据图象及排水速度是注水速度的2倍求解即可;(3)分两种情况讨论.【自主解答】4.(2019·长春模拟)某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.每日从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y(立方米)与时间x(小时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.类型三 费用与工程问题(2019·长春模拟)甲、乙两车间同时开始加工一批零件,加工一段时间后,甲车间的设备出现故障停产维修设备,乙车间继续加工,甲车间维修好设备后提高了工作效率,每小时比出现故障前多加工10个零件,从开始加工到加工完这批零件乙车间的工作效率不变且工作10小时.甲、乙两车间加工这批零件的总数量y(个)与加工时间x(时)之间的函数图象如图所示.(1)甲车间每小时加工零件________个;(2)求甲车间维修完设备后,y 与x 之间的函数关系式;(3)求加工完这批零件总数量的23时所用的时间.【分析】(1)根据“工作效率=工作总量÷工作时间”即可求出甲车间每小时加工零件的个数;(2)根据待定系数法即可得到甲车间维修完设备后,y 与x 之间的函数关系式;(3)先求出零件总数量的23,再根据(2)中的函数关系式,即可得解. 【自主解答】5.(2019·德惠模拟)某快递公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的一次函数解析式;(2)如果A,B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?6.(2019·吉林二模)假期小颖决定到游泳馆游泳.游泳馆门票有两种:A种是每天购票进馆,没有优惠;B种是每月先购买贵宾卡,持贵宾卡购票每张可减少8元.设小颖游泳x次,y1(元)是按A种购票方案的费用,y2(元)是按B种购票方案的费用.根据图中信息解答问题:(1)按A种方案购票,每张门票价格为________元;(2)按B种方案购票,求y2与x的函数解析式;(3)如果小颖假期30天,每天都到游泳馆游泳一次,通过计算她选择哪种购票方案比较合算.参考答案类型一【例1】 (1)15 0.1(2)由题意可知,上坡的速度为10 km/h ,下坡的速度为20 km/h , ∴线段AB 所对应的函数关系式为y =6.5-10x ,即y =-10x +6.5(0≤x≤0.2).线段EF 所对应的函数关系式为y =4.5+20(x -0.9),即y =20x -13.5(0.9≤x≤1).(3)由题意可知,小明第一次经过丙地在AB 段,第二次经过丙地在EF 段. 设小明出发a 小时第一次经过丙地,则小明出发后(a +0.85)小时第二次经过丙地,∴6.5-10a =20(a +0.85)-13.5,解得a =0.1,∴0.1×10=1(千米).答:丙地与甲地之间的路程为1千米.跟踪训练1.解:(1)张师傅到达小区后将快递投放到快递专柜(2)3 y =-30x +90(3)分为两种情况:当出发至离公司10千米时,t =10÷20=0.5(h),当回公司至离公司10千米时,10=-30x +90,解得x =83. 【例2】 (1)10 15 200(2)设小军第二次与爸爸相遇时距图书馆的距离为S 米.根据题意得3 000-S 120=15+3 000-S -1 500200, 解得S =750.答:小军第二次与爸爸相遇时距图书馆的距离是750米.(3)704,20或1456跟踪训练2.解:(1)由题意a =9004.5=200,b =6 000200=30, ∴a=200,b =30.(2)9001.5×200+4.5=7.5. 设t 分钟甲追上乙,由题意300(t -7.5)=200t ,解得t =22.5,22.5×200=4 500(米),∴甲追上乙时,距学校的路程为4 500米.(3)5.5分或17.5分两人相距500米时的时间为t 分钟.由题意得1.5×200(t-4.5)+200(t -4.5)=500,解得t =5.5(分);300(t -7.5)+500=200t ,解得t =17.5(分).3.解:(1)2 20(2)∵小亮骑车从家到图书馆用了20分钟,∴点C 对应的时间为30-20=10,即C(10,0).设y =kx +b ,过C(10,0),E(30,3 000),∴⎩⎪⎨⎪⎧10k +b =0,30k +b =3 000,解得⎩⎪⎨⎪⎧k =150,b =-1 500,∴y=150x -1 500(10≤x≤30).(3)2 250类型二【例3】 (1)20(2)1 500÷(20÷2)=150(min),由图可知,150+(75+50)=275(min),∴A(125,0),B(275,1 500).