微胶囊的制备与应用
- 格式:doc
- 大小:71.50 KB
- 文档页数:11
复合芯材相变材料微胶囊的制备与应用相变材料是一种能够在特定温度范围内发生相变(液固相变或固气相变)的物质。
相变材料的应用领域广泛,包括热能储存、温度调节、传感器等。
然而,传统的相变材料在应用过程中存在一些问题,如低热传导性、材料的不稳定性等。
为了解决这些问题,研究人员开始研究。
复合芯材相变材料微胶囊是一种将相变材料包裹在微胶囊中的新型材料。
制备过程中,首先选择适合的相变材料,如蜡或聚合物等,然后将其包裹在微胶囊中。
微胶囊通常由聚合物材料制成,具有良好的稳定性和封装性。
制备完成后,复合芯材相变材料微胶囊可以在特定温度下释放相变材料的热量,实现温度调节或热能储存的功能。
复合芯材相变材料微胶囊具有许多优点。
首先,微胶囊的存在使得相变材料的热传导性能得到了显著提高。
相变材料微胶囊在相变时,热量可以通过微胶囊壁传导出来,从而提高了热传导效率。
其次,复合芯材相变材料微胶囊具有良好的稳定性,可以长时间保持相变材料的性能。
此外,由于微胶囊的封装性,相变材料不易受到外界环境的污染或影响。
复合芯材相变材料微胶囊的应用领域广泛。
在建筑领域,可以将复合芯材相变材料微胶囊应用于墙体、屋顶等位置,实现室温调节。
在电子领域,可以将复合芯材相变材料微胶囊应用于散热器或电池等位置,提高热传导性能。
在航天领域,可以将复合芯材相变材料微胶囊应用于太阳能电池板等位置,实现热能储存。
总之,复合芯材相变材料微胶囊是一种具有潜力的新型材料。
它不仅可以提高相变材料的热传导性能,还具有良好的稳定性和封装性。
在建筑、电子和航天等领域,复合芯材相变材料微胶囊都有着广阔的应用前景,为相关领域的发展提供了新的可能性。
微胶囊化技术及应用微胶囊化技术是一种将液体或固体包裹在微小胶囊内的方法,通过包覆物质可以实现保护、控释、隔离等功能。
这项技术在各个领域都有广泛的应用,如医药、食品、化妆品、油墨等行业。
本文将重点探讨微胶囊化技术的原理、制备方法及应用领域。
一、微胶囊化技术的原理微胶囊化技术的原理是利用胶体或聚合物等材料将目标物质包裹在微小的胶囊内。
这些胶囊通常具有稳定的结构,可以在外部环境的影响下实现目标物质的保护和控释。
胶囊的壁可以根据需要进行调整,以实现不同的功能,如透明性、生物相容性、控释性等。
通过微胶囊化技术,可以将不同性质的物质包裹在一起,实现特定的应用需求。
二、微胶囊化技术的制备方法微胶囊化技术的制备方法多样,常见的方法包括乳化法、凝胶化法、溶剂挥发法等。
乳化法是将目标物质溶解在油相中,再通过乳化剂和乳化机械均匀分散在水相中,最终形成乳液。
通过控制乳化条件和加入固化剂,可以实现胶囊的形成。
凝胶化法是将目标物质溶解在溶剂中,再通过添加交联剂等方法实现胶囊的形成。
溶剂挥发法是将目标物质溶解在溶剂中,再通过溶剂挥发或冷冻干燥等方法实现胶囊的形成。
三、微胶囊化技术的应用领域1.医药领域:微胶囊化技术可以用于药物的保护和控释,延长药效时间,减少药物副作用。
例如,将药物微胶囊化后可以实现肠道缓释、靶向传递等功能,提高药物的疗效。
2.食品领域:微胶囊化技术可以用于食品添加剂的包埋,提高添加剂的稳定性和安全性。
例如,将香精、色素等食品添加剂微胶囊化后可以实现长时间保持香味和颜色。
3.化妆品领域:微胶囊化技术可以用于化妆品的控释和稳定性提升。
例如,将活性成分微胶囊化后可以实现在皮肤上的持续释放,提高化妆品的效果。
