石墨烯的SiC外延生长及应用
- 格式:pptx
- 大小:1.12 MB
- 文档页数:19
石墨烯sic外延生长工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、概述石墨烯(SiC)外延生长工艺是一种重要的石墨烯制备方法,通过在SiC衬底上进行生长,可以得到高质量的石墨烯薄膜。
SIC外延生长法的工艺流程SIC外延生长法的工艺流程序号:1SIC外延生长法是一种重要的半导体材料生长技术,被广泛应用于功率电子、射频器件和光电子器件等领域。
它通过在SIC衬底上连续沉积SiC晶体层,实现了对SiC材料的高质量控制和大面积生长。
在本文中,我们将深入探讨SIC外延生长法的工艺流程,以帮助读者更好地理解和学习该技术。
序号:2SIC外延生长法的基本原理是在惰性气体气氛中,通过化学气相沉积(CVD)的方法,将硅和碳源气体分解成SiC气体,然后在SIC衬底上沉积成SIC晶体层。
在整个工艺过程中,需要控制好气氛、温度和气体流量等参数,以保证SIC晶体层的质量和厚度的一致性。
序号:3具体而言,SIC外延生长法的工艺流程可以分为以下几个关键步骤:a. 衬底准备:选择合适的SIC衬底,并进行表面处理,以去除杂质和缺陷。
通常使用化学气相沉积(CVD)或物理气相沉积(PVD)等方法来制备合适的SIC衬底。
b. 热解预处理:将SIC衬底放置在高温炉中,通过热解预处理,去除表面的氧化物和其它杂质。
这一步骤也有助于提高SIC晶体层的生长质量。
c. 生长条件控制:在热解预处理后,将SIC衬底放置在CVD反应室中。
控制好反应温度、压力和气体流量等参数,以实现SiC晶体层的均匀和连续生长。
通常,选择适当的碳源和硅源气体,如甲烷(CH4)和四氯化硅(SiCl4),作为SIC生长的原料气体。
d. 控制生长时间:根据所需的SIC晶体层厚度和生长速率,控制生长时间。
通过调整反应室中的反应气体流量和温度,可以有效控制SIC晶体层的生长速率。
e. 冷却和退火:在SIC晶体层生长完成后,将SIC衬底从反应室中取出,并进行冷却和退火处理。
这一步骤有助于提高晶体层的结晶质量、降低残余应力,并改善界面的质量。
序号:4总结回顾:SIC外延生长法是一种关键的半导体材料生长技术,其工艺流程包括衬底准备、热解预处理、生长条件控制、控制生长时间以及冷却和退火等关键步骤。
6H-SiC(0001)外延石墨烯的生长机制及表面应力释
放的STM研究的开题报告
本研究的主题是关于6H-SiC(0001)外延石墨烯的生长机制及表面应力释放的STM研究。
本研究将探索石墨烯在6H-SiC中生长的机制,并利用STM技术研究其表面应力释放的过程。
该研究对石墨烯在电子器件
和纳米材料等领域的应用具有重要意义。
首先,本研究将从探索生长条件开始,研究6H-SiC(0001)上石墨烯生长的机制。
为了获得足够的物理和化学信息,我们将使用STM、AFM和XPS技术对生长的过程进行表征和分析。
研究生长条件,比如温度、压力和气氛等因素,以便得到最佳的生长条件。
其次,在研究石墨烯的表面形貌时,我们将特别关注表面应力释放
的过程。
石墨烯生长过程中表面的应力释放是一个非常关键的问题,可
以影响其质量和结构。
因此,我们将使用STM技术对表面形貌进行分析,以确定表面应力的释放途径和机制。
最后,我们将总结并讨论6H-SiC(0001)上石墨烯生长的机制及表面应力释放的STM研究结果。
本研究的目的是为石墨烯在电子器件和纳
米材料等领域的应用提供基础性的研究支持。
一、概述碳化硅(SiC)是一种具有优异物理性能的广泛应用于半导体领域的材料,而在碳化硅上生长的外延石墨烯因其超高迁移率而备受瞩目。
随着半导体材料的研究与应用领域的不断拓展,碳化硅外延石墨烯的研究逐渐受到了学术界和产业界的关注。
本文将从碳化硅外延石墨烯的生长机理、物理性能以及应用前景等方面进行探讨。
二、碳化硅外延石墨烯的生长机理1. 碳化硅外延石墨烯的生长方法碳化硅外延石墨烯的生长方法主要包括热解法、化学气相沉积法和分子束外延法等。
其中,热解法是将碳源沉积在碳化硅衬底上,通过高温热解的方法使得碳原子在碳化硅表面形成石墨烯;化学气相沉积法是利用化学气相沉积的方法,在碳化硅表面形成石墨烯层;而分子束外延法则是通过束流蒸发碳原子在碳化硅表面沉积形成石墨烯。
2. 生长机理碳化硅外延石墨烯的生长机理与生长方法密切相关。
