高速采样及恢复系统的设计与实现
- 格式:pdf
- 大小:228.27 KB
- 文档页数:5
2021,36(2)电子信息对抗技术Electronic Information Warfare Technology㊀㊀中图分类号:TN957.512㊀㊀㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀㊀㊀文章编号:1674-2230(2021)02-0083-05收稿日期:2020-05-27;修回日期:2020-06-24基金项目:国家自然科学基金资助项目(61701455)作者简介:刘宁宁(1984 ),女,硕士,工程师;王传根(1986 ),男,硕士,工程师;王乐(1984 ),男,硕士,工程师;刘长江(1978 ),男,硕士,高级工程师;刘静娴(1983 ),女,博士,高级工程师㊂基于JESD204B 协议的多通道高速采集系统设计刘宁宁1,王传根1,王㊀乐2,刘长江1,刘静娴1(1.电子信息控制重点实验室,成都610036;2.西安思丹德信息技术有限公司,西安710077)摘要:JESD204B 协议主要用于数据转换器与现场可编程门阵列(FPGA )之间数据传输的高速串行协议㊂与传统LVDS 接口相比,JESD204B 直接与FPGA 的GTX 接口相连,传输速率相对LVDS 每对线提升约10倍,降低了IO 的资源消耗及保证正确采样的设计难度㊂基于JESD204B 协议,设计实现了一种多通道高速采集系统㊂该系统的硬件架构以4片ADC12J2700及1片Xilinx XC7VX485T FPGA 为核心电路,并包含了时钟锁相电路㊁DDR3等外围电路,最高支持2700MSPS 采样率,可满足大部分高速雷达信号接收领域的采样需求㊂关键词:JESD204B 协议;FPGA ;多通道采集;ADC12J2700;DDR3DOI :10.3969/j.issn.1674-2230.2021.02.019A System Design of Multi -Channel Data Sampling Based on JESD 204BLIU Ningning 1,WANG Chuangen 1,WANG Le 2,LIU Changjiang 1,LIU Jingxian 1(1.Science and Technology on Electronic Information Control Laboratory,Chengdu 610036,China;2.XIᶄAN Standard Information Technology Co.Ltd,XIᶄAN 710077,China)Abstract :JESD204B protocol is a kind of high -speed series protocol to transmit data between data converter and pared with traditional LVDS interface,JESD204B interface is connected with GTX interface of FPGA and the transmission rate is increased by 10times.It re-duces the quantity of IO resources and the difficulty in signal synchronization by means of the JESD204B.Based on JESD204B,a design of multi -channel high speed data sampling system is proposed.The hardware of this system is based on four chips of ADC12J2700and one Xilinx XC7VX485T FPGA.It also includes PLL and DDR3,supporting the max sampling rate up to 2700Mbps.The system can meet the sampling requirements of most high -speed radar receivers.Key words :JESD204B protocol;FPGA;multi -channel data sampling;ADC12J2700;DDR31㊀引言随着现代电子技术及信号处理技术的高速发展,高精度㊁高集成度已经成为雷达接收机设计的主要趋势㊂传统的数模转换芯片主要采用CMOS 和LVDS 并行传输接口来实现与FPGA /ASIC 等处理器芯片之间的数据传输㊂但随着高宽带及高速采样率的需求日益增加,并行传输总线逐步暴露出信号同步难㊁偏移大㊁抗干扰能力弱㊁布局布线面积大㊁成本高等问题[1]㊂因此,用于数据转换器的JESD204高速串行接口标准应运而生㊂本文基于JESD204B 协议接口,提出了一种多通道高速数据采集系统的设计方法,可实现多通道同步及高精度的数据采集㊂2㊀JESD204B 协议简介㊀㊀JESD204B 接口标准最早由JEDEC 