理论力学第十章振动
- 格式:ppt
- 大小:2.83 MB
- 文档页数:99
理论力学中的振动力学分析振动力学是理论力学的重要分支,研究物体在受到激励或固有力的作用下发生的振动现象。
它在物理学、工程学和其他领域中有着广泛的应用。
本文将探讨理论力学中的振动力学分析,包括自由振动、受迫振动、阻尼振动以及共振等方面。
自由振动是指物体在没有外界激励的情况下的振动。
它的频率和振幅是由物体的固有属性决定的。
根据振动系统的性质不同,可以分为单自由度振动和多自由度振动。
单自由度振动是指只有一个自由度的振动系统,比如简谐振子。
多自由度振动是指有多个自由度的振动系统,比如梁的弯曲振动和齿轮系统的振动。
在振动力学分析中,我们可以通过求解系统的运动微分方程来得到振动的解析解,从而获得物体的振动模态。
受迫振动是指物体在外力作用下的振动。
外力可以是周期性的,也可以是非周期性的。
对于受迫振动的分析,我们可以利用拉格朗日方程和牛顿第二定律进行分析。
通过求解运动微分方程,我们可以得到物体在受迫振动下的运动规律,进而确定其响应和频率特性。
阻尼振动是指物体在有摩擦力或阻尼器存在下的振动。
阻尼力会消耗物体的振动能量,使得振动逐渐减弱并最终趋向于稳定状态。
阻尼振动的分析可以采用阻尼振动微分方程进行。
根据阻尼力与速度之间的关系,可以分为线性阻尼、非线性阻尼和阻抗阻尼。
线性阻尼是指阻尼力与速度成正比,非线性阻尼指阻尼力与速度的平方成正比,而阻抗阻尼则是指阻尼力与速度的高次方的乘积成正比。
共振是指物体在受到与其固有频率相同的外力激励时振幅达到最大的现象。
共振可以引起物体的失稳和破坏,因此在工程设计中,需要避免共振现象的出现。
共振的分析可以通过计算系统的频率响应函数来实现。
频率响应函数可以描述物体对不同频率外力的响应情况,从而确定共振频率和共振幅值。
综上所述,振动力学在理论力学中具有重要的地位和应用价值。
通过对振动力学的深入研究和分析,我们可以理解物体在振动过程中的特性和行为,进而为工程设计和科学研究提供有力的支持。
懂得振动力学的基本原理和方法,对于处理实际问题和解决振动相关的工程难题具有重要的意义。
(a)A(a)O第10章 动能定理及其应用10-1 计算图示各系统的动能:1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。
在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为v B ,θ = 45º(图a )。
2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v(图b )。
3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。
细圆环在水平面上作纯滚动,图示瞬时角速度为ω(图c )。
解:1.222222163)2(2121)2(212121BB BC C C mv r v mr v m J mv T =⋅+=+=ω 2.222122222214321)(21212121v m v m r v r m v m v m T +=⋅++=3.22222222)2(212121ωωωωmR R m mR mR T =++=10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。
现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。
当杆与铅垂线的夹角为ϕ时,试求系统的动能。
解:图(a )B A T T T +=)2121(21222211ωC C J v g W v g W ++=21221121212211122]cos 22)2[(22ωϕωω⋅⋅+⋅++++=l gW l l v l v l g W v g W]cos 31)[(2111221222121ϕωωv l W l W v W W g +++=10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。
齿轮II 通过匀质的曲柄OC 带动而运动。
曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。
试求行星齿轮机构的动能。