设y =kx +b ,∴⎩⎪⎨⎪⎧125k +b =0,275k +b =1 500,∴⎩⎪⎨⎪⎧k =10,b =-1 250,∴y=10x -1 250(125≤x≤275).(3)50或175.跟踪训练4.解:(1)由图象可知,4点到8点进水20立方米,∴每小时进水量为5立方米.(2)当8≤x≤12时,由图象知,线段过点(8,25)和(12,35).设函数解析式为y =kx +b ,代入(8,25),(12,35)得⎩⎪⎨⎪⎧8k +b =25,12k +b =35,解得⎩⎪⎨⎪⎧k =52,b =5,∴当8≤x≤12时,y 与x 的函数关系式为y =52x +5. (3)9.2≤x≤16.8.类型三【例4】 (1)60(2)(150+10)×(10-4)+540=1 500.设y =kx +b, 把(4,540),(10,1 500)代入得⎩⎪⎨⎪⎧4k +b =540,10k +b =1 500,解得⎩⎪⎨⎪⎧k =160,b =-100,∴y=160x -100.(4<x ≤10)(3)根据题意得1 500×23=1 000, ∴160x-100=1 000,解得x =558. 跟踪训练5.解:(1)设y B 关于x 的函数解析式为y B =kx +b(k≠0).将点(1,0),(3,180)代入得⎩⎪⎨⎪⎧k +b =0,3k +b =180, 解得⎩⎪⎨⎪⎧k =90,b =-90.∴y B 关于x 的函数解析式为y B =90x -90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得3k1=180,解得k1=60.∴y A=60x.当x=5时,y A=60×5=300(千克),x=6时,y B=90×6-90=450(千克),450-300=150(千克).答:如果A,B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.6.解:(1)35(2)设y2=27x+b,将点(10,470)代入得b=200,即y2与x的函数解析式为y2=27x+200.(3)A种费用为30×35=1 050(元),B种费用为27×30+200=1 010(元).答:选择B种购票方案比较合算.。
一次函数生活中的实际应用题目一次函数是数学中的一种函数类型,表示为 y = kx + b 的形式,其中 k 是函数的增减速度,b 是函数的零点。
一次函数在生活中有许多实际应用,以下是一些实际问题的例子:1. 温度计:一次函数可以用来描述温度的变化情况。
当温度上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示温度变化的水平方向。
例如,在摄氏 0 度和 100 度之间,温度每增加 1 度,温度计上的指针会上升多少格,就可以用一次函数来描述。
2. 流量控制:一次函数在流量控制中被广泛应用,特别是在水管和发动机的设计之中。
当水流量为恒定值时,一次函数可以用来描述水流量和水压之间的关系。
例如,如果想控制水流量为一定值,可以通过调节水管中的阀门大小来控制水压,从而实现流量的控制。
3. 存款利率:一次函数可以用来描述存款利率的变化情况。
当利率上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示利率变化的水平方向。
例如,如果利率上升 1%,银行的存款利率会相应上涨多少元,就可以用一次函数来描述。
4. 股票价格:一次函数可以用来描述股票价格的变化情况。
当股票价格上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示股票价格变化的水平方向。
例如,如果股票价格上升 1%,投资者获得的回报率会相应上涨多少个百分点,就可以用一次函数来描述。
5. 植物生长:一次函数可以用来描述植物的生长情况。
当植物的生长速度加快或减缓时,一次函数的斜率会发生变化,而常数 b 则表示植物的生长速度保持不变的水平方向。
例如,如果想预测植物在未来几天内的生长速度,可以使用一次函数来计算。
一次函数实际问题一次函数,也叫做线性函数,是数学中最简单的函数之一。
它的一般形式为Y = aX + b,其中a和b是常数,X和Y分别表示自变量和因变量。
一次函数在实际问题中的应用非常广泛,下面我将为你列举几种常见的实际问题,并给出参考内容。
1.汽车租赁问题:假设一辆汽车的租金为每天100元,另外还需要支付一定的保证金。
我们可以用一次函数来表示汽车租赁费用与租用天数之间的关系。
设X表示租用天数,Y表示总费用(包括租金和保证金)。
则一次函数可以表示为Y = 100X + b。
其中,b表示保证金。
通常情况下,保证金是定值,不随租用天数的增加而变化。
2.收入问题:假设某公司的月薪为3,000元,每个月还有一定的奖金作为额外收入。
我们可以用一次函数来表示每个月的收入与奖金的关系。
