微乳法
- 格式:pdf
- 大小:386.10 KB
- 文档页数:6
多相催化原理——微乳液法制备催化剂目录微乳液法原理及方法所制催化剂的应用困难与展望123微乳液简介微乳液是两种相对不互溶的液体的热力学稳定、各向同性、透明或半透明的分散体系,就微观而言,它是由表面活性剂形成的界面膜所稳定的其中1种或2种液体的液滴所构成,其特点是使不相混溶的油和水两相在表面活性剂和助表面活性剂存在下,可以形成均匀稳定的混合物。
微乳液的组成包括表面活性剂、助表面活性剂(通常为醇类)、油(通常为碳氢化合物)和水(或电解质水溶液)。
根据油和水的比例及其微观结构,微乳液有3种基本结构类型:(1)正相(O/W)微乳液,(2)反相(W/O)微乳液,(3)双连续相微乳液(1)正相(O/W)(2)反相(W/O)(3)双连续相微乳液作为纳米反应器的原理以微乳液法制备纳米粒子时,通常采用反相(W/O)微乳体系,其大小可控制在1~100nm之间,该“水滴”尺度小且彼此分离,这种微小的“水滴”可看作是“纳米反应器”或“微反应器”。
并通过增溶不同的反应物而使反应在“水滴”内进行,因而产物的粒径和形状都可调控,此外,当“水滴”内的粒子长到大小接近“水滴”的大小时,表面活性剂分子所形成的膜附着于粒子的表面,阻碍了粒子的聚结,从而提高了粒子稳定性,并阻止其进一步长大。
其中,增溶有反应物A、B 的微乳液,A中含有金属粒子前驱体(多为金属盐),B中含有用来还原/沉淀金属粒子H2O、NaHB、Na2CO3、水溶前驱体的还原剂/沉淀剂(NH3液等)。
反应方法如:a,b。
a. b.催化剂的制备过程与传统的浸渍法相比,微乳液法所制备的催化剂具有活性组分粒径可控、尺寸分布较窄和均匀地分布在载体上等优点。
纳米粒子微乳液加入载体破乳离心、干燥焙烧活化催化剂催化加氢烯烃+H 2烷烃Ni 、Pt/Al 2O 3苯+H 2环己烯Ru-Zn/SiO 2醛+ H 2 醇Co/SiO 2●催化加氢●催化燃烧(1) 低温催化燃烧用微乳液法制得的Pt/Al2O3、CeO2/Al2O3催化剂,其在CO燃烧时,与传统的催化剂相比,具有较低的燃烧温度和较高的活性。
微乳技术的操作方法微乳技术是一种先进的纳米颗粒制备方法,可以实现粒径小、分散性好的微乳体系。
它广泛应用于油田、化工、医药、食品等领域中。
微乳技术的操作方法主要包括以下几个步骤:1. 选择合适的表面活性剂和油相:微乳体系主要由水相、油相和表面活性剂组成。
在选择表面活性剂时,需要考虑其亲水性、疏水性和稳定性等因素,同时还需要选择适合的油相。
通常情况下,选择具有相互溶解性的表面活性剂和油相可以提高微乳体系的稳定性。
2. 配制微乳体系:将所选的表面活性剂和油相按照一定比例混合,并加入适量的水相,使用搅拌器进行搅拌。
在搅拌的过程中,要注意搅拌速度和时间的控制,以保证微乳体系的均匀性和稳定性。
3. 调整微乳体系的性质:在制备微乳体系的过程中,可以根据具体的应用需求进行一些调整。
例如,可以通过改变表面活性剂的浓度、pH值和温度等因素来改变微乳体系的颜色、流变性质和稳定性等。
4. 精细调控微乳体系的粒径:微乳体系的稳定性和应用效果直接受到粒径的影响。
因此,在制备微乳体系时,可以采用一些精细调控的方法来控制微乳颗粒的粒径。
常用的方法包括超声波处理、高压均质和离心浓缩等。
这些方法可以有效地降低微乳体系的粒径,并提高微乳体系的稳定性。
5. 评价微乳体系的性能:制备好微乳体系后,需要对其进行一系列的性能评价。
例如,可以对微乳颗粒的粒径分布、体积分数和稳定性进行测试,以确定微乳体系是否符合预期的要求。
综上所述,微乳技术的操作方法包括选择合适的表面活性剂和油相、配制微乳体系、调整微乳体系的性质、精细调控微乳体系的粒径和评价微乳体系的性能等步骤。
通过合理操作可以制备出粒径小、分散性好的微乳体系,为各个领域中的应用提供技术支持。