4.油墨领域:微胶囊化技术可以用于油墨的包埋和控释,提高油墨的质量和稳定性。
例如,将颜料微胶囊化后可以实现油墨的均匀分散和长时间保存。
微胶囊化技术具有广泛的应用前景,在各个领域都有重要的作用。
随着科技的不断发展,微胶囊化技术将会更加多样化和智能化,为人类生活带来更多的便利和创新。
微胶囊材料的制备及其应用研究随着现代科学技术的日益发展和人们生活水平的提高,人们对于新型材料的需求也越来越高。
微胶囊作为一种新型材料被广泛研究和应用,其由于具有超强的包埋和控释效果使得它被广泛用于食品、医药、化工等多领域。
微胶囊的材料制备技术研究能够为化学、生物等领域的研究带来新的思路。
一、微胶囊材料的概述微胶囊是一种中空的微小颗粒,由包覆物质的外层和中间空心区域构成。
微胶囊可以用各种成分制成,比如天然或合成聚合物、蛋白质、脂肪、胶体或聚合物-蛋白质复合物等。
微胶囊技术分为两类,即化学方法和物理方法。
化学方法是指使用若干种化学物质在反应溶液中进行复杂的化学反应,形成聚合物粒子后,把其中一个反应物从复合物中去除并保持聚合物的凝聚状态。
物理方法则是指通过机械或电化学技术来制备微胶囊。
二、微胶囊材料制备方法1. 化学方法制备化学方法可以通过多种方式制备微胶囊材料,其中较常见的是油包水法和水包油法。
油包水法指将包被物质溶解在水冷的油滴中,然后通过化学反应使包被成为坚实的微胶囊。
而水包油法则是将包被物质溶解在油滴中,然后将油滴加入某种调节剂内,并通过化学反应使其形成固态微胶囊。
2. 物理方法制备物理方法是将微胶囊材料通过机械或电化学技术制备而成。
机械法使用旋转式或喷雾式喷雾器将包覆物质喷雾到硬质表面。
电化学法在电解池中使用恰当的电极和电流密度,并在适宜的反应温度下,通过电化学反应来制备微胶囊的方法。
3. 各种方法的优缺点比较化学方法制备微胶囊科学的研究较早,反应控制比较好,但存在化学反应组分复杂,材料选择限制,以及对环境有污染的不足。
而机械法和电化学法则不存在以上的消极因素,而且材料选择范围广泛,制备难度较小。
但由于这两种方法的工艺限制,只能在比较狭窄的领域内得到了应用。
三、应用研究微胶囊材料具有超强的包埋和控释效果,使得它被广泛用于食品、医药、化工等多领域。
在食品领域,微胶囊可以将食品中的颜色、香味、口感等多种特性进行稳定化和调整,延长了食品的保质期并提高食品的营养价值。
药物微胶囊的制备与应用药物微胶囊的制备与应用是近年来药物研究领域的热点之一。
微胶囊是一种将药物封装在微小胶囊内的技术,可以提供药物的稳定性、延长释放时间和控制药效的作用。
本文将着重介绍药物微胶囊的制备方法和应用领域。
一、药物微胶囊的制备方法1. 乳化法乳化法是一种常见的制备药物微胶囊的方法。
首先,将药物和胶囊材料分别溶解在两个相互不相溶的溶剂中,然后将两个溶液以适当的速率混合,并通过加热、超声或机械搅拌等方式形成乳液。
最后,通过蒸发、凝固或交联等方法使乳液中的胶囊材料生成囊状结构,从而制备出药物微胶囊。
2. 凝胶化法凝胶化法也是一种常用的制备药物微胶囊的方法。
该方法通过将胶体溶液与药物混合,并添加适量的交联剂或凝固剂,使胶体溶液迅速凝胶形成囊状结构。
通过调节溶液的pH值、温度或添加剂的类型和浓度,可以控制囊状结构的大小和药物的释放速率。
3. 化学反应法化学反应法是一种将药物与胶囊材料进行化学反应制备微胶囊的方法。
