2015高考理科数学新课标Ⅱ精校版
- 格式:docx
- 大小:332.03 KB
- 文档页数:5
2015年高考全国新课标卷Ⅱ理科数学真题(青海;西藏;甘肃;贵州;内蒙古;新疆;宁夏;吉林;黑龙江;云南;辽宁;广西;海南)一、选择题1.已知集合A={-2,-1,0,1,2},B={X|(X-1)(X+2)<0},则AB=( ) A .{-1,0} B .{0,1} C .{-1,0,1} D .{0,1,2}2.若a 为实数,且(2+ai )(a-2i )= - 4i ,则a=( )A .-1B .0C .1D .23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .2006年以来我国二氧化硫排放量与年份正相关4.已知等比数列{a n } 满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .845.设函数f (x )=f (x )={1+log 2,(2−x ),x <12x−1,x ≥1则f (-2)+f (log 212)=( )A .3B .6C .9D .12 6.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .157.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则IMNI=( )A .2√6B .8C .4√6D .108.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入的a , b 分别为14 ,18,则输出的a=( )A .0B .2C .4D .149.已知A,B 是球O 的球面上两点,∠AOB=90o ,C 为该球上的动点,若三棱锥O-ABC 的体积最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=,将动点P 到,A B 两点距离之和表示为x 的函数,则()y f x =的图像大致为( )A .B .C .D .11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A B .2 C D 12.设函数f ’(x)是奇函数f(x)(x ∈R)的导函数,f(-1)=0,当x>0时,x f ’(x)- f(x)<0,则使得f(x)>0成立的x 的取值范围是( )A .(−∞,-1)∪(0,1)B .(−1,0)∪(1,+∞)C .(−∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)二、填空题13.设向量a,b 不平行,向量λ a+b 与a+2b 平行,则实数 λ =14.若x ,y 满足约束条件,则z=x+y 的最大值为 15.4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a=16.设S n 是数列{a n }的前n 项和,且1111,n n n a a s s ++=-=,则S n =三、解答题17.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍(I )求Csin B sin ∠∠ (II )若AD=1,DC=22,求BD 和AC 的长18.某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机抽查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果互相独立。
2015高考理科数学新课标全国Ⅱ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知集合A={-2,-1,0,2},B={x|(X-1)(x+2)<0},则A∩B=(A ){--1,0} (B ){0,1} (C ){-1,0,1} (D ){,0,,1,2}(2)若a 为实数且(2+ai )(a-2i )=-4i,则a=(A )-1 (B )0 (C )1 (D )2(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是(A ) 逐年比较,2008年减少二氧化硫排放量的效果最显著 (B ) 2007年我国治理二氧化硫排放显现(C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关 (4)等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 =(A )21 (B )42 (C )63 (D )84(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图, (7)则截去部分体积与剩余部分体积的与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51(7)过三点A (1,3),B (4,2),C (1,7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入a,b分别为14,18,则输出的a=A.0B.2C.4D.14(9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为A.36π B.64π C.144π D.256π10.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,∠BOP=x。
2015年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,-1,0,2},B={x|(X-1)(x+2)<0},则A∩B= (A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2}2.若a 为实数且(2+ai )(a -2i )=-4i ,则a =(A )-1 (B )0 (C )1 (D )23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是(A )逐年比较,2008年减少二氧化硫排放量的效果最显著 (B )2007年我国治理二氧化硫排放显现(C )2006年以来我国二氧化硫年排放量呈减少趋势 (D )2006年以来我国二氧化硫年排放量与年份正相关 4.等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 = (A )21 (B )42 (C )63 (D )845.设函数f (x )=⎩⎨⎧≥++-1,2,1),2(log 112x x x x <,则f (-2)+ f (log 212) =(A )3 (B )6 (C )9 (D )126.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则 截去部分体积与剩余部分体积的与剩余部分体积的比值为(A )81 (B )71 (C )61(D )517.过三点A (1,3),B (4,2),C (1,7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10 8.右边程序抗土的算法思路源于我国古代数学名著《九章算术》 中的“更相减损术”。
执行该程序框图,若输入a,b 分别为14,18, 则输出的a= (A )0 (B )2 (C )4 (D )149.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体 积的最大值为36,则球O 的表面积为(A )36π (B )64π (C )144π (D )256π10.如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与 DA 运动,∠BOP=x 。