国际组织38刘宁宁,王传根,王㊀乐,刘长江,刘静娴基于JESD204B协议的多通道高速采集系统设计投稿邮箱:dzxxdkjs@推出,它采用CML电平标准来实现数据转换器和数据处理器(FPGA/ASIC)之间的数据传输[2]㊂该协议支持多路串行通道传输和确定性延时的功能,并且最高传输速度高达12.5Gbit/s㊂与传统LVDS接口相比,JESD204B直接与FPGA的GTX接口相连,传输速率相对LVDS每对线提升约10倍,降低了IO的资源消耗及为保证正确采样的设计难度㊂同时,高速串行接口采用时钟恢复技术,通过引入SYSREF信号可以实现多路ADC㊁DAC之间的同步,降低了采样窗的设计难度㊂此外,采用JESD204B接口协议的数据转换器引脚数量减少,从而实现更小封装㊁更短布线以及更低的整体系统成本[3],并且FPGA货架产品支持该协议接口,因此为采用JESD204B 协议接口的ADC及DAC实现大的瞬时带宽提供了可能㊂表1㊀JESD204B与传统接口比较接口类型引脚数传输速率功耗封装尺寸CMOS多低大大LVDS多低大大JESD204B少高小小JESD204B协议规范定义了三种设备子类:子类0(Subclass0)不支持确定性延时,用于兼容JESD204A标准;子类1(Subclass1)引入外部参考信号SYSREF来确定延时,并且该参考信号为采样时序提供了一个系统级基准,针对工作在500MS/s及其之上的转换器;子类2(Subclass2)通过同步信号SYNC来确定延时,同时同步信号SYNC作为整个系统的时序基准,针对工作在500MS/s以下的转换器[4]㊂子类1模式是JESD204B协议完成确定性延时功能的重要模式,如TI㊁ADI等主流半导体厂商的JESD204B接口数据转换器产品都具备Subclass1模式㊂3㊀系统结构框图及指标要求㊀㊀本文设计了一种4通道基于JESD204B接口的高速采集系统,硬件部分主要由4片高速模数转换芯片ADC12J2700㊁1片Xilinx XC7VX485T FPGA㊁基于LMK04828时钟管理模块㊁DDR3存储电路㊁电源转换网络相关电路㊁FPGA加载电路㊁千兆以太网等接口电路组成,系统结构框图如图1所示㊂图1㊀系统结构框图系统工作时,ADC芯片将外部输入的多路中频信号转换为数字信号后传输至FPGA进行信号检测处理,FPGA再将处理结果传输至下一级目标单元㊂外部接口输入100MHz的参考时钟给LMK04828相关的时钟管理电路,LMK04828最多可输出14对差分时钟[5],根据应用需求,其输出差分时钟可配置为LVDS或LVPECL接口电平㊂DDR3主要用于数据的缓存㊂根据技术指标要求,系统的主要设计指标如表2所示㊂表2㊀设计指标要求指标名称指标要求采样率最高2700MSPS通道数4通道AD饱和功率3dBm单音动态范围优于50dBc有效位(ENOB)不小于8bit瞬时带宽1000MHz4㊀系统设计实现4.1㊀系统时钟产生及实现系统采用LMK04828作为时钟管理模块的核心电路,其内部采用双锁相环结构㊂LMK04828内部框图如图2所示㊂其中,PLL1为窄带锁相环,其环路滤波器的带宽设计为420Hz,窄带起到滤除鉴相器输出中谐波分量的作用㊂PLL2为宽带锁相环,其环路滤波器的带宽设计为160kHz㊂滤波器还起到抑制VCO相位噪声的作用,PLL2的压控振荡器VCO最终产生频率在48电子信息对抗技术·第36卷2021年3月第2期刘宁宁,王传根,王㊀乐,刘长江,刘静娴基于JESD204B 协议的多通道高速采集系统设计2920~3080MHz 范围内的频率[5]㊂图2㊀LMK04828双锁相环功能框图根据前面的讨论,JESD204B 协议的Sub-class1可以实现确定性延迟㊂JESD204B 协议中描述了三种同步方案,这三种方案分别对应了LMK04828的三种SESREF 输出形式,分别是:Continuous SESREF,JESD204B Pulse on SPI pro-gramming,External SESREF request㊂根据设计经验,本设计选择了External SESREF request,即在收到FPGA 发送过来的同步信号SYNC 后,LMK04828开始发送周期性的SESREF 信号给ADC 转换器及FPGA㊂根据系统的功能需求,设计了系统时钟树,其详细设计框图如图3所示㊂图3㊀系统时钟树设计框图4.2㊀支持JESD204B 的ADC 介绍ADC12J2700是一款单通道12位㊁2.7GSPS模数转换器(ADC)㊂该器件具有高达3.2GHz 的模拟宽带㊁优异的噪声性能㊁可配置DDC㊁低功耗性能以及占用更少引脚的JESD204B 接口广泛应用于无线设备㊁雷达探测等领域㊂在本系统要求的工作频带内其无杂散动态大于55dBc,有效位(ENOB)不小于8bit,能够很好地满足系统的指标要求㊂ADC12J2700支持JESD204B 协议,采用8-Lane 模式,其各层功能框图如图4所示㊂JESD204B 协议包括传输层㊁链路层㊁物理层㊂传输层的作用是把采样数据打包放入JESD204B 帧(frame)中㊂数据链路层负责JESD204B 协议的处理,包括加扰/解扰㊁Lane 对齐㊁字符替换和对齐监控㊂在链路层中经过8b /10b 编码,加入了控制字㊁状态字㊂物理层主要负责接口和配置高速串行收发器,在物理层,将数据转换为8路高速串行差分信号输出[6]㊂图4㊀JESD 204B 各层功能框图4.3㊀ADC 主要接口电路设计ADC 主要接口电路包括ADC 前端调理电路㊁ADC 采样时钟相关接口电路及ADC 与FPGA的接口电路㊂系统的主要接口电路设计如图5所示㊂其中ADC 