浅述微乳液法制备纳米材料1.微乳液的形成机理微乳液是由油、水、乳化剂组成的各向同性、热力学稳定的透明或半透明胶体分散体系,其分散相直径一般在10至50nm范围,界面厚度通常为2至5nm,由于分散相尺寸远小于可见光波长,因此微乳液一般为透明或半透明的。
尽管在分散类型方面微乳液和普通乳状液有相似之处即有O/W 型和W/O 型,但微乳液和普通乳状液有 2 个根本的不同点:其一,普通乳状液的形成一般需要外界提供能量如经过搅拌、超声粉碎、胶体磨处理等才能形成,而微乳液的形成是自发的,不需要外界提供能量;其二,普通乳状液是热力学不稳定体系,在存放过程中将发生聚结而最终分成油、水两相,而微乳液是热力学稳定体系,不会发生聚结,即使在超离心作用下出现暂时的分层现象,一旦取消离心力场,分层现象即消失,还原到原来的稳定体系。
有关微乳体系的形成机理,目前存在瞬时负界面张力理论、双重膜理论、几何排列理论以及R 比理论,并且有关微乳体系研究的方法还在不断增加。
2.微乳液法制备的纳米材料的特点微乳胶束的结构处于动态平衡中,胶束间不断碰撞而聚集成二聚体、三聚体。
这些聚集体的形成会影响胶束直径的单分散性,进而影响合成微粒粒径的单分散性。
同时,通过控制胶束及水池的形态、结构、极性、疏水性等,可望用分子规模控制纳米粒子的大小、形态、结构及物性的特异性。
用该法制备纳米粒子的实验装置简单,能耗低,操作容易,具有以下明显的特点:(1)粒径分布较窄,粒径可以控制;(2)选择不同的表面活性剂修饰微粒子表面,可获得特殊性质的纳米微粒;(3)粒子的表面包覆一层(或几层)表面活性剂,粒子间不易聚结,稳定性好;(4)粒子表层类似于活性膜,该层基团可被相应的有机基团所取代,从而制得特殊的纳米功能材料;(5)表面活性剂对纳米微粒表面的包覆改善了纳米材料的界面性质,显著地改善了其光学、催化及电流变等性质。
3.制备纳米材料的影响因素:(1)含水量的影响:W/O型微乳液中水核的大小和水与表面活性剂的比例密切相关,水核的大小限制了纳米粒子的生长,决定了纳米微粒的尺寸。
纳米催化剂的制备及其催化性能研究一、引言纳米材料作为一种新型材料,在医药、电子、能源等领域发挥了重要的作用。
其中,纳米催化剂的研究和制备已成为当前的热点问题。
纳米催化剂具有比传统催化剂更高的催化活性和选择性,可广泛应用于化工、石油、环保等行业。
本文将介绍纳米催化剂的制备方法及其催化性能研究。
二、纳米催化剂的制备方法1.沉淀法沉淀法是一种常用的制备纳米催化剂的方法。
基本原理是,在溶液中加入一定量的沉淀剂,使物质析出,然后通过控制pH值、温度等条件进行沉淀物的洗涤、干燥等处理,制备出纳米催化剂。
该方法具有简单、易于控制,成本低等优点,且可以制备出高纯度、均匀分布的纳米催化剂。
2.气相合成法气相合成法是一种将气态前体物分解或反应而生成纳米颗粒的方法。
该方法的原理是,将金属有机化合物等前体物通过载气输送到高温反应室中,在一定的反应条件下产生气态分解反应,生成纳米催化剂。
该方法可以制备出高度纯净、晶型良好、分散性好的纳米催化剂。
3.微乳法微乳法是一种使用表面活性剂将水溶液和油相混合而形成稳定胶体体系的方法。
该方法的原理是,在表面活性剂的作用下,将前体物在水相或油相中分散,并通过控制温度、pH值等因素制备出均匀分布的纳米催化剂。
该方法的优点是制备过程简单、温和、可控性强,且可以制备出粒径较小,高度分散的纳米催化剂。
三、纳米催化剂的催化性能研究1. 催化活性的研究纳米催化剂相较于传统催化剂具有更高的比表面积和更多的活性位点,因而在催化反应中表现出更高的催化活性。
通过研究纳米催化剂的催化活性,可以评估其催化效果和应用前景。
例如,针对催化剂在合成苯乙烯反应中的催化活性进行研究,结果表明,负载铂纳米颗粒在加氢反应中表现出更高的催化活性,因其高比表面积和多孔结构可提供更多的反应活性位点。
2. 催化选择性的研究纳米催化剂在催化反应中的选择性是指其在特定反应中所产生的所需产物与副产物的比例。
通过研究纳米催化剂的催化选择性,可以评估其应用效果和可行性。
