理论力学第十章动力学
- 格式:ppt
- 大小:3.03 MB
- 文档页数:34
第六章 质点动力学6-1 惯性参考系中的质点动力学一.惯性参考系1.一般工程问题:2.人造卫星、洲际导弹问题:3.天体运动问题:二.牛顿定律1.第一定律(惯性定律):2.第二定律(力与加速度之间的关系定律):3.第三定律(作用与反作用定律):三.质点的运动微分方程 将动力学基本方程)(F a m =表示为微分形式的方程,称为质点的运动微分方程。
1.矢量形式(自:会使用微分形式)) )( ( 22方程为质点矢径形式的运动式中t r r F dtr d m == 2.直角坐标形式) )()()( ( 222222运动方程为质点直角坐标形式的式中⎪⎩⎪⎨⎧===⎪⎪⎪⎩⎪⎪⎪⎨⎧===t z z t y y t x x Z dty d m Y dt y d m X dt x d m 3.自然形式b n F F v m F dt s d m ===0222ρτ ), ,,)((轴上的投影轴和轴自然轴系在分别为力运动方程。
为质点的弧坐标形式的式中b n F F F F t s s b n ττ= 四.质点动力学的两类基本问题1.已知质点的运动规律,求作用于质点上的力;----求微分问题。
2.已知质点上所受的力,求质点的运动规律。
----按质点运动的初始条件和力的函数关系对运动微分方程进行求解,从数学角度看,是解微分方程或求积分,并确定相应的积分常数的问题。
第一类问题解题步骤和要点:①正确选择研究对象(一般选择联系已知量和待求量的质点)。
②正确进行受力分析,画出受力图(应在一般位置上进行分析)。
③正确进行运动分析(分析质点运动的特征量)。
④选择并列出适当形式的质点运动微分方程(建立坐标系)。
⑤求解未知量。
2.第二类:已知作用在质点上的力,求质点的运动(积分问题)已知的作用力可能是常力, 也可能是变力。
变力可能是时间、位置、速度或者同时是上述几种变量的函数。
如力是常量或是时间及速度函数时,可直接分离变量积分dt dv 。
第10章 动量定理主要内容10.1.1 质点系动量及冲量的计算质点的动量为v K m =质点系的动量为C i i m m v v K ∑=∑=式中m 为整个质点系的质量;对于刚体系常用i C i i m v k K ∑=∑=计算质点系的动量,式中v Ci 为第i 个刚体质心的速度。
常力的冲量t ⋅=F S力系的冲量⎰∑=∑=21d )(t t i i t t F S S或⎰⎰=∑=2121d )(d )(R t t t t i t t t t F F S10.1.2 质点系动量定理质点系动量定理建立了质点系动量对于时间的变化率与外力系的主矢量之间的关系,即)(d de i tF K ∑= (1)质点系动量的变化只决定于外力的主矢量而与内力无关。
(2)质点系动量守恒定律:当作用于质点系的外力系的主矢量0)(=∑e iF ,质点系动量守恒,即K =常矢量。
或外力系的主矢量在某一轴上的投影为零,则质点系的动量在此轴上的投影守恒,如0=∑x F ,则x K =常量。
10.1.3 质心运动定理质点系的质量与质心加速度的乘积等于外力系的主矢量。
即()())(d d d de i i i c m tM t F v v ∑=∑= 对于刚体系可表示为)(1Cie i ni m F a∑=∑=式中a Ci 表示第i 个刚体质心的加速度。
10.1.4 定常流体流经弯管时的动约束力定常流体流经弯管时,v C =常矢量,流出的质量与流入的质量相等。
若流体的流量为Q ,密度为ρ。
流体流经弯管时的附加动约束力为)(12Nv v F -=''Q ρ 式中v 2,v 1分别为出口处和入口处流体的速度矢量。
基本要求1. 能理解并熟练计算动量、冲量等基本物理量。
2. 会应用动量定理解决质点系动力学两类问题,特别是已知运动求未知约束力的情形。
当外力主矢量为零时,会应用动量守恒定理求运动的问题。
3. 会求解定常流体流经弯管时的附加动反力。