前端调理电路主要的功能是将输入的单端中频信号通过1:2的巴伦转换器转换成差分电路,在电路的PCB 设计中要注意走线的阻抗匹配㊂ADC 采样时钟相关电路主要包括器件时钟信号Device Clock 及ADC 的系统参考信号SYSREF㊂ADC 与FPGA 的接口包括ADC 的SPI配置接口及JESD204B 接口㊂其中SPI 配置接口与FPGA 的IO 口相连,主要完成ADC 各项寄存器的配置,如ADC 的满量程输入范围㊁ADC 工作模式㊁SYSREF 信号形式(连续或间歇)㊁DDC 控制㊁JESD204B 控制寄存器等㊂ADC 的JESD204B 接口与FPGA 的GTX 接口相连,采用8-Lane 的设计模式,通过8b /10b 编码,本系统中,单个Lane 的最高传输速率为4500Mbps㊂58刘宁宁,王传根,王㊀乐,刘长江,刘静娴基于JESD204B 协议的多通道高速采集系统设计投稿邮箱:dzxxdkjs@126.com图5㊀主要接口电路设计框图4.4㊀接收通道同步设计本系统要求4通道IF 接收通道同步㊂多通道同步设计方案如图6所示㊂图6㊀多通道同步设计方案在系统设计时,主要通过以下几个方面来保证多通道同步性:通过设计4路IF 接收通道电路一致性㊁PCB 等长布线可满足中频信号到ADC 的幅度和相位一致性;AD 采样数据输出端的JESD204B 及同步信号等长布线,利用JESE204B 协议保证同步设计;在时钟设计中,ADC 及FPGA 工作所需的Device Clock 及SYSREF 信号,来源于同一片LMK04828,结合PCB 等长布线,可保证时钟相位一致性及JESD204B 协议的同步时序要求㊂JESD204B 系统中确定性延时的精度和可靠性与Device Clock 和SYSREF 的关系有关,这就需要对SYSREF㊁SYNC 信号与Device Clock 之间的关系进行约束[7]㊂其中SYSREF 信号的产生必须满足两个条件:相对于Device Clock 有足够的建立以及保持时间,并且需要以适当的频率运行㊂SYSREF 可以为连续或间歇周期信号,其频率必须等于本地多帧时钟频率或者本地多帧时钟频率的整数分频频率,本地多帧时钟频率(f LMFC )和SYSREF 可由式(1)和式(2)确定,其中,f BITRATE 为JESD204B 传输中串化器/解串器中的位速率,F为每帧的8位字数,K 为一个多帧数据中帧的个数,n 为任意正整数,N 为LMFC 与SYSREF 的频率倍数关系㊂f LMFC =f BITRATE10ˑK ˑF ˑn (1)f SYSREF =f LMFC2N,N =0,1,2,(2)5㊀FPGA 软件设计㊀㊀本系统的软件设计主要包括LMK04828配置软件㊁ADC12J2700接口软件与配置软件,数据抽取滤波㊁信号检测等处理软件等㊂在实际应用中要求接收机大动态㊁高带宽,所以设计时需要配置满量程信号输入㊁SPI 软复位㊁JESD204B 关键参数值如JESD204B Lane 的速率等使ADC12J2700工作在全带宽模式下㊂系统的软件处理流程图如图7所示㊂这里重点阐述数据解码的设计过程㊂图7㊀软件处理流程图ADC 采样数据在硬件上直接使用FPGA 的GTX 接口与ADC 的数据输出管脚相连,ADC 的(SERDOUT[0]ʃ SERDOUT[7])管脚作为发送68电子信息对抗技术㊃第36卷2021年3月第2期刘宁宁,王传根,王㊀乐,刘长江,刘静娴基于JESD204B 协议的多通道高速采集系统设计端,FPGA 的GTX 接口作为接收端实现数据在链路上的传输㊂软件上JESD204B 协议利用Xilinx 公司提供的IP 核实现数据同步传输,其中主要有时钟的配置以及对数据帧的解析㊂设计时配置为8-Lane 模式,采用GTX 接口内嵌的8b /10b 编解码模块和控制字符检测模块实现数据编码和对控制字符的检查,单链路数据速率为4500Mbps,参考时钟设置为125MHz,Subclass1工作模式㊂上电复位后,FPGA 的JESD204B 接口与ADC 同步后分别输出RX_SYNC 信号,4路RX_SYNC 信号相与后得到的SYNC 信号传输给ADC,ADC 接收到SYNC 信号后会在下一个LMFC(与SYSREF 信号同步)到来之后发送ILAS,并开始发送数据㊂FPGA 的JESD204B 接口在下一个LMFC 上升沿将所有通道的采样数据同时读出,从而实现数据同步传输㊂6㊀测试结果与分析㊀㊀多通道ADC 数据采集模块的转换数据首先会通过JESD204B 接口与FPGA 的GTX 接口相连,并在FPGA 内部进行数据处理和检测㊂所以,本文所涉及的多通道数据采集模块的各项指标最终是从FPGA 进行处理和检测计算后得到的㊂图8所示为借助于Xilinx 公司的设计工具Vivado 获得的其中一路采集数据传输到FPGA 后的部分原始数据㊂可以通过对原始数据分析计算得到ADC 数据采集的各项设计指标㊂图8㊀ADC 采集原始数据把采样后得到的原始数据导入Matlab 软件中进行快速傅里叶变换(FFT)运算得到原始采样数据的频谱,计算出无杂散动态和信噪比,测试结果如图9所示㊂由频谱数据分析知,在常温工作条件下,信号的性能可满足系统提出的指标要求㊂图9㊀输入信号的频谱响应图7㊀结束语㊀㊀本文基于JESD204B 协议设计实现了一种4通道高速采集系统㊂该系统以高速ADC 及Xilinx FPGA㊁LMK04828时钟锁相电路为核心电路,并包含了DDR3㊁FPGA 加载电路等外围电路㊂文章对系统设计方案及关键技术的实现方法进行了分析,并对系统的功能进行了测试和验证㊂就测试结果来看,该系统满足设计指标要求,可实现大动态㊁高精度的数据采集㊂通过应用扩展,可实现多板卡间的多通道数据同步采集,可满足大部分数字接收机及高速雷达信号接收领域的采样需求㊂参考文献:[1]㊀焦喜香,吴兵,李武建,等.