微乳法1. 几个根本名词、术语自1943 年Hoar 和Schulman 觉察热力学稳定的油-水-外表活性剂-助外表活性剂均相体系并于1959 年正式定名为微乳液(microemulsion)以来,微乳的理论和应用争论都获得了长足的进展,使微乳成为界面化学的一个重要并且是格外活泼的分支。
目前微乳化技术已渗透到日用化工、精细化工、石油化工、材料科学、生物技术以及环境科学等领域,成为当今国际上热门的、具有巨大应用潜力的争论领域。
※ 1.1 外表活性剂(surfactant)从分子构造看,这类化合物由非极性的“链尾”和极性的“头基”两局部组成。
非极性局部是直链或支链的碳氢链或碳氟链,它们与水的亲和力极弱,而与油有较强的亲和力,因此被称为憎水基或亲油基(hydrophobic or lipophilic group)。
极性头基为正、负离子或极性的非离子,它们通过离子-偶极或偶极-偶极作用与水分子猛烈相互作用并且是水化的,因此被称为亲水基(hydrophilic group)或头基head groups。
这类分子具有既亲水又亲油的双亲性质,因此又称为双亲分子。
由于双亲性质,这类物质趋向于富集在水/空气界面或油/水界面从而降低水的外表张力和油/水界面张力,因而具有“外表活性(surface activity); 在溶液中,当浓度足够大时,这类双亲分子则趋向于形成聚拢体,即“胶团”或“胶束”(micelle)。
这两个过程即分别是所谓的吸附(adsorption)和胶团化(micellization) 过程。
这种能产生吸附和胶团化的物质统称为“外表活性剂”,同时还被称为“双亲物质(amphiphile 〕等。
另一类具有类似构造的物质,如低分子量的醇、酸、胺等也具有双亲性质,也是双亲物质。
但由于亲水基的亲水性太弱,它们不能与水完全混溶,因而不能作为主外表活性剂使用。
通常它们(主要是低分子量醇)是与外表活性剂混合组成外表活性剂体系,因而被称为助外表活性剂。
1915年,奥斯特瓦尔德《被遗忘了尺寸的世乳液需要借助高速搅拌或超声振荡等外力微乳液无需任何机械功,只需按照配方,热力学等)随浓度的增加,表面张力升高;(醇,羧酸等)随浓度的增加,表面张力变化不明显;界面CTABH atom C atom N atom O atom S atomlyophobic, hydrophobic 疏水的lyophilic, hydrophilicAmphiphilic碳氢链在8~20个碳原子两亲分子材料合成技术与方法(2)按头部基团分类阴离子表面活性剂:亲水基为阴离子Sodium dodecyl sulfonate 十二烷基磺酸钠Sodium dodecyl sulfate 十二烷基硫酸钠CH3CH2CH2CH2—OSO3—Na+烷基磺酸钠材料合成技术与方法阴离子表面活性剂:亲水基为阴离子疏水基:由C10~C20的长链烃基亲水基:羧酸、磺酸、硫酸、磷酸等特点:原料易得、性能优良、很好的润湿性和去污功能Sodium dodecyl sulfonate十二烷基磺酸钠Sodium dodecyl sulfate十二烷基硫酸钠poly(ethylene glycol), poly(ethylene oxide), poly(oxyethylene)聚乙二醇,聚环氧乙烷,聚氧乙撑在固体表面有强烈的吸附性胶团化:表面活性剂在溶液中分散,当达到一定浓度时,表面活性剂分子会从单体(单个此时的浓度,即形成胶团的浓度胶团(胶束,反胶团(反胶束,反相胶束)水亲油基朝外,亲水基朝里油包水直径单一分散性,动力学和热力学稳定性微乳液浓度<CMC材料合成技术与方法C 14H 29COO −Na +临界排列参数( Critical packing parameter)V :表面活性剂分子疏水部分的体积,a 0:表面活性剂分子在聚集体表面所占有效头基面积l c :表面活性剂分子疏水部分的链长。
材料合成技术与方法0<p<1/3时形成胶束,(liposome) :表面活性材料合成技术与方法囊泡结构从完全无序的单体稀溶液到高度有序的结晶态。