设X表示奖金数额,Y表示总收入。
则一次函数可以表示为Y = 3000 + aX。
其中,3000为基本薪水,a为奖金的倍数。
3.物体运动问题:假设一个物体在相同的力作用下以恒定的速度匀速运动。
我们可以用一次函数来表示物体在不同时间点的位置。
设X表示时间,Y表示距离。
则一次函数可以表示为Y = aX + b。
其中,a为速度,b为起始位置。
4.销售问题:假设某商品的售价为每个100元,销量与售价存在一定的线性关系。
我们可以用一次函数来表示销售额与售价之间的关系。
设X表示售价,Y表示销售额。
则一次函数可以表示为Y = aX。
其中,a表示每个商品的销量。
5.水果购买问题:假设某水果店卖橙子的价格为每斤5元,我们可以用一次函数来表示购买橙子的费用与购买重量之间的关系。
设X表示购买重量(单位:斤),Y表示总费用。
则一次函数可以表示为Y = 5X。
以上只是一些常见的实际问题,一次函数还可以应用于更多领域,如金融、生产等等。
在实际问题中,我们可以通过确定函数的参数来解决具体的计算和分析问题。
一次函数的简洁性和直观性,使它成为了数学中最基础、最常用的函数之一。
一次函数实际问题专题1. 甲、乙两个仓库要向A 、B 两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A 地需要70吨水泥,B 地需110吨水泥,两库到A 、B 两地的路程和运费如下表(表中运费栏“元/吨·千米”表示每吨水泥运送1km 所需人民币)(1)设甲库运往A 地水泥x 吨,求总运费y (元)关于x (吨)的函数关系式(2)当甲、乙两库各运往A 、B 两地多少吨水泥时,总运费最省?最省的总运费是多少?2. 5月12日,我国四川省汶川县等地发生强烈地震,在抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要25台,乙地需要23台;A 、B 两省获知情况后慷慨相助,分别捐赠该型号挖掘机26台和22台并将其全部调往灾区.假如从A 省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B 省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A 省调往甲地x 台挖掘机,A 、B 两省将捐赠的挖掘机全部调往灾区共耗资y 万元.⑴请直接写出y 与x 之间的函数关系式及自变量x 的取值范围; ⑵若要使总耗资不超过15万元,有哪几种调运方案?⑶怎样设计调运方案能使总耗资最少?最少耗资是多少万元?3.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30(1)设分配给甲店A型产品件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品,型产品的的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?4.某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售。
初中数学试卷桑水出品一次函数与实际问题1.等腰三角形的周长是40cm,腰长y(cm)是底边长x(cm)的函数解析式正确的是( )A.y=﹣0.5x+20(0<x <20)B.y=﹣0.5x+20(10<x <20)C.y=﹣2x+40(10<x <20)D.y=﹣2x+40(0<x <20)2.已知直线y=mx+n ,其中m ,n 是常数且满足:m+n=6,mn=8,那么该直线经过( )A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限3.一次函数y=﹣2x+1的图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限4.已知直线y=kx-4(k <0)与两坐标轴所围成的三角形面积等于4,则直线的表达式为( )A.y=-x-4B.y=-2x-4C.y=-3x+4D.y=-3x-45.已知直线y=kx+b ,若k+b=-5,kb=6,那么该直线不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.已知一次函数y=2x+a ,y=-x+b 的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为( )A.4B.5C.6D.77.如图,直线y=﹣x+m 与y=nx+4n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x+m >nx+4n >0的整数解为( )A.﹣1B.﹣5C.﹣4D.﹣38.