基于JESD204B 协议的高速雷达数字接收机设计[J].信息通信,2016(6):42-44.[2]㊀周典淼,徐晖,陈维华,等.基于JESD204B 协议的数据传输接口设计[J].电子科技2015,28(10):53-60.[3]㊀JONATHAN H.了解JESD204B 链路参数[J].中国电子商情,2014(10):17-19.[4]㊀JEDEC.SerialInterfaceforDataConvertersJESD204B[S].Arlington:JEDEC,2011.[5]㊀Texas Instruments Inc.LMK0482x Data Sheet [M /OL]..[6]㊀Texas Instruments Inc.ADC12Jxx00Data Sheet[M /OL]..[7]㊀RAFFAELE G,VINCENZO I,SABRINA P,et al.AJESD204B -Compliant Architecture for Remote andDeterministic -Latency Operation [J].IEEE Transac-tions on Nuclear Science,2017,64(6):1225-1231.78。
山东建筑大学课程设计指导书课程名称:数字信号处理课程设计设计题目:信号的采样与恢复、采样定理的仿真使用班级:电信082 指导教师:张君捧一、设计要求1.对连续信号进行采样,在满足采样定理和不满足采用定理两种情况下对连续信号和采样信号进行FFT频谱分析。
2.基本教学要求:每组一台电脑,电脑安装MATLAB6.5版本以上软件。
二、设计步骤1.理论依据根据设计要求分析系统功能,掌握设计中所需理论(信号的采样、信号的恢复、抽样定理、频谱分析),阐明设计原理。
2.信号的产生和频谱分析产生一个连续时间信号(正弦信号、余弦信号、Sa函数等),并进行频谱分析,绘制其频谱图。
3.信号的采样对所产生的连续时间信号进行采样,并进行频谱分析,和连续信号的频谱进行分析比较。
改变采样频率,重复以上过程。
4.信号的恢复设计低通滤波器,采样信号通过低通滤波器,恢复原连续信号,对不同采样频率下的恢复信号进行比较,分析信号的失真情况。
三、设计成果1.设计说明书(约2000~3000字),一般包括:(1)封面(2)目录(3)摘要(4)正文①设计目的和要求(简述本设计的任务和要求,可参照任务书和指导书);②设计原理(简述设计过程中涉及到的基本理论知识);③设计内容(按设计步骤详细介绍设计过程,即任务书和指导书中指定的各项任务)I程序源代码:给出完整源程序清单。
II调试分析过程描述:包括测试数据、测试输出结果,以及对程序调试过程中存在问题的思考(列出主要问题的出错现象、出错原因、解决方法及效果等)。
III结果分析:对程序结果进行分析,并与理论分析进行比较。
(5)总结包括课程设计过程中的学习体会与收获、对Matlab语言和本次课程设计的认识以及自己的建议等内容。
(6)致谢(7)参考文献2.附件(可以将设计中得出的波形图和频谱图作为附件,在说明书中涉及相应图形时,注明相应图形在附件中位置即可;也可不要附件,所有内容全部包含在设计说明书中。
所有的实验结果图形都必须有横纵坐标标注,必须有图序和图题。
示波器的高速采样和波形重建示波器是一种广泛应用于电子测量领域的仪器,用于观察和分析电信号的波形。
为了保证对快速变化的信号进行准确采样和显示,示波器需要具备高速采样和波形重建的能力。
本文将就示波器的高速采样和波形重建原理进行探讨,并介绍相关技术和应用。
一、高速采样原理高速采样是指示波器在单位时间内对信号进行的采样次数。
在高速采样过程中,示波器需要能够尽可能快速地对信号进行采样,以充分还原信号波形的细节。
常见的示波器采样方式有逐点采样和实时采样。
1. 逐点采样逐点采样是示波器最基本的采样方式,其原理是通过一个时钟信号,控制ADC(模数转换器)按照固定的时间间隔对输入信号进行采样。
逐点采样的采样率与时钟信号频率相关,可以通过调整时钟信号的频率来调节采样率。
逐点采样的特点是简单、易控制,但对于高速变化的信号,由于采样速率有限,可能无法捕捉到信号的细节,导致波形失真。
因此,在对高速信号进行采样时,逐点采样的方式可能无法满足需求。
2. 实时采样实时采样是一种利用存储器缓存技术实现的高速采样方式。
示波器通过存储器缓存将接收到的信号进行存储,并通过DAC(数模转换器)将存储的信号恢复为连续的模拟信号。
实时采样的原理是在接收到信号后立即存储,并通过高速DAC进行恢复,从而实现对快速变化信号的准确采样。
实时采样的特点是具有较高的采样率和较好的信号重建能力,能够更准确地还原信号波形,缺点是需要较大的存储器容量和较高的采样速率。
二、波形重建原理波形重建是指示波器通过对采样数据进行处理和插值,还原信号的真实波形。
示波器的波形重建过程包括滤波、插值和幅度调整等步骤。
1. 滤波滤波是波形重建的第一步,其目的是去除采样过程中引入的噪声和失真。
示波器通常采用低通滤波器来抑制高频噪声,并通过滤波器特性调整频率响应,以实现平坦的幅频特性。