该方法通常将药物转化为具有反应性功能基团的化合物,与胶囊材料中的官能团进行化学反应,形成共价键连接。
这种方法可以实现药物与胶囊材料的牢固结合,提高微胶囊的稳定性和控制释放速率。
二、药物微胶囊的应用领域1. 药物控释系统药物微胶囊作为一种控释系统,能够延长药物的释放时间,减少药物的频繁给药。
例如,在慢性疼痛治疗中,药物微胶囊可以缓慢释放药物,使药物的效果持续较长时间,同时减少患者的不适感。
2. 靶向药物输送药物微胶囊可以通过表面修饰或封装靶向配体,实现对特定组织或细胞的靶向输送。
例如,在肿瘤治疗中,药物微胶囊可以通过表面修饰特定的抗体或配体,将药物精确输送到肿瘤细胞,减少对健康组织的损伤并提高治疗效果。
3. 药物稳定化部分药物在储存或给药过程中容易发生降解或失活。
药物微胶囊可以通过将药物封装在胶囊内部,形成保护层,使药物更加稳定。
同时,微胶囊还可以对药物进行缓慢释放,避免剂量突然增加或减少。
微胶囊化技术及应用一、什么是微胶囊化技术微胶囊化技术是一种将液体或固体物质包裹在微小颗粒中的技术。
通过包裹物质,可以有效保护其稳定性和活性,延长其释放时间,并实现针对性的控释。
微胶囊常见的尺寸范围是1微米到1000微米。
二、微胶囊化技术的制备方法2.1 乳化法乳化法是常用的微胶囊化技术制备方法之一。
该方法将要包裹的物质溶解在水相或油相中,加入表面活性剂后,通过剪切或超声等方法生成乳液。
随后,将乳液滴入固化剂中,通过离子凝聚、聚合、硬化等过程形成微胶囊。
2.2 凝胶化法凝胶化法是另一种常见的微胶囊化技术制备方法。
该方法将要包裹的物质与凝胶剂混合,形成凝胶。
随后,通过冷冻、干燥、固化等步骤,将凝胶转化为微胶囊。
2.3 其他制备方法除了乳化法和凝胶化法,微胶囊化技术还可以采用喷雾干燥法、喷雾凝胶法、介孔模板法等多种制备方法。
三、微胶囊化技术的应用微胶囊化技术在多个领域有着广泛的应用,以下列举了几个常见的应用领域。
3.1 药物传递系统微胶囊化技术可以用于制备药物的传递系统。
通过将药物包裹在微胶囊中,可以延长药物的释放时间,提高其生物利用度和疗效。
此外,微胶囊化技术还可以用于改善药物的溶解性、稳定性和靶向性,增强药物的疗效。
3.2 食品添加剂微胶囊化技术可以用于制备食品添加剂。
通过将食品添加剂包裹在微胶囊中,可以改善其溶解性和稳定性,延缓释放,并且便于携带和使用。
微胶囊化的食品添加剂可以应用于各种食品中,如饮料、糖果、乳制品等,提供丰富的口感和功能。
3.3 化妆品微胶囊化技术在化妆品中也有着广泛的应用。
通过将活性成分包裹在微胶囊中,可以实现化妆品的持久稳定和渗透效果。
微胶囊化的化妆品可以改善肌肤的保湿性、抗氧化性和抗衰老效果,提高产品的品质和市场竞争力。
3.4 农业领域微胶囊化技术在农业领域也有着潜在的应用价值。
通过将农药、植物生长调节剂等包裹在微胶囊中,可以实现精确投放和控释效果,减少农药的使用量和环境污染,提高农作物的产量和质量。
微胶囊的制备及其在日用化学品中的应用摘要:通过对物质进行微胶囊化可以实现许多目的:改善被包囊物质的物理性质、提高物质的稳定性、使物质免受环境的影响;改善被包囊物质的反应活性、耐久性、压敏性、热敏性和光敏性,屏蔽气味、降低物质毒性;将不相容的化合物隔离等。
随着微胶囊技术的发展及日用化学品特殊的要求,微胶囊技术在日用化学品中的应用也越来越广受关注。
关键词:微胶囊;日用化学品;制备;应用微胶囊是指一种具有聚合物壁壳的微型容器或包装物,它能包封和保护其囊芯内的固体或液体微滴。