在热解法中,碳原子在碳化硅表面会形成大面积的石墨烯结构,而在化学气相沉积法和分子束外延法中,碳原子在碳化硅表面逐层扩散形成石墨烯。
生长过程中的温度、压力和碳源浓度等参数都会对碳化硅外延石墨烯的生长起到重要的影响。
三、碳化硅外延石墨烯的物理性能1. 超高迁移率碳化硅外延石墨烯作为一种二维材料,具有优异的电学性能。
其超高迁移率使得碳化硅外延石墨烯在高频器件、光学器件以及微纳电子学领域具有广泛的应用前景。
2. 热稳定性碳化硅外延石墨烯具有优秀的热稳定性,能够在高温、高能量环境下保持其稳定的结构和性能。
这使得碳化硅外延石墨烯在高温器件、航空航天领域具有潜在的应用价值。
3. 光学性能碳化硅外延石墨烯的光学性能优异,其在光电器件、传感器等领域都有着广泛的应用前景。
四、碳化硅外延石墨烯的应用前景1. 微电子学领域碳化硅外延石墨烯在微电子学领域有着广阔的应用前景,可以用于制备高频器件、高速逻辑门等。
2. 光电子学领域由于碳化硅外延石墨烯的优异光学性能,其在光电子器件、光学传感器等领域的应用也备受期待。
3. 能源领域碳化硅外延石墨烯在能源领域的应用也具有潜在的前景,可以用于太阳能电池、储能设备等方面。
石墨烯的制备
石墨烯的制备如下:
1、微机械剥离法
方法:用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。
缺点:产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,不能满足工业化需求。
2、外延生长法
方法:在高温下加热SiC单晶体,使得SiC表面的Si原子被蒸发而脱离表面,剩下的C原子通过自组形式重构,从而得到基于SiC衬底的石墨烯。
缺点:对制备所需的sic晶面要求极高,而且在sic上生长的石墨烯难以剥离。
3、化学气相沉积法(CVD法)
方法:将碳氢化合物甲烷、乙醇等通入到高温加热的金属基底表面,反应持续一定时间后进行冷却,冷却过程中在基底表面便会形成数层或单层石墨烯。
缺点:制备所需条件苛刻,需要高温高真空。
成本高,生长完成后需要腐蚀铜箔的到石墨烯。
4、氧化还原法
方法:先用强氧化剂浓硫酸、浓硝酸、高锰酸钾等将石墨氧化成氧化石墨,氧化过程即在石墨层间穿插一些含氧官能团,从而加大了石墨层间距,然后经超声处理一段时间之后,就可形成单层或数层氧化石墨烯,再用强还原剂水合肼、硼氢化钠等将氧化石墨烯还原成石墨烯。
缺点:化学反应程度很难控制,反应不完全的情况下会有大量杂质。
石墨烯外延生长法
石墨烯是一种新型的纳米材料,具有极高的导电性、热导性和机械强度等特点,被广泛应用于电子、能源、生物医学等领域。
石墨烯的制备方法有多种,其中外延生长法是一种较为有效的方法。
石墨烯外延生长法是指在金属衬底上通过化学气相沉积方法,将碳源分子分解并沉积在衬底表面,形成石墨烯晶体的过程。
这种方法可以制备出大面积、高质量的石墨烯,且具有可控性、晶格匹配性好等优点。
石墨烯外延生长法的关键技术包括衬底选择、衬底表面处理、碳源选择、沉积参数控制等。
目前,金属衬底的选择主要包括铜、镍、铂等,其中铜是最常用的衬底材料。
衬底表面处理可以通过化学处理、物理处理等方法进行。
碳源选择主要包括甲烷、乙烯等。
石墨烯外延生长法的研究和应用已经取得了很大进展,但是仍然存在一些问题,如晶格缺陷、控制方法不够成熟等。
未来,需要进一步完善石墨烯外延生长法的相关技术,以推动其在各个领域的广泛应用。
- 1 -。
绝对干货外延法制备石墨烯工艺详解【材料+】说:相信很多研究生进入实验室前,都了解了外延法制备石墨烯是一种很高端的制备方法;外延法制备的石墨烯质量高,性能好。
小编一直都想亲自操作一下使用外延法制备石墨烯。
但是,在国内的研究院所,目前对使用外延法制备石墨烯的研究还是少数。
这是什么原因呢?外延法制备石墨烯的机理是什么?瑞典皇家科学院列出的石墨烯的潜在应用产业近些年随着微电子工业的迅速发展,硅基集成电路芯片技术正在逼近摩尔定律的物理极限,科学家预言石墨烯有望替代硅材料称为后摩尔时代电子器件发展的重要角色。
瑞典皇家科学院也在A. K. Geim 和K. S. Novoselov因为发现石墨烯而获得诺贝尔物理学奖时列出的石墨烯潜在应用产业[1]。
石墨烯的奇特的物理性质如极高的载流子迁移率(约250,000 cm2V-1· s-1)、室温下亚微米尺度的弹道传输特性[2]、反常量子霍尔效应[3]、极优的力学性能(杨氏模量~5000W·m-1·K-1,断裂强度125GPa)[4]以及电子自旋输运、超导电性[5]等,使其在纳米电子学和自旋电子学元器件方面拥有非常广阔的发展前景。