2. 插值采样数据的插值是波形重建的关键步骤,通过插值可以在采样点之间估计出信号的值,从而还原信号的连续波形。
《基于Flink的机床状态实时采集与监控系统的设计与实现》一、引言随着工业 4.0时代的到来,智能制造成为了工业发展的新趋势。
机床作为制造业的核心设备,其实时状态采集与监控对于提高生产效率、降低故障率具有重要意义。
本文将介绍一种基于Flink的机床状态实时采集与监控系统的设计与实现,以实现对机床状态的实时监测和数据分析。
二、系统需求分析本系统的主要目标是实现对机床状态的实时采集、监控和分析。
为此,我们需要分析系统所需的功能模块、性能需求和安全性需求。
功能模块包括:1. 数据采集模块:负责从机床传感器中实时采集数据。
2. 数据传输模块:负责将采集的数据传输至数据中心。
3. 数据处理模块:负责对数据进行实时处理和分析。
4. 监控展示模块:负责将处理后的数据以图表等形式展示给用户。
性能需求包括:1. 实时性:系统应能在短时间内对机床状态进行实时监测。
2. 准确性:系统应能准确采集和传输机床状态数据。
3. 可扩展性:系统应具有良好的可扩展性,以适应不同类型和规模的机床。
安全性需求包括:1. 数据加密:确保数据在传输过程中的安全性。
2. 权限控制:确保只有授权用户才能访问系统。
三、系统设计本系统采用Flink作为核心处理引擎,实现机床状态的实时采集、传输、处理和监控。
系统架构主要包括数据采集层、数据传输层、数据处理层和监控展示层。
数据采集层通过传感器实时采集机床状态数据,并将其传输至数据传输层。
数据传输层采用可靠的数据传输协议,将数据传输至数据中心。
数据处理层利用Flink对数据进行实时处理和分析,包括数据清洗、统计分析等。
监控展示层将处理后的数据以图表等形式展示给用户。
四、关键技术实现1. 数据采集:采用传感器技术,实时采集机床状态数据。
为保证数据的准确性和实时性,需选择合适的传感器和采样频率。
2. 数据传输:采用可靠的数据传输协议,如MQTT或Kafka 等,将数据从机床传输至数据中心。
为保证数据的安全性,需对数据进行加密处理。
新一代智慧高速公路系统架构设计随着科技的迅速发展和人们出行需求的不断增加,高速公路系统正面临着越来越大的挑战。
为了提高道路通行效率、增强交通安全性和提高运营管理水平,设计新一代智慧高速公路系统架构势在必行。
在需求分析方面,新一代智慧高速公路系统应具备以下特点:要具备高效的信息采集和传输能力,能够实时监测道路状况、车辆行驶轨迹和交通运行数据;系统应具备强大的数据处理和分析能力,能够对海量数据进行快速处理和挖掘,为交通管理提供科学决策支持;再次,系统应具备良好的信息交互能力,能够实现车辆与道路基础设施、车辆与车辆之间的信息互动,提高行车安全性;系统应具备可靠的安全保障机制,确保数据和系统的安全性。
在系统架构设计方面,新一代智慧高速公路系统应包括以下组成部分:硬件设备:包括各种传感器、摄像头、GPS定位设备等,用于实时监测道路状况、车辆行驶轨迹和交通运行数据。
软件系统:包括数据采集、处理、分析、存储等模块,以及提供用户交互界面和远程控制功能的软件平台。
数据存储和处理方式:采用分布式文件系统和数据库,实现数据的快速存储和检索,同时采用云计算技术实现数据的分布式处理和分析。
在功能模块设计方面,新一代智慧高速公路系统应包括以下功能模块:数据采集模块:通过各种传感器和摄像头采集道路状况、车辆行驶轨迹和交通运行数据,同时接收车辆和驾驶员的反馈信息。
数据处理和分析模块:对采集到的数据进行清洗、挖掘和分析,提取有价值的信息,为交通管理提供科学决策支持。
数据存储模块:将处理后的数据存储在分布式文件系统和数据库中,方便后续查询和检索。
用户交互模块:提供可视化界面和语音交互功能,方便用户查询交通信息、定制行驶路线和接收预警信息等。
远程控制模块:通过软件系统实现对高速公路基础设施的远程监控和管理,包括交通信号灯、护栏、收费站等。
在信息安全设计方面,新一代智慧高速公路系统应采取以下措施:建立完善的安全管理制度,规定系统中各级用户的权限和责任,同时加强用户身份认证和访问控制。
0引言随着我国公路运输系统的不断完善,高速公路网络日趋多样化、复杂化,对高速公路的养护管理要求更加及时、准确[1]。
过去的高速公路养护工程管理方法和模式已不能满足现代养护管理的要求,现代对高速公路养护管理科学化、规范性的要求大幅提升,把现实的高速公路养护管理与先进的计算机技术相结合,使高速公路养护管理过程系统化、规范化和科学化,是整个高速公路交通系统的养护工作者的愿望。
1高速公路智慧化养护管理现状1.1现状分析1.1.1信息化建设水平较低高速公路养护管理的信息化水平较低,信息化养护管理的应用时间较短。
过去的养护技术养护效率和效果一般,这些情况影响着高速公路的使用和寿命。
1.1.2养护管理机制落后如今我国高速公路基础建设发展迅速,但高速公路的养护管理工作相对滞后,相关法律法规制定不完善,执行和监管机制不健全,科学技术和先进理论学习不足,技术和设备的使用还停留在滞后阶段[2]。
1.1.3管理体系不够完善高速公路管理内容十分繁杂,监控高速公路路况以及车辆行驶的信息,很多地区信息化系统建设还较单一,信息共享效果达不到预期[3]。
1.2必要性分析在我国高速公路持续发展的过程中,通车时间和超载车辆负荷的逐渐增加致使高速公路的使用寿命逐年降低[4],为了实现高速公路的可持续发展,需要将高速公路建设、管理、养护三者有机地结合起来,才能使高速公路的整体质量得到改善。