被包裹在微胶囊内部的物质称为芯材,其大小一般为微米或者毫米级。
包裹在微胶囊外部的材料被称为壁材。
微胶囊技术是一种微包装技术,是用天然或合成高分子成膜材料把分散的固体、液体或气体包覆而形成微小粒子的方法。
一、微胶囊的特性及其制备方法1.微胶囊的制备方法。
通常根据性质、囊壁形成的机制和成囊的条件分为物理法、物理化学法、化学法等3大类,报道的制备方法已超过200种,其中以凝聚法、界面聚合法、原位聚合法应用最广。
化学法制备微胶囊化学法的优点是可以有效地包覆疏水性物质或疏水性大单体,且原料多样,可以制备不同类型的微胶囊,主要包括细乳液聚合、悬浮聚合、原位聚合、界面聚合以及乳液聚合等。
(1)界面聚合法。
是两种以上的不相容壳材料单体分别溶解在不相容的两相中,芯材料在溶有壳材料单体的连续相中分散或乳化,在芯材料的表面两种单体聚合反应形成微胶囊。
界面聚合法比较适合包囊液体,因为反应物从固相进入聚合反应区比液相难。
界面聚合反应制备微胶囊的过程包括:1)通过适宜的乳化剂形成油包水乳液或水包油乳液,即将水溶性反应物的水溶液或油溶性反应物的油溶液分散进入有机相或水相;2)在油包水乳液中加入非水溶性反应物,或在水包油乳液中加水溶性反应物以引发聚合,在液滴表面形成聚合物膜;3)将含水微胶囊或含油微胶囊从油相或水相中分离。
(2)原位聚合法。
原位聚合法和界面聚合法密切相关。
制药工程中的药物微胶囊制备技术及应用研究1. 简介药物微胶囊是一种具有特定结构的药物载体,可以将药物包裹在微胶囊的内部,起到保护、控释和增强药效的作用。
本文将探讨制药工程中的药物微胶囊制备技术及其在药物领域的应用研究。
2. 药物微胶囊的制备技术2.1 喷雾干燥法喷雾干燥法是一种常用的药物微胶囊制备技术。
首先,将药物溶液或悬浮液通过喷雾头均匀喷洒在加热干燥室中,形成微小颗粒;然后,利用热空气对颗粒进行干燥,形成微胶囊结构。
该方法具有操作简单、生产效率高等优点,适用于制备多种类型的药物微胶囊。
2.2 聚合法聚合法是一种通过高分子聚合反应制备药物微胶囊的技术。
常用的聚合方法包括乳液聚合法、溶液聚合法和磁珠交联聚合法等。
其中,乳液聚合法是一种将药物和聚合物溶解在乳液中,通过添加交联剂引发聚合反应,形成药物微胶囊的方法。
该方法具有胶囊形态规整、药物包封率高等优点,适用于制备高负荷药物微胶囊。
2.3 直接沉淀法直接沉淀法是一种将药物与胶凝剂一起加入溶液中,通过控制反应条件使药物与胶凝剂发生沉淀反应,形成药物微胶囊的技术。
该方法具有操作简便、可控性强等优点,适用于制备药物释放速率可调的微胶囊。
3. 药物微胶囊的应用研究3.1 控释药物输送系统药物微胶囊可以作为控释药物输送系统的载体,将药物包裹在微胶囊中,通过控制微胶囊的释放速率实现药物的缓慢释放。
这种控释系统可以提高药物的生物利用度,减少药物的毒副作用,并具有更好的疗效。
3.2 靶向治疗药物微胶囊可以通过改变微胶囊的表面性质,使其具有特异性的识别和结合能力,实现对靶点的选择性诱导。
例如,将靶向配体修饰在药物微胶囊表面,使其能够选择性地与肿瘤细胞结合,实现对肿瘤靶点的治疗作用。
3.3 后期制剂工艺改进药物微胶囊在制药工程中的应用也推动了后期制剂工艺的改进。
药物微胶囊可以提高药物的稳定性和溶解度,降低药物的挥发性和刺激性,从而改善药物的质量和口感,提高患者的用药体验。
微胶囊技术微胶囊技术是一种新兴的技术,它通过制备微小的胶囊来封装和传递药物、食品、化妆品等物质。