一次函数y=(m 2-4)x+(1-m )和y=(m-1)x+m 2-3的图象与y 轴分别交于点P 和点Q ,若点P 与点Q 关于x 轴对称,则m= . 9.直线y=k 1x+b 1(k 1>0)与y=k 2x+b 2(k 2<0)相交于点(﹣2,0),且两直线与y 轴围城的三角形面积为4,那么b 1﹣b 2等于 .10.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示,相交于点P 的两条线段l 1、l 2分别表示小敏、小聪离B 地距离y km 与已用时间x h 之间的关系,则小敏、小聪行走速度分别是( )A.3 km/h 和4 km/hB.3 km/h 和3 km/hC.4 km/h 和4 km/hD.4 km/h 和3 km/h11.函数y=-3x +2的图象上存在点P,使得点P•到x 轴的距离等于3,则点P•的坐标为 .12.过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B,且与直线123+-=x y 平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是 .13.一次函数y=kx+b ,当1≤x ≤4时,3≤y ≤6,则的值是 .14.已知A 地在B 地正南方3 km 处,甲、乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离s (km )与所行的时间t (h )之间的函数图象如图所示,当行走3 h 后,他们之间的距离为 km.15.在如图所示的平面直角坐标系中,点P 是直线y=x 上的动点,A (1,0),B (2,0)是x 轴上的两点,则PA+PB 的最小值为 .16.已知y+2与2x-1成正比例,且x=3时y=-4.(1)求y 与x 之间的函数关系式;(2)当y=-1 时,求x 的值.17.如图1所示,在A ,B 两地之间有汽车站C 站,客车由A 地驶往C 站,货车由B 地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C 站飞路程y 1,y 2(千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:A ,B 两地相距 千米;(2)求两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式;(3)客、货两车何时相遇?18.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为x (立方米),应交水费为y (元).(1)分别写出用水未超过7立方米和多于7立方米时,y 与x 间的函数关系式;(2)如果某单位共有用户50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?19.已知某市2013年企业用水量x (吨)与该月应交的水费y (元)之间的函数关系如图.(1)当x ≥50时,求y 关于x 的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x 超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收20x 元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.20.从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?21.某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.22.2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?23.已知某服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.(1)求y(元)与x(套)之间的函数表达式,并求出自变量的取值范围.(2)当生产M型号的时装多少套时,能使该厂所获利润最大?最大利润是多少?24.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于;(2)直线y=kx +4(k ≠0)与x 轴交于点E(x 0,0),若-2<x 0<-1,求k 的取值范围.25.已知C 坐标为(2,0),P 坐标为(x,y),直线y=-x+4与x 轴、y 轴分别交于A 、B 两点.若点P(a,b)在直线y=-x+4上.(1)求出A 、B 坐标,并求出△AOB 的面积;(2)若点P 在第一象限内,连接PC,OP,△OPC 的面积为S,请找出S 与a 之间的函数关系式,并求出a 的取值范围;(3)当△OPC 的面积等于6时,求P 点坐标.(4)点P 在移动的过程中,若△BCP 为等腰三角形,求找出满足条件的点P 坐标.