将信息化引入高速公路管理体制,建立高速公路智慧巡检、营运管理、养护维护、运行监测的信息化系统,掌握高速公路路况、营运等各方面信息,向公众提供更好的出行体验。
针对高速公路养护管理现存的问题,本文设计开发了高速公路智慧化养护管理平台以及智慧高速移动巡检APP ,利用信息化手段进行高速公路养护管理工作,全面提高养护管理水平。
1.3理论介绍建筑信息模型(BIM )技术作为信息技术时代里建筑行业信息技术的重要代表,在重大交通基础设施项目规划、设计、建设、施工、运营、养护管理全生命周期等已有应用。
道路交通检测系统的设计和实现摘要:随着城市化进程的加快和车辆数量的增加,道路交通拥堵、事故频发等问题日益突出。
为了提高道路交通的效率和安全性,道路交通检测系统的设计和实现变得至关重要。
该系统能够通过采集、处理和分析交通数据,实时监测道路交通状况,为交通管理者提供准确的信息和决策支持。
基于此,本篇文章对道路交通检测系统的设计和实现进行研究,以供参考。
关键词:公路路线设计;交通安全;影响因素;改善对策引言道路交通检测系统的实现涉及到硬件设备的选择和布置、数据采集和传输、数据处理和分析、实时监测和报警、数据存储和管理、可扩展性和兼容性、安全性和隐私保护等多个方面。
通过合理实现这些步骤,可以建立一个高效、准确、可靠的道路交通检测系统,提高道路交通的效率和安全性。
1道路交通检测系统的要求1.1准确性道路交通检测系统需要具备高准确性,能够准确地采集和处理交通数据。
准确的数据是制定交通管理策略和决策的基础,对于实现道路交通的优化和安全至关重要。
1.2实时性道路交通检测系统需要具备实时性,能够及时地获取和处理交通数据,并向用户提供实时的交通信息。
只有在实时的基础上,交通管理者才能做出及时的调度和决策,以应对交通拥堵、事故等突发情况。
1.3可靠性道路交通检测系统需要具备高可靠性,能够稳定运行并确保数据的准确性。
系统应具备自动故障检测和恢复功能,以防止因系统故障导致数据丢失或不准确的情况发生。
1.4可扩展性道路交通检测系统需要具备良好的可扩展性,能够适应不同规模和复杂程度的道路网络。
系统应能够灵活地添加和管理新的检测点,并能够处理大量的交通数据。
1.5兼容性道路交通检测系统需要具备良好的兼容性,能够与其他交通管理系统进行数据的交互和共享。
这样可以提高数据的利用效率,实现交通管理的整合和协调。
1.6可视化道路交通检测系统应该具备良好的可视化功能,将处理后的数据以图表、地图等形式呈现,使用户能够直观地了解道路交通状况。
基于单片机信号采集与回放系统的设计与实现*吴宁1,李斌2,柴世文3(1.兰州工业高等专科学校电气工程系,甘肃兰州730050;2.兰州石化公司研究院,甘肃兰州730060)摘要:重点介绍了一种基于89C52单片机为控制核心的信号采集与回放控制系统。
该系统结合ADC0809、DAC0832数据采集模块,实现对两路外部信号进行采集、存储及回放。
系统模拟部分主要包括信号调节电路和A/D模块等:软件部分主要由主程序和子程序模块组成,主要实现了A/D转换器的启动与及对采样数据的存储,频率及幅值的计算,按键及显示屏的控制。
该系统经过测试实验,能耗低,性价比高,具有较高的实际应用价值。
关键词:信号采集与存储;信号复现;信号调节;回放系统中图分类号:TM13文献标识码:A文章编号:1007-4414(2011)06-0121-03The design and implementation of signal acquisition and playbacksystem based on microcontrollerWu Ning1,Li Bin2,Chai Shi-wen3(1.Electrical engineering department,Lanzhou polytechnic college,Lanzhou730050,China;2.Research institute of Lanzhou petrochemical corporation,Lanzhou730060,China;3.Gansu academy of mechanical science,Lanzhou Gansu730030,China)Abstract:This paper proposed a signal acquisition and playback control system based on89C52as the control unit.The sys-tem associated with ADC0809and DAC0832to achieve the two external signal acquisition,storage and playback.The analog section of the system included signal adjusting circuit and A/D module.The function of software modules consisted of main program and subroutine.It realized the start of the A/D converter,the sampling data storage,the calculation of the frequency and amplitude,the control of the buttons and display.The system has been tested to prove low energy consumption,cost-ef-fective and high practical value.Key words:signal capture and storage;signal reproduction;signal conditioning;playback system1引言很多工业现场中的电气设备在发生故障时,由于环境限制或是故障原因复杂,无法有效对系统故障进行在线的分析和判别,如果能够记录下故障设备产生的信号,再通过网络进行专家判别,将更利于系统的快速恢复与故障排除。