2015高考数学新课标Ⅱ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知集合A={-2,-1,0,2},B={x|(x-1)(x+2)<0},则A∩B= ( )(A ){--1,0} (B ){0,1} (C ){-1,0,1} (D ){,0,,1,2}(2)若a 为实数且(2+ai )(a-2i )=-4i,则a= ( )(A )-1 (B )0 (C )1 (D )2(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )(A ) 逐年比较,2008年减少二氧化硫排放量的效果最显著(B ) 2007年我国治理二氧化硫排放显现(C ) 2006年以来我国二氧化硫年排放量呈减少趋势(D ) 2006年以来我国二氧化硫年排放量与年份正相关(4)等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 =( )(A )21 (B )42 (C )63 (D )84(5)设函数211log (2),1()2,1x x x f x x -+-<⎧=⎨≥⎩,则2(2)(log 12)f f -+=( ) (A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的与剩余部分体积的比值为( )(A )81 (B )71 (C )61 (D )51 (7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =( )(A )26 (B )8 (C )46 (D )10(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入a,b 分别为14,18,则输出的a=( )A.0B.2C.4D.14(9)已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A .36π B.64π C.144π D.256π(10)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,∠BOP=x 。
2015年高考数学试题(理) 第1页【共10页】2015年普通高等学校招生全国统一考试(新课标Ⅱ卷)理科数学第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}2.若a 为实数且(2+ai )(a -2i ) =-4i ,则a =( )A .-1B .0C .1D .23.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著.B .2007年我国治理二氧化硫排放显现成效.C .2006年以来我国二氧化硫年排放量呈减少趋势.D .2006年以来我国二氧化硫年排放量与年份正相关.4.已知等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7=( )A .21B .42C .63D .845.设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(log 12)f f -+=( ) A .3 B .6 C .9D .12 6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A .81B .71C .61D .51 7.过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =( )2015年高考数学试题(理) 第2页【共10页】A.B .8 C.D .108.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .149.已知A ,B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x.将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2 CD12.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( )A .(,1)(0,1)-∞-UB .(1,0)(1,)-+∞UC .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:(本大题共4小题,每小题5分,共20分.)13.设向量a ,b 不平行,向量λ+a b 与2+a b 平行,则实数λ= ____________.2015年高考数学试题(理) 第3页【共10页】14.若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为____________.15.4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.16.设S n 是数列{a n }的前项和,且11a =-,11n n n a S S ++=,则S n =___________________.三、解答题:(解答应写出文字说明,证明过程或演算步骤.)17.(本小题12分)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求sin sin B C ∠∠;(Ⅱ)若AD =1,DCBD 和AC 的长. 18.(本小题12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.19.(本小题12分)如图,长方体ABCD -A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF 与平面α所成角的正弦值.2015年高考数学试题(理) 第4页【共10页】20.(本小题12分)已知椭圆C :2229x y m +=(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点(,)3m m ,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边形?若能,求此时l 的斜率;若不能,说明理由.21.(本小题12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一题评分,做答时请用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.22.(本小题10分)【选修4-1:几何证明选讲】如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M 、N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点.(Ⅰ)证明:EF ∥BC ;(Ⅱ)若AG 等于⊙O 的半径,且AE=MN=求四边形EBCF的面积.23.(本小题10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠0)其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=. (Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.24.(本小题10分)【选修4-5:不等式选讲】设a ,b ,c ,d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd>||||a b c d -<-的充要条件.2015年普通高等学校招生全国统一考试(新课标Ⅱ卷)理科数学【参考答案】一、选择题:1. 