(直接写出答案)答案详解1.【解答】解:根据三角形周长等于三边之和可得:2y=40﹣x∴y=20﹣0.5x ,又知道x 为底边⇒x <2y ,x >y ﹣y ∴可知0<x <20故选A .2.解答:∵mn=8>0,∴m 与n 为同号,∵m+n=6,∴m >0,n >0,∴直线y=mx+n 经过第一、二、三象限,故选B .3.解答: 解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C .4.解析:直线y=kx -4(k <0)与两坐标轴的交点坐标为(0,-4),)0,4(k, ∵ 直线y=kx -4(k <0)与两坐标轴所围成的三角形面积等于4,∴ 4×)4(k×=4,解得k=-2,则直线的表达式为y=-2x -4.故选B . 5.解:∵k+b=﹣5,kb=6,∴k <0,b <0.∴直线y=kx+b 经过二、三、四象限,即不经过第一象限.故选A .6.【解答】解:将A 的坐标分别代入一次函数y=2x+a ,y=﹣x+b 中,可得a=4,b=﹣2,那么B ,C 的坐标是:B (0,4),C (0,﹣2),因此△ABC 的面积是:BC ×OA ÷2=6×2÷2=6.故选C .7.解:∵直线y=﹣x+m 与y=nx+4n (n ≠0)的交点的横坐标为﹣2,∴关于x 的不等式﹣x+m >nx+4n >0的解集为x <﹣2,∴关于x 的不等式﹣x+m >nx+4n >0的整数解为﹣3,故选D .8.【解答】解:∵y=(m 2﹣4)x+(1﹣m )和y=(m ﹣1)x+m 2﹣3的图象与y 轴分别交于点P 和点Q ,∴P(0,1﹣m ),Q (0,m 2﹣3)又∵P 点和Q 点关于x 轴对称∴可得:1﹣m=﹣(m 2﹣3)解得:m=2或m=﹣1.∵y=(m 2﹣4)x+(1-m )是一次函数,∴m 2﹣4≠0,∴m ≠±2,∴m=﹣1.故答案为:﹣1.9.解:如图,直线y=k 1x+b 1(k 1>0)与y 轴交于B 点,则OB=b 1,直线y=k 2x+b 2(k 2<0)与y 轴交于C,则OC=﹣b 2,∵△ABC 的面积为4,∴OA •OB+421=⋅OC OA ,∴4)(22122121=-⨯+⨯b b ,解得:b 1﹣b 2=4.故答案为4. 10.解析:∵ 通过图象可知的函数表达式为的函数表达式为=-4 +11.2 ,∴ 小敏行走的速度为11.2÷2.8=4(km/h ),小聪行走的速度为4.8÷1.6=3(km/h ).故选D.11.解析:∵ 点P 到x 轴的距离等于3,∴ 点P 的纵坐标为3或-3.11.当y=3时,x=-31;当y=-3时,x=35,∴ 点P 的坐标为(3,31-)或)3,35(-. 12.解:∵过点(﹣1,7)的一条直线与直线123+-=x y 平行,设直线AB 为y=﹣x+b ;把(﹣1,7)代入y=﹣x+b ;得7=+b ,解得:b=211,∴直线AB 的解析式为y=﹣x+211, 令y=0,得:0=﹣x+211,解得:x=311,∴0<x <的整数为:1、2、3;把x 等于1、2、3分别代入解析式得4、、1;∴在线段AB 上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为(1,4),(3,1).13.解:当k >0时,此函数是增函数,∵当1≤x ≤4时,3≤y ≤6,∴当x=1时,y=3;当x=4时,y=6,∴⎩⎨⎧=+=+643b k b k ,解得⎩⎨⎧==21b k ,∴=2;当k <0时,此函数是减函数,∵当1≤x ≤4时,3≤y ≤6,∴当x=1时,y=6;当x=4时,y=3,∴⎩⎨⎧=+=+346b k b k ,解得⎩⎨⎧=-=71b k ,∴=﹣7. 故答案为:2或﹣7.14.解析:由题意可知甲走的是路线AC ,乙走的是路线BD ,因为直线AC 过点(0,0),(2,4),所以S AC =2t . 因为直线BD 过点(2,4),(0,3),所以321+=t S BD .当t=3时,23=-BD AC S S . 15.解:如图,作A 点关于直线y=x 的对称点A ′,连接A ′B ,交直线y=x 于点P ,此时PA+PB 最小, 由题意可得出:OA ′=1,BO=2,PA ′=PA ,∴PA+PB=A ′B=52122=+.故答案为:5.16.解:(1)因为y+2与2x-1成正比例,所以可设y+2=k(2x-1)将x=3,y=-4代入,得52-=k ,所以函数关系式为5854--=x y .(2)将y=-1代入x=54-17.