这项技术在各个领域都有广泛的应用,为人们的生活带来了便利和创新。
本文旨在介绍微胶囊技术的原理、应用以及未来的发展方向。
一、微胶囊技术的原理微胶囊技术是在微米尺度下制备胶囊,通过材料的包覆和包裹来封装物质。
它可以使用多种材料,例如聚合物、脂肪、蛋白质等,根据不同的需求选择合适的材料制备胶囊。
微胶囊技术的制备过程包括胶囊材料的选择、材料的包覆和固化,最终形成具有稳定结构的微胶囊。
二、微胶囊技术的应用1. 药物封装和控释微胶囊技术在药物传递方面有着广泛的应用。
通过微胶囊技术,药物可以被封装进胶囊中,提高药物的稳定性和传递效率。
在控释方面,微胶囊可以实现药物的定时、定量释放,使药物在体内保持稳定的浓度,减少治疗过程中的药物副作用。
2. 食品添加剂微胶囊技术在食品工业中的应用也非常广泛。
通过微胶囊技术,食品添加剂可以被封装在胶囊中,以提高稳定性和保存期限。
例如,香精、色素、维生素等可以通过微胶囊技术进行封装,使其在食品中的使用更加方便和稳定。
3. 化妆品微胶囊技术在化妆品领域的应用也越来越多。
通过微胶囊技术,化妆品中的活性成分可以被封装进胶囊中,保护这些成分免受外界环境的影响,提高其传递效果。
例如,抗氧化剂、美白成分、保湿剂等可以通过微胶囊技术进行封装,使其在化妆品中更好地发挥作用。
4. 其他领域除了上述应用,微胶囊技术在其他领域也有广泛的应用。
例如,在农业领域,微胶囊技术可以用于植物保护剂的封装和控释,提高农产品的产量和质量。
在纺织工业中,微胶囊技术可以用于纺织品的功能改良,如防水、防尘等。
此外,微胶囊技术还可以用于传感器、能源储存等领域的研究和应用。
三、微胶囊技术的发展方向1. 制备工艺的改进微胶囊技术的制备过程需要考虑胶囊材料的选择、包覆和固化步骤,目前仍存在一些技术难题。
未来的研究方向之一是改进制备工艺,提高胶囊的制备效率和稳定性。
二氧化硅壁材微胶囊及其制备方法与应用
二氧化硅壁材微胶囊是一种由二氧化硅材料构成的微胶囊,适用于各种应用领域。
以下是二氧化硅壁材微胶囊的制备方法和应用:
制备方法:
1. 溶剂挥发法:将含有二氧化硅前驱体的溶液滴加到有机溶剂中,通过溶剂挥发使得二氧化硅形成微胶囊。
2. 水热法:将二氧化硅前驱体溶液加入到高温水中进行水热反应,形成二氧化硅微胶囊。
3. 模板法:使用模板材料作为二氧化硅的模板,将二氧化硅前驱体溶液浸渍到模板上,经过煅烧去除模板后形成二氧化硅微胶囊。
应用:
1. 药物缓释系统:将药物包裹在二氧化硅微胶囊中,通过控制二氧化硅的孔径和壁厚,实现药物的缓慢释放,延长药物的作用时间。
2. 催化剂载体:将催化剂包裹在二氧化硅微胶囊中,提高催化剂的稳定性和活性,增加反应效率。
3. 生物传感器:将生物传感器反应物固定在二氧化硅微胶囊表面,通过传感器与生物分子的特异性相互作用,实现生物分子的检测与分析。
4. 化妆品领域:利用二氧化硅微胶囊的多孔结构和大比表面积,可以将活性成分包裹在微胶囊中,起到渗透调理、保湿、滋养皮肤的效果。
5. 传统建筑材料改性:将二氧化硅微胶囊添加到传统建筑材料中,可以提高材料的耐久性、耐磨性和抗污染性。
《胶体与表面化学》课程期末论文论文题目:微胶囊的制备与应用班级:08材料科学与工程专业姓名: 李崴学号: 20080403B013课程老师:张萍完成日期:2011年6月27日微胶囊的制备与应用李崴20080403B013海南大学材料与化工学院材料科学与工程专业,海南海口(570228)摘要:综述了微胶囊的制备及其应用。