【答案】A解析:由已知得,故{1,0}A B =- ,故选A.{}21B x x =-<<2015年高考数学试题(理) 第5页【共10页】2. 【答案】B解析:由已知得4a + (a 2 -4)i = -4i ,所以4a = 0,a 2 -4 = -4,解得a = 0,故选B.3. 【答案】D解析:由柱形图可知,从2006年以来,我国二氧化硫排放量呈下降趋势,所以二氧化硫排放量与年份负相关,故选D.4. 【答案】B解析:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42,故选B.5. 【答案】C解析:由已知得,又,所以,故.6. 【答案】D解析:由三视图得,在正方体ABCD -A 1B 1C 1D 1中,截去四面体A -A 1B 1D 1,如图所示,设正方体棱长为,则,故剩余几何体体积为,所以截去部分体积与剩余部分体积的比值为15,故选D. 7. 【答案】C解析:由已知得321143AB k -==--,27341CB k +==--,所以k AB k CB =-1,所以AB ⊥CB ,即△ABC 为直角三角形,其外接圆圆心为(1, -2),半径为5,所以外接圆方程为(x -1)2+(y +2)2=25,令x =0,得2y =±,所以||MN = C.8. 【答案】B解析:程序在执行过程中,a ,b 的值依次为a =14,b =18,b =4,a =10,a =6,a =2,b =2,此时a =b =2程序结束,输出a 的值为2,故选B .9. 【答案】C解析:如图所示,当点C 位于垂直于面的直径端点时,三棱锥的体积最大,设球O 的半径为R ,此时,故R=6,则球O 的表面积为,故选C .10. 【答案】B2(2)1log 43f -=+=2log 121>22log 121log 62(log 12)226f -===2(2)(log 12)9f f -+=a 11133111326A A B D V a a -=⨯=3331566a a a -=AOB O ABC -2311136326O ABC C AOB V V R R R --==⨯⨯==24144S R ππ==12015年高考数学试题(理) 第6页【共10页】解析:由已知得,当点P 在BC 边上运动时,即04x π≤≤时,tan PA PB x +;当点P 在CD 边上运动时,即344x ππ≤≤,2x π≠时,PA PB +=当2x π=时,PA PB +=当点P 在AD 边上运动时,即34x ππ≤≤时,PA PB +=tan x ,从点P 的运动过程可以看出,轨迹关于直线2x π=对称,且,且轨迹非线型,故选B . 11. 【答案】D 解析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,|AB |=|BM |,∠ABM =120º,过点M 作MN ⊥x 轴,垂足为N ,在Rt △BMN 中,|BN |=a,||MN =,故点M的坐标为(2)M a ,代入双曲线方程得a 2=b 2=c 2-a 2,即c 2=2a 2,所以e = D.12. 【答案】A解析:记函数()()f x g x x =,则2()()()x f x f x g x x '-'=,因为当x >0时,xf ´(x )-f (x )<0,故当x >0时,g ´ (x )<0,所以g (x )在(0, +∞)单调递减;又因为函数f (x )(x ∈R )是奇函数,故函数g (x )是偶函数,所以g (x )在(-∞, 0)单调递增,且g (-1)=g (1)=0.当0<x <1时,g (x )>0,则f (x )>0;当x <-1时,g (x )<0,则f (x )>0,综上所述,使得f (x )>0成立的x 的取值范围是(-∞, -1)∪(0, 1),故选A .二、填空题:13. 【答案】 解析:因为向量a b λ+ 与2a b + 平行,所以(2)a b k a b λ+=+ ,则12k kλ=⎧⎨=⎩,所以12λ=. 14. 【答案】 解析:画出可行域,如图所示,将目标函数变形为y =-x +z ,当z 取到最大时,直线y =-x +z 的纵截距最大,故将直线()()42f f ππ>12322015年高考数学试题(理) 第7页【共10页】 尽可能地向上平移到1(1,)2D ,则z =x +y 的最大值为32. 15. 【答案】解析:由已知得,故的展开式中x 的奇数次幂项分别为,,,,,其系数之和为,解得.16. 【答案】 解析:由已知得,两边同时除以,得,故数列是以为首项,为公差的等差数列,则,所以. 三、解答题: 17.解析:(Ⅰ)1sin 2ABD S AB AD BAD ∆=⋅∠,1sin 2ADC S AC AD CAD ∆=⋅∠,因为2A B D A D C S S ∆∆=,BAD CAD ∠=∠,所以2AB AC =,由正弦定理可得sin 1sin 2B AC C AB ∠==∠. (Ⅱ)因为::2ABD ADC S S BD DC ∆∆==,DC =所以BD =在ABD ∆和ADC ∆中,由余弦定理知,2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠,故222222326AB AC AD BD DC +=++=,由(Ⅰ)知2AB AC =,所以1AC =.18.解析:(Ⅰ)两地区用户满意度评分的茎叶图如下:B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散。
2015年普通高等学校招生全国统一考试理科数学(课标全国Ⅱ)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015课标全国Ⅱ,理1)已知集合A ={-2,-10,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( ).A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}2.(2015课标全国Ⅱ,理2)若a 为实数,且(2+a i)( a -2i)=-4i ,则a =( ).A .-1B .0C .1D .23.(2015课标全国Ⅱ,理3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .2006年以来我国二氧化硫排放量与年份正相关4.(2015课标全国Ⅱ,理4)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ).A .21B .42C .63D .845.(2015课标全国Ⅱ,理5)函数f (x )= 1+log 2 2−x ,x <12x−1 ,x ≥1则f −2 +f log 212 = A .3 B .6 C .9 D .126.(2015课标全国Ⅱ,理6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A .18B .17C .16D . 157.(2015课标全国Ⅱ,理7)过三点A(1,3),B(4,2),C(1,-7),的圆交y 轴于M ,N 两点,则|MN|=A .2 6B .8C .4 6D .108.(2015课标全国Ⅱ,理8)右边程序框图的算法思想源于我国古代数学名著《九章算术》中的“更相减损术”。