企业级数据备份与恢复系统设计与实现1. 引言在当今信息时代,数据备份与恢复系统已经成为企业中不可或缺的一部分,它不仅是企业信息安全的重要保障,也是企业连续性经营的基础支撑。
而随着各种新技术的不断涌现,数据备份与恢复技术也在不断进化和升级。
因此,设计和实现一套完善的企业级数据备份与恢复系统显得尤为重要。
2. 企业级数据备份与恢复系统的需求分析2.1 数据备份与恢复的重要性数据是企业的核心资产,而数据的丢失和损坏可能会带来巨大的损失。
数据备份与恢复是保障企业信息安全、维护企业业务连续性运营的重要手段之一。
2.2 企业级数据备份与恢复系统的需求对于大型企业而言,数据量通常非常庞大,数据备份和恢复的速度、可靠性以及操作性等方面都面临着挑战。
因此,企业级数据备份与恢复系统需要满足以下几个方面的需求:(1)高效稳定:需要具有高速备份、恢复、传输和容灾技术,以确保备份和恢复的效率和可靠性;(2)安全性:需要具有可靠的加密技术和安全的访问控制机制,以保护备份数据的安全性;(3)简单易用:需要具有简单易懂的操作界面和可靠的自动化管理机制,以方便企业管理员的操作管理;(4)灵活可靠:需要设计灵活的备份方案,以满足不同的备份需求,并具有可靠的数据恢复机制,以便及时恢复数据。
3. 企业级数据备份与恢复系统的设计方案3.1 数据备份的方案设计在备份方案设计中,需要针对企业的实际业务需求,设计出具有灵活可靠性的备份方案。
备份方案主要包括以下几个方面:(1)备份类型:可以根据不同的业务需求,设计全备份、增量备份、差异备份等不同类型的备份方式;(2)备份周期:可以根据业务需求和数据变化情况,设计出相应的备份周期和时间点,以及保留备份数据的时间和数量等;(3)备份存储:可以根据数据备份的容量需求,选择相应的存储介质和存储方案,以确保备份数据的完整性和可靠性。
3.2 数据恢复的方案设计数据恢复方案需要设计出高效可靠的数据恢复机制,以确保及时恢复数据并最小化数据损失。
高速公路闭闯事故应急管理系统设计与实现摘要:高速公路闭闯事故是严重威胁交通安全的一种交通违法行为。
为了减少闭闯事故的发生以及及时有效地处理闭闯事故,设计建立一套高速公路闭闯事故应急管理系统至关重要。
本文介绍了该系统的设计与实现,包括系统需求分析、基本功能设计、数据结构设计、系统模块设计、系统实施考虑等内容。
一、引言高速公路的闭闯事故一直以来都是公众关注的热点问题。
这种严重威胁交通安全的行为不仅给驾驶人及乘客的生命财产安全造成威胁,也给其他道路使用者带来潜在危险。
因此,设计一套高速公路闭闯事故应急管理系统,用于及时有效地处理闭闯事故,对于维护交通秩序、保障行车安全具有重要意义。
二、系统需求分析1.数据采集需求:系统应能够实时获取高速公路上的车辆信息,包括车辆类型、车牌号码、车速等。
2.闭闯事故预警需求:系统应能够识别和预警闭闯行为,当检测到有车辆闭闯时能及时发出警报。
3.应急处理需求:系统应能够自动将闭闯事故信息发送给交通管理部门、路政执法部门等相关部门,以便及时处理事故。
4.数据分析需求:系统应具备数据分析功能,能够统计闭闯事故的发生情况,帮助管理部门制定更加科学的警示措施。
三、基本功能设计1.数据采集功能:系统通过高速公路上设置的摄像头实时采集车辆信息,并进行车牌号识别、车速监测等操作。
2.闭闯事故预警功能:系统根据事先设定的闭闯行为标准,当检测到有车辆闭闯时,立即发出预警信号。
3.应急处理功能:系统将闭闯事故信息自动发送给相关部门,并提供闭闯车辆的影像证据,以便相关部门及时处理事故。
4.数据分析功能:系统能够对闭闯事故的发生情况进行统计与分析,生成报表以便交通管理部门参考。
四、数据结构设计1.车辆信息数据:包括车辆类型、车牌号码、车速等信息。
2.闭闯事故信息数据:包括闭闯车辆的影像证据、事故发生时间、事故地点等信息。
五、系统模块设计1.数据采集模块:负责实时采集车辆信息,并进行识别与监测。
2.闭闯事故预警模块:根据事先设定的标准进行闭闯行为预警。
《数控系统SCADA工具的设计与实现》一、引言随着工业自动化技术的不断发展,数控系统在制造业中扮演着越来越重要的角色。
SCADA(Supervisory Control And Data Acquisition)工具作为数控系统的重要组成部分,能够实现生产过程的监控、控制和数据采集。
本文将介绍数控系统SCADA工具的设计与实现,包括系统架构、功能模块、数据库设计、界面设计以及实现过程等方面。
二、系统架构设计数控系统SCADA工具的架构设计应满足高可靠性、高实时性和易扩展性等要求。
整个系统采用分层结构设计,包括数据采集层、数据处理层、应用层和用户界面层。