重点介绍了化学法(原位聚合法、界面聚合法等)、物理化学法(复合凝聚法、复相乳液法等)、物理法(喷雾干燥法、溶剂蒸发法、静电喷雾法等)等制备微胶囊的常用方法及研究进展,分析了微胶囊的应用研究现状,并对微胶囊技术发展前景进行了展望。
关键词: 微胶囊,制备,应用,展望0引言微胶囊技术是利用成膜材料包覆具有分散性的固体物质、液滴或气体而形成微粒的一种技术。
通常包覆膜是致密的由天然或合成高分子材料制成,称为壁材(囊壁);被包覆的物质称为芯材(囊芯)。
囊芯可以是固体、液体或气体,含固体的微胶囊形状一般与固体相同,含液体或气体的微胶囊的形状一般为球形,大小一般在2~200μm范围内。
囊壁的厚度一般在0.15~150μm,0.15μm以下囊壁也可生产。
微胶囊由于具有独特的功能特性,已应用到医药、农业、计算机、化学品、食品加工、化妆品等工业中,并具有很好的发展前景。
随着科技的发展,许多科研工作者把对微胶囊的研究目光投向纳米微胶囊[1]。
应用微胶囊技术的目的主要有3点:1)改变液体的分散状态,降低其挥发性,克服液体与周围介质材料的热力学不兼容性;2)芯材与周围介质之间或芯材颗粒之间的绝缘;3)采用扩散或者壳体破坏的方法延缓被包裹物质向介质的释放。
采用微胶囊技术制得的产品有良好的功能性质和贮存稳定性,使用方便,可以解决传统工艺所不能解决的许多问题。
1制备与研究微胶囊的制备技术涉及到物理和胶体化学、高分子化学及物理化学、材料化学、分散和干燥技术等学科领域。
通常根据性质、囊壁形成的机制和成囊的条件分为物理法、物理化学法、化学法等3大类,其中以凝聚法、界面聚合法、原位聚合法应用最为广泛。
1.1 化学法制备微胶囊化学法制备微胶囊,优点在于可以有效地包覆疏水性物质或疏水性大单体;原料多样,可以制备不同类型的微胶囊;主要包括悬浮聚合、原位聚合、界面聚合及乳液聚合等。
1.1.1原位聚合法原位聚合,是把单体和引发剂全部加入到分散相或连续相中,即单体和引发剂全部溶于囊芯的内部或外部。
由于单体在一相中是可溶的,而生成的聚合物在整个体系中是不溶的,聚合物就会沉积在芯材液滴的表面。
此方法方便快捷、产率高且可操作性较强。
李金换等[2]用一步原位沉积法制备脲醛树脂微胶囊,在酸性条件下,使用聚乙烯醇作为系统改性剂,制备粒径分布在40~500nm,表面光滑、球形度好且致密的微胶囊。
艾秋实等[3]采用原位聚合一步法制备了PUF包覆乙烯基硅油微胶囊,并采用黏度较大的乙烯基硅油为囊心,对其制备工艺进行了优化,成功制备出粒径较小、分布较均匀的微胶囊。
宋林勇等[4]利用可聚合乳化剂(12-丙烯酰氧基-9-十八烯酸,AOA),在反相乳液中进行辐射原位界面聚合,成功制备出聚苯乙烯药物胶囊,实现了在反相乳液中,原位界面聚合中空微球/胶囊。
1.1.2界面聚合法界面聚合发生在两种不同的聚合物溶液之间,即将两种活性单体分别溶解在不同的溶剂中,当一种溶液被分散在另一种溶液中时,在两种溶液的界面可发生聚合反应。
史富娟等[5]以聚乙烯醇为皮材、玫瑰香精为芯材、戊二醛为交联剂,在温度40 ℃,乳化剂0.15 g,皮材和芯材比为2:3,盐酸1 mL,戊二醛2 mL的情况下界面聚合反应3h,得到中值粒径为47.7716 μm的醇醛树脂微香囊颗粒。
高培等[6]通过界面聚合法,用戊二醛改性的三乙烯四胺与2,42甲苯二异氰酸酯反应,制备出有一定机械强度、韧性、耐水性和耐热性的含黄色电子墨水的聚脲微胶囊。