2015年普通高等学校招生全国统一考试理 科 数 学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( )(A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2}(2)若a 为实数且(2+ai )(a-2i )=-4i,则a=( )(A )-1 (B )0 (C )1 (D )2(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )(A ) 逐年比较,2008年减少二氧化硫排放量的效果最显著 (B ) 2007年我国治理二氧化硫排放显现(C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关(4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84 (5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51 (7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入a,b 分别为14,18,则输出的a=A.0B.2C.4D.14 (9)已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为A .36π B.64π C.144π D.256π10.如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为(11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM为等腰三角形,且顶角为120°,则E 的离心率为(A(B )2 (C(D(12)设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是A .(,1)(0,1)-∞-UB .(1,0)(1,)-+∞UC .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U二、填空题(13)设向量a r ,b r 不平行,向量a b λ+r r 与2a b +r r平行,则实数λ=_________. (14)若x ,y 满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y =+的最大值为____________.(15)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. (16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 三.解答题(17)∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 是∆ADC 面积的2倍。
2015年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】由已知得{|21}B x x =-<<,故,}10{AB -=,故选A .【提示】解一元二次不等式,求出集合B ,然后进行交集的运算即可. 【考点】集合的交集运算和一元二次方程求根. 2.【答案】B【解析】由已知得24+(4)i 4i a -=-,所以40a =,244a -=-,解得0a =,故选B .【提示】首先将坐标展开,然后利用复数相等解之. 【考点】复数的四则运算. 3.【答案】D【解析】解:A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A 正确;B .2004~2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D 错误. 故选:D【提示】A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A 正确; B .从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D 错误. 【考点】柱形图信息的获得. 4.【答案】B【解析】设等比数列公比为q ,则24111++21a a q a q =,又因为13a =,所以42+60q q -=,解得22q =,所以2357135++(++)42a a a a a a q ==,故选B .【提示】由已知,13a =,135++21a a a =,利用等比数列的通项公式可求q ,然后在代入等比数列通项公式53261)(0,1),故选())f x x=为减函数,,0)(0,+)∞上的偶函数,根据函数0等价于x g【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下:122B A C C ,12212))+()B A A B C C P C 1,2A C ,C 108【解析】(Ⅰ)交线围成的正方形EHGF 如图:uuu r 即可求出法向量n,AF。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【答案】A考点:集合的运算.2.若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B . 考点:复数的运算.3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 【答案】D 【解析】试题分析:由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D . 考点:正、负相关.4.等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84 【答案】B考点:等比数列通项公式和性质. 5.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .12 【答案】C 【解析】试题分析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .考点:分段函数.6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【答案】D 【解析】试题分析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .考点:三视图.CBADD 1C 1B 1A 17.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±,所以MN =,故选C .考点:圆的方程.8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .14 【答案】B 【解析】 试题分析:程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B . 考点:程序框图.9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C 【解析】试题分析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C . 考点:外接球表面积和椎体的体积.BOAC10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )【答案】B 【解析】考点:函数的图象和性质. 11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2 CD【答案】D 【解析】DPCx试题分析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以e =,故选D .考点:双曲线的标准方程和简单几何性质.12.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞【答案】A 【解析】试题分析:记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .考点:导数的应用、函数的图象与性质.第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。