解:(1)填空:A ,B 两地相距420千米; (2)由图可知货车的速度为60÷2=30千米/小时,货车到达A 地一共需要2+360÷30=14小时,设y 2=kx+b ,代入点(2,0)、(14,360)得⎩⎨⎧=+=+3601402b k b k ,解得⎩⎨⎧-==6030b k ,所以y 2=30x ﹣60; (3)设y 1=mx+n ,代入点(6,0)、(0,360)得⎩⎨⎧==+36006n n m 解得⎩⎨⎧=-=36060n m ,所以y 1=﹣60x+360 由y 1=y 2得30x ﹣60=﹣60x+360解得x=314答:客、货两车经过314小时相遇. 18.【解答】解:(1)未超出7立方米时:y=x ×(1+0.2)=1.2x ;超出7立方米时:y=7×1.2+(x ﹣7)×(1.5+0.4)=1.9x ﹣4.9;(2)当某户用水7立方米时,水费8.4元.当某户用水10立方米时,水费8.4+5.7=14.1元,比7立方米多5.7元.8.4×50=420元,还差541.6﹣420=121.6元,121.6÷5.7=21.33.所以需要22户换成10立方米的,不超过7立方米的最多有28户.19.解答: 解:(1)设y 关于x 的函数关系式y=kx+b ,∵直线y=kx+b 经过点(50,200),(60,260)∴⎩⎨⎧=+=+2606020050b k b k 解得⎩⎨⎧-==1006b k ∴y 关于x 的函数关系式是y=6x ﹣100;(2)由图可知,当y=620时,x >50∴6x ﹣100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x ﹣100+20x (x ﹣80)=600,化简得x 2+40x ﹣14000=0 解得:x 1=100,x 2=﹣140(不合题意,舍去).答:这个企业2014年3月份的用水量是100吨.20.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B (0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C (0.6,4.5).设直线AB 的解析式为y=k 1x+b 1,由题意,得⎩⎨⎧+=+=11115.05.63.05.4b k b k ,解得:⎩⎨⎧==5.11011b k , ∴y=10x+1.5(0.3≤x ≤0.5);设直线BC 的解析式为y=k 2+b 2,由题意,得⎩⎨⎧+=+=22226.05.45.05.6b k b k ,解得:⎩⎨⎧=-=5.162022b k , ∴y=﹣20x+16.5(0.5<x ≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h ,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t ,则第二次经过该地点的时间为(t+0.15)h ,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km .21.解:(1)设A 、B 两种奖品单价分别为x 元、y 元,由题意,得 ⎩⎨⎧=+=+95356023y x y x , 解得:⎩⎨⎧==1510y x .答:A 、B 两种奖品单价分别为10元、15元.(2)由题意,得)100(1510m m W -+=m m 15150010-+=m 51500-=由⎩⎨⎧-≤≤-)100(3115051500m m m ,解得:7570≤≤m .由一次函数m W 51500-=可知,W 随m 增大而减小 ∴当75=m 时,W 最小,最小为11257551500=⨯-=W (元)答:当购买A 种奖品75件,B 种奖品25件时,费用W 最小,最小为1125元.22.解答: 解:(1)设该企业2013年处理的餐厨垃圾x 吨,建筑垃圾y 吨,根据题意,得⎩⎨⎧+=+=+880052003010052001625y x y x ,解得⎩⎨⎧==20080y x .答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨; (2)设该企业2014年处理的餐厨垃圾x 吨,建筑垃圾y 吨,需要支付这两种垃圾处理费共a 元,根据题意得,⎩⎨⎧≤=+x y y x 3240,解得x ≥60.a=100x+30y=100x+30(240﹣x )=70x+7200, 由于a 的值随x 的增大而增大,所以当x=60时,a 值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.23.解:(1)y=50x+45(80-x)=5x+3600.∵ 两种型号的时装共用A 种布料[1.1x +0.•6(80-x )]米≤70米,共用B 种布料[0.4x+0.9(80-x )]米≤52米,解得40≤x ≤44.而x 为整数,∴x=40,41,42,43,44,∴ y 与x 的函数表达式是y=5x+3 600(xx=40,41,42,43,44).(2)∵ y 随x 的增大而增大,∴ 当x=44时,y 最大=3 820,即生产M 型号的时装44套时,该厂所获利润最大,最大利润是3 820元.24.