同时,平面的石墨烯片很容易使用常规技术加工,甚至可能在一层石墨烯单片上直接加工出各种半导体器件和互联线,从而获得具有重大应用价值的拳坛集成电路。
材料的制备是实现其功能化应用的基础,大面积高质量石墨烯的制备仍然是困扰科研人员的一大难题。
石墨烯虽然可以通过很多种生长方式获得,如机械剥离法,以单晶金属为衬底的CVD法化学氧化还原法等,但是碳化硅外延生长法被普通认为是实现工业化制备和生产石墨烯的最有效途径之一。
外延法制备石墨烯所谓的外延法,即在一个晶格结构上通过晶格匹配生长出另外一种晶体的方法。
与其它制备方法比较,外延法是最有可能获得大面积、高质量石墨烯的制备方法。
所获得的石墨烯具有较好的均一性,且与当前的集成电路技术有很好的兼容性。
石墨烯的制备方法及应用无机光电0901 3090707020 黄飞飞摘要:石墨烯具有非凡的物理性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。
2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加,本文通过对石墨烯特性、制备方法、在光电器件方面的应用几方面进行了综述,希望对石墨烯的综合应用进展有所了解。
关键词:石墨烯制备方法应用1 引言人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。
当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。
石墨烯(Graphene)的理论研究已有 60 多年的历史。
石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至 2004 年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因在二维石墨烯材料的开创性实验而共同获得2010年诺贝尔物理学奖。
石墨烯的出现在科学界激起了巨大的波澜,从2006年开始,研究论文急剧增加,作为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,旨在应用石墨烯的研发也在全球范围内急剧增加,美国、韩国,中国等国家的研究尤其活跃。
石墨烯或将成为可实现高速晶体管、高灵敏度传感器、激光器、触摸面板、蓄电池及高效太阳能电池等多种新一代器件的核心材料。
2 石墨烯的基本特性至今为止,已发现石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、机械强度高、易于修饰及大规模生产等。
石墨烯是零带隙半导体,有着独特的载流子特性,为相对论力学现象的研究提供了一条重要途径;电子在石墨烯中传输的阻力很小,在亚微米距离移动时没有散射,具有很好的电子传输性质;石墨烯韧性好,有实验表明,它们每 100nm 距离上承受的最大压力可达 2.9 N,是迄今为止发现的力学性能最好的材料之一。
碳化硅上的超高迁移率半导体外延石墨烯碳化硅(SiC)是一种广泛用于半导体器件制造的材料,而外延石墨烯(epitaxial graphene)是在晶体基底上生长的石墨烯薄膜。
将石墨烯生长在碳化硅上可以产生具有超高电子迁移率的半导体材料,这对于高性能电子器件至关重要。
以下是关于碳化硅上的超高迁移率半导体外延石墨烯的一些重要点:
1. 碳化硅基底:碳化硅具有很好的热稳定性和机械性能,适合作为半导体器件的基底。
它还具有较高的热导率,有助于散热。
2. 外延生长:石墨烯的外延生长是通过在碳化硅基底上沉积碳源原料,使其在表面形成单层石墨烯薄膜。
外延生长可实现对石墨烯的控制生长,形成均匀、有序的结构。
3. 高电子迁移率:碳化硅上的外延石墨烯通常表现出非常高的电子迁移率,这意味着电子在石墨烯中的移动速度很快。
这对于高频率、高性能的半导体器件至关重要。
4. 半导体器件应用:这种具有超高电子迁移率的碳化硅上的外延石墨烯可用于制造高性能的场效应晶体管(FET)等半导体器件。
这对于高频、低功耗、高温工作等应用具有重要意义。
5. 工业制造:这种外延石墨烯的制备和应用已经引起了工业界的广泛关注,因为它提供了一种在半导体工艺中实现石墨烯功能的方法。
总体而言,碳化硅上的超高迁移率半导体外延石墨烯是在半导体领域具有潜在应用价值的新材料,可以为电子器件的性能提供重要的提升。