数据采集层负责从数控设备和其他传感器中实时采集数据。
数据处理层对采集到的数据进行处理和存储,包括数据清洗、转换和存储等操作。
应用层提供各种应用功能,如监控、控制、报警、报表生成等。
用户界面层提供友好的人机交互界面,方便用户进行操作和查看。
三、功能模块设计数控系统SCADA工具的功能模块包括数据采集模块、数据处理模块、监控模块、控制模块和报警模块等。
1. 数据采集模块:负责从数控设备和其他传感器中实时采集数据,包括设备状态、生产数据等。
2. 数据处理模块:对采集到的数据进行处理和存储,包括数据清洗、转换和存储等操作,保证数据的准确性和可靠性。
3. 监控模块:提供实时监控功能,可以查看设备状态、生产数据、报警信息等,方便用户了解生产情况。
4. 控制模块:提供控制功能,可以对数控设备进行远程控制,包括启动、停止、加速、减速等操作。
5. 报警模块:当设备出现异常时,及时发出报警信息,提醒用户进行处理。
四、数据库设计数据库是数控系统SCADA工具的重要组成部分,需要设计合理的数据库结构来存储和管理数据。
数据库设计应考虑数据的完整性、安全性和可扩展性。
可以采用关系型数据库或非关系型数据库进行设计,根据实际需求选择合适的数据库类型。
数据库中应包含设备信息表、生产数据表、报警信息表等,方便用户进行数据查询和管理。
摘要数字信号处理是一门理论与实践紧密结合的课程。
做大量的习题和上机实验,有助于进一步理解和巩固理论知识,还有助于提高分析和解决实际问题的能力。
过去用其他算法语言,实验程序复杂,在有限的实验课时内所做的实验内容少。
MATLAB强大的运算和图形显示功能,可使数字信号处理上机实验效率大大提高。
特别是它的频谱分析和滤波器分析与设计功能很强,使数字信号处理工作变得十分简单、直观。
本实验设计的题目是:信号的采样与恢复。
通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对采样后的频谱进行分析,实验中,原连续信号的频谱由于无法实现真正的连续,所以通过扩大采样点的数目来代替,理论上当采样点数无穷多的时候即可实现连续,基于此尽可能增加采样点数并以此来产生连续信号的频谱。
信号采样过程中,通过采样点的不同控制采样频率实现大于或小于二倍最高连续信号的频率,从而可以很好的验证采样定理。
关键词:信号采样恢复MATLAB 傅里叶变换一、设计目的与要求1、设计目的通过本课程设计,主要训练和培养学生综合应用所学过的信号及信息处理等课程的相关知识,独立完成信号仿真及信号处理的能力。
包括:查阅资料、合理性的设计、分析和解决实际问题的能力,数学仿真软件Matlab和C语言程序设计的学习和应用,培养规范化书写说明书的能力。
2、设计要求设有一信号Xa(t)=EXP-1000|t|,计算傅立叶变换,分析其频谱,并在精度为1/1000的条件下,分别取采样频率为F=5000Hz,F=1000Hz,绘出对应的采样信号的时域信号波形频谱图。
(1)实现信号时域分析和频谱分析以及滤波器等有关Matlab函数。
(2)写好总结、程序、图表、原理、结果分析。
二、设计原理框图三、设计原理本次课程设计主要涉及采样定理、傅里叶变换、信号时域分析和频谱分析的相关内容的相关知识。
1.采样定理设连续信号)(t x a 属带限信号,最高截止频率为c Ω,如果采样角频率c s Ω≥Ω2,那么让采样性信号)(t x a ∧通过一个增益为T 、截止频率为2/s Ω的理想低通滤波器,可以唯一地恢复出原连续信号)(t x a 。
实验六、连续信号得采样与恢复一、实验目得1.加深理解采样对信号得时域与频域特性得影响;2.加深对采样定理得理解与掌握,以及对信号恢复得必要性;3.掌握对连续信号在时域得采样与重构得方法。
二、实验原理(1)信号得采样ﻫ信号得采样原理图如下图所示,其数学模型表示为:=ﻫ其中得f(t)为原始信号,为理想得开关信号(冲激采样信号)δTs(t) =,fs(t)为采样后得到得信号称为采样信号。
由此可见,采样信号在时域得表示为无穷多冲激函数得线性组合,其权值为原始信号在对应采样时刻得定义值。
ﻫ令原始信号f(t)得傅立叶变换为F(jw)=FT(f(t)),则采样信号fs(t) 得傅立叶变换Fs(jw)=FT(fs(t))=。
由此可见,采样信号fs(t)得频谱就就是将原始信号f(t)得频谱在频率轴上以采样角频率ws为周期进行周期延拓后得结果(幅度为原频谱得1/Ts)。
如果原始信号为有限带宽得信号,即当|w|>|wm|时,有F(jw)=0,则有:如果取样频率ws≥2wm时,频谱不发生混叠;否则会出现频谱混叠。
(2)信号得重构ﻫ设信号f(t)被采样后形成得采样信号为fs(t),信号得重构就是指由fs(t)经过内插处理后,恢复出原来得信号f(t)得过程。
因此又称为信号恢复。
ﻫ由前面得介绍可知,在采样频率w s≥2wm得条件下,采样信号得频谱Fs(jw)就是以w s为周期得谱线。
选择一个理想低通滤波器,使其频率特性H(jw)满足:H(j w)=式中得wc称为滤波器得截止频率,满足wm≤wc≤ws/2。
将采样信号通过该理想低通滤波器,输出信号得频谱将与原信号得频谱相同。
因此,经过理想滤波器还原得到得信号即为原信号本身。
信号重构得原理图见下图。
通过以上分析,得到如下得时域采样定理:一个带宽为w m得带限信号f(t),可唯一地由它得均匀取样信号fs(n Ts)确定,其中,取样间隔Ts<π/wm,该取样间隔又称为奈奎斯特(Nyquist)间隔。