解:(1)①∵直线y =-2x +1过点B ,点B 的横坐标为-1,∴y =2+1=3,∴B(-1,3),∵直线y =kx +4过B 点,∴3=-k +4,解得:k =1;②∵k =1,∴一次函数解析式为:y =x +4,∴A(0,4),∵y =-2x +1,∴C(0,1),∴AC =4-1=3,∴△ABC 的面积为12×1×3=32,故答案为:32(2)∵直线y =kx +4(k ≠0)与x 轴交于点E(x 0,0),-2<x 0<-1,∴当x 0=-2,则E(-2,0),代入y =kx +4得:0=-2k +4,解得:k =2,当x 0=-1,则E(-1,0),代入y =kx +4得:0=-k +4,解得:k =4,故k 的取值范围是:2<k <425.解:(1)A(4,0),B(0,4);S △OAB =8(2)将P(a,b)代入y=-x+4得,b=-a+4,S △OPC =)40(4)4(221<<+-=+-⨯⨯a a a (3)10,64;2,646)4(221=-=+--==+-=+-⨯⨯a a a a a ,,P(-2,6)或(10,6) (4)(2,2),(4-2,2),(24+,-2)。
利用一次函数解决问题一次函数(也称为线性函数)是数学中常见且重要的函数类型之一。
它的表达式为 y = ax + b,其中 a 和 b 是常数,且a ≠ 0。
一次函数的图像是一条直线,具有许多应用领域。
本文将介绍如何利用一次函数解决问题。
一、利用一次函数解决实际问题一次函数在实际问题中的应用非常广泛。
它可以描述物体的直线运动、收入与支出的关系、成本与产量的关系等。
下面举例说明:例1:小明每天骑自行车上学,他发现骑行的时间与距离之间存在一定的关系。
他测量了两天的数据,如下所示:时间(分钟):10 20 30 40距离(千米):1 2 3 4小明想要知道骑行 50 分钟可以骑多远,他可以利用一次函数解决这个问题。
解:我们可以先通过已知数据构建一个一次函数。
选择时间作为自变量 x,距离作为因变量 y。
现在我们来求解 a 和 b 的值。
已知点 A (10, 1) 和点 B (20, 2),可以利用两点间的斜率公式计算 a的值:a = (yB - yA) / (xB - xA) = (2 - 1) / (20 - 10) = 1 / 10 = 0.1接下来,我们可以代入其中一点的坐标和已知的 a 值,求解 b 的值:1 = 0.1 * 10 + bb = 1 - 1 = 0所以,一次函数为 y = 0.1x + 0。
现在可以利用求得的一次函数来解决问题。
当 x = 50 时,我们可以通过函数表达式求得对应的 y 值:y = 0.1 * 50 + 0 = 5因此,小明骑行 50 分钟可以骑行 5 千米。
二、利用一次函数解决图像问题一次函数的图像是一条直线,通过直线的性质,我们可以解决一些与图像相关的问题。
下面举例说明:例2:某公司生产零件,每天生产数量与花费的时间之间呈一次函数的关系。
已知当生产数量为 1000 时,需要 4 小时。
而当生产数量为2000 时,需要 8 小时。
现在需要求解该函数的表达式并计算生产 3000 个零件所需的时间。
一次函数在实际问题中的应用一次函数,也称为线性函数,是数学中的基础函数之一,其形式为y = kx + b,其中k和b为常数。
一次函数在实际问题中的应用广泛,它可以用来描述和解决各种与线性关系相关的情境和难题。
本文将通过几个实际问题的案例,来说明一次函数在实际问题中的应用。
案例一:速度和时间的关系在我们日常生活中,经常会遇到需要计算速度和时间关系的问题。
例如,一个汽车以等速度行驶,假设它的初始位置是0,每小时行驶60公里,我们可以用一次函数来表示汽车的位置与时间的关系。
设汽车行驶的时间为x小时,它的位置为y公里。
根据题目中给出的条件,我们可得一次函数的表达式为y = 60x。
这是一个典型的一次函数,其斜率k为60,常数b为0。
通过这个一次函数,我们可以计算出汽车在任意时间点的位置,从而回答与汽车行驶距离相关的问题。
案例二:成本和产量的关系在工业生产中,成本和产量之间通常存在着一定的线性关系。
假设某公司生产商品的成本与产量成正比,我们可以利用一次函数来描述这种关系。
设产量为x单位,成本为y单位。
根据题目给出的条件,可知产量和成本之间的关系是y = kx + b,其中k为单位产量对应的成本,b为固定成本。
通过这个一次函数,我们可以计算出不同产量对应的成本,进而进行成本和效益的分析。
案例三:温度和时间的关系在自然科学中,温度和时间之间的关系是一个常见的一次函数应用问题。
假设某地区的温度以一定的速率逐渐升高,我们可以用一次函数来描述温度和时间之间的关系。
设时间为x小时,温度为y摄氏度。
根据题目中给出的条件,我们可以得到一次函数的表达式y = kx + b,其中k为温度随时间变化的速率,b为初始温度。