以对苯二甲酞氯与乙二胺为壁材,分散染料2BLN为囊芯,采用界面聚合法制备分散染料微胶囊[7],缓释性能随着芯壁物质的量比的减小和保护胶体用量的增加而增加,随着乳化时间的延长和乳化剂质量分数的增大而减小。
解决了分散染料在纺织行业中的使用难题。
1.1.3乳液聚合法安朴英等[8]采用乳液聚合法,以甲基丙烯酸甲酯和超支化不饱和聚酰胺酯为壁材,染料隐色体为芯材,制备了分散性好,粒径分布窄,并具有良好的热敏性能的热敏型微胶囊。
宋倩等[9]利用乳液聚合法制备出平均粒径为278nm,单分散性较好阿维菌素微胶囊,包裹率达99.98%,载药率达37.5%。
在植物体内,该阿维菌素微胶囊比乳油具有更好的渗透性与传导性,室内杀虫活性与原药相近。
1.2 物理化学法物理化学法又称相分离法。
是先将聚合物溶于适当的介质(水或者有机溶剂),将被包裹物分散于该介质中,然后向介质中逐步加入聚合物的非剂,使聚合物从介质中凝聚出来,沉积在被包裹颗粒表面而形成微胶囊。
主要包括干燥浴法(复相乳液法)、水相分离法( 凝聚法) 等。
1.2.1复相乳液法复相乳液法是将壁材与芯材的混合物乳化后以液滴形状分散到介质中,形成双重乳状液,随后通过加热、减压、搅拌、溶剂萃取、冷冻、干燥等手段将壁材中的溶剂去除,形成囊壁,再与介质分离得到微胶囊产品。
陈洁等[10]采用该方法研制了以乙基纤维素为壁材,以碳酸钠为芯材的微胶囊化产品。
合适的工艺设计使制得的微胶囊化碳酸钠具有较高的产率,在制面过程中缓慢的释放碳酸钠微胶囊。
马爱洁等[11]以聚乳酸为包裹载体,胰岛素为模型药物,通过复相乳液法制备出胰岛素缓释微胶囊,工艺简单,乳液稳定性好,可以负载具有生物活性的药物.1.2.2复合凝聚法复合凝聚法主要是利用两种带相反电荷的胶体水溶液混合时,改变条件使两种壁材在溶液中凝聚,从而对芯材包裹而制备微胶囊。
该方法具有制备过程简单、产率高、原料来源丰富等优点。
孙锋等[12]采用阿拉伯胶、氧化淀粉和明胶为壁材,香蕉油香精为芯材,主要研究了复相凝聚法制备香精微胶囊的工艺过程和方法;并通过响应面分析,确定了微胶囊化的最佳工艺条件,即壁材溶液浓度为2%,pH值为4.2,芯壁比为1:2,最佳工艺条件下的包埋率可达50%。
黄彬彬等[13]以甲氨基阿维菌素苯甲酸盐(简称甲维盐)为芯材,以明胶和阿拉伯胶为壁材,采用复凝聚法制备了甲维盐微囊,其包封率在62%左右。
胡云峰等[14]以明胶-阿拉伯胶为壁材,采用复合凝聚法制备了避蚊胺微胶囊,实现驱避剂-避蚊胺的微胶囊化,并且微胶囊产品具有一定的缓释特性,由于设备简单,原料来源丰富,产率高,此方法制备避蚊胺微胶囊将有广阔的应用前景。
1.3 物理法物理法是借助专门的设备通过机械搅拌的方式,首先将芯材和壁材混合均匀,细化造粒,最后使壁材凝聚固化在芯材表面而制备微胶囊。
根据所用设备和造粒方式的不同,可采用空气悬浮法、喷雾法、真空镀膜法及静电结合法等。
1.3.1喷雾干燥法喷雾干燥法是将芯材分散于作为微胶囊壁的粘合剂成分中,配制原液,将此原液部分输送至喷雾器顶部,在热风作用下用喷雾法烘燥而取得微胶囊。
齐连祥等[15]以酯型儿茶素为芯材,大豆色拉油为初级壁材,蛋白NP和碳水化合物CA、CB为壁材,经乳化剪切,喷雾干燥制得酯型儿茶素微胶囊。
并获得了较优的工艺参数,在此基础上得到微胶囊的包埋率为76%。
黄文哲等[16]以新烯基琥珀酸淀粉酯和麦芽糊精为壁材,虾青素大豆油悬浊液为芯材,制备虾青素微胶囊,能够明显减少虾青素的氧化,稳定性提高近8倍。
张焕新等[17]对银杏油进行微胶囊化处理,制备的银杏油微胶囊为黄色或淡黄色细小颗粒,水分含量2.28%,密度0.82g/cm3,溶解度98.10%,黄酮含量5.73%,包埋效果良好。
加工成的银杏油微胶囊产品在色泽、气味和组织状态等方面都较为理想,理化和微生物指标符合国家有关标准,微胶囊中银杏类黄酮含量达 5.73%。
王军等[18]研究了喷雾干燥法制备微胶囊化山葡萄籽油粉末油脂的工艺,合适工艺条件下微胶囊化效率可达77. 36%。
制取的微胶囊化山葡萄籽油粉末油脂为乳白色粉末,密度0.7312 g/cm3,含水量2.76%,溶解度94.0%,贮藏稳定性要明显优于未微胶囊化的山葡萄籽油以及添加了抗氧化剂VE的山葡萄籽油制品。
潘岳峰等[19]探索喷雾干燥法制备诺西肽微囊的最佳掩味工艺,为工业化生产提供了实验依据。
占英等[19]分别以VB1、ACE抑制肽和牛血清白蛋白为芯材,以聚丙烯酸树脂Ⅱ和乙基纤维素水分散体为壁材,按芯材/壁材比为1:10,喷雾干燥法制备微胶囊,并研究芯材在模拟胃肠液中的释放性能。
分析结果表明,聚丙烯酸树脂Ⅱ微胶囊为表面光滑的圆球,乙基纤维素水分散体微胶囊表面有凹陷,芯材包埋率均大于98%。
聚丙烯酸树脂Ⅱ微胶囊在模拟胃液中120 min芯材累计释放率小于10%,在模拟肠液中60min则完全释放;乙基纤维素水分散体微胶囊在模拟胃肠液中芯材释放速率基本一致,120 min累计释放率达70%以上。
以聚丙烯酸树脂Ⅱ为壁材的微胶囊可以实现在胃肠液中可控制释放芯材。
1.3.2静电喷雾法冯琼等[21]采用微孔淀粉吸附乳酸菌,以海藻酸钠和明胶的混合体系为壁材,对其进行静电喷雾包埋,得出用6%的微孔淀粉吸附乳酸菌,活菌数最高,当芯壁材比为1:3时,包埋率为85.88%,微胶囊化乳酸菌在经人工胃液处理2h后,活菌数比未经微胶囊化的对照组高出2个数量级;经人工肠液处理40min后,乳酸菌可全部释放。
微胶囊化乳酸菌饮料在4℃冰箱储藏4 w后,其活菌数仅是在同一数量级上有少许下降,而对照组未经包埋的乳酸菌和市售乳酸菌饮料下降了约2个数量级,经微胶囊化的乳酸菌具有较好的储存稳定性。
张武杰等[22]尝试用高压静电成囊装置(静电喷雾法)来制备一种强度高、生物相容性好的海藻酸钙-羧甲基纤维素钠液芯微囊。
在初步试验的基础上,利用正交试验的方法考察了海藻酸钠、羧甲基纤维素钠以及氯化钙的浓度对成囊过程中微胶囊膜厚、粒径等的影响。
同时结合不同制备条件下微胶囊的成囊性,优化海藻酸钙-羧甲基纤维素钠微胶囊制备工艺。
在优化的工艺参数中海藻酸钠、氯化钙以及羧甲基纤维素钠的质量浓度分别为10,30,15 g/L。
1.3.3溶剂蒸发法溶剂蒸发法是将芯材、壁材依次分散在有机相中,然后加到与壁材不相溶的溶液中,加热使溶剂蒸发,壁材析出而成囊。
杨红等[23]通过溶剂蒸发法制备了囊壁透明的表面光滑的十六烷/PMMA的油核/聚合物壳微胶囊。
随着PMMA用量的增加,微胶囊的粒径增加,粒径分布变宽。
随着搅拌速度的增加或/和稳定剂PV A量的增大,微胶囊的粒径减小,粒径分布变窄。
2应用与研究2.1食品工业微胶囊在食品工业中的应用主要包括:食品微胶囊化、食品添加剂微胶囊化、营养素微胶囊化以及酶的微胶囊化。
将香精香料微胶囊化[24],可在食品储存时保持香味,防止或降低香料与食品进行不必要的相互作用,阻止抗氧化或光诱导作用,延长香料的货架期并控制释放。