利用这个一次函数,我们可以预测未来某个时间点的温度,或者计算过去某个时间点的温度。
综上所述,一次函数在实际问题中的应用十分广泛,它可以用来描述和解决与线性关系相关的问题。
通过建立一次函数模型,我们可以数学地表示和分析诸如速度、成本、温度等实际情境,从而得出有用的结论和决策。
利用一次函数解决实际问题在利用一次函数解决实际问题时,会经常遇到这样的问题,在有的题目中,不论自变量x怎样变化,y和x的关系始终保持一次函数关系,而有的题目中,当自变量x发生变化时,随着x的取值范围不同,y和x的函数关系也不同,它们之间或者不再是一次函数,或者虽然还是一次函数,但函数的解析式发生了变化.这种变化反映在函数图像上时的主要特征,就是由一条直线变成几条线段或射线,我们把这类函数归类为分段函数.请同学们注意,这类函数在自变量的整个取值范围内不是一次函数,但把它适当分为几段后,每段内一般来说还仍然是一次函数。
因此,解这类分段函数的基本思路是:首先按照实际问题的意义,把x 的取值范围适当分为几段,然后,根据每段中的函数关系分别求解.请同学们完成下面的习题:1.商店在经营某种海产品中发现,其日销量y(kg)和销售单价x(元)/千克之间的函数关系如图所示.①写出y与之间的函数关系式并注明x的取值范围;②当单价为32元/千克时,日销售量是多少千克?③当日销售量为80千克时,单价是多少?第1题第2题2.(南京)某城市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20cm3时,按2元/立方米计费;月用水量超过20cm3时,超过的部分按2.6元/立方米计费.设每户家庭的月用水量为x cm3时,应交水费y元,①试求出0≤x≤20和x>20时,y与x之间的函数关系式.②小明家第二季度交纳水费的情况如下:月份四月五月六月交纳金额(元)30 34 42.6小明家这个季度共用水多少立方米?3.自2008年3月1日起,我国征收个人所得税的起点由1600元提高到2000元,即月收入超过2000元的部分为全月应纳税所得额.全月应纳税所得额的划分和相应的税率如下表所示.设某人的月工资收入为x(元),月缴纳个人所得税为y(元),①试求出y与x间的函数关系式并注明x的取值范围.②如果某人月工资为3000元,问此人依法缴纳个人所得税后,他的实际收入是多少元?4.如图所示,在矩形ABCD中,AB=6 cm AD=10cm,动点M从点B出发,以每秒1cm 的速度沿BA-AD-DC运动,当M运动到点C时,点M停止运动.设点M的运动时间为t(s),△BMC的面积为S(cm2).①点M分别到达点A、点D、点C时,点M的运动时间;②求S与t之间的函数关系式,并注明t的取值范围;③当t=6s时,求△BMC的面积;④当△BMC的面积是20cm2时,求点M的运动时间.B C M第4题5.甲乙两位同学骑自行车同时从A 地出发行驶到B 地,他们离出发点的距离s(千米)和行驶时间t(小时)之间的函数图像如图所示.根据图中提供的信息,①分别求出甲在停留前后s 与t 的函数关系式; ②求出乙的行驶过程中s 与t 的函数关系式;③比较甲在停留前后的速度和乙的速度,三个速度中 的速度最大, 的速度最小;④甲在停留之前超过乙的最大距离;⑤经过多长时间乙追上甲?乙追上甲时,他们距离出发地点多少千米?⑥甲停留以后又出发时,乙超过甲多少千米? ⑦乙在到达目的地后,甲距目的地还有多少千米?⑧假设甲乙到达目的地后均不停留,分别按原来的速度继续前进,问甲能否追上乙?若能追上,从两人开始出发时计时,经过几小时甲追上乙;若不能追上,请说明理由.6.(2008·济南)济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出 物资(调进物资与调出物资的速度均保持不变).储运部库存物资s(吨)与时间(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )小时.A.4B.4.4C.4.8D.5(小时)第5题第6题参考答案1.①20≤x≤30时,y=-5x+200;30≤x≤35时y=-10x+350;,②30;③24.2. ①0≤x≤20时,y=-2x;x>20时,y=2.6x+-1.2②15+17+21=533. 2000≤x<2500时,y=0.05x-100,y=0.1x-225 4500≤x<7500时,y=0.15x-4504. ①6s;16s;22;②0≤t<6时,s=5t;6≤t<16时,s=30;16≤t<22时,s=110-5t③20;④4s或18s5.①0≤t≤0.25时,s=18t; 1≤t≤2时,s=13.5t-9②s=12t.③甲在停留前的速度最大;乙的速度最小.④1.5千米.⑤0.375小时,4.5千米.⑥7.5千米.⑦6.75千米.⑧能追上,6小时.6. B。