基于STM32的数据采集存储系统的设计与实现
- 格式:pdf
- 大小:2.32 MB
- 文档页数:70
基于STM32F103单片机的数据采集系统设计本文。
在现代科技快速发展的时代背景下,数据采集系统作为信息获取的重要手段之一,已经成为各行业必备的工具之一。
STM32F103单片机作为一款性能稳定、功能强大的微控制器,被广泛应用于各种数据采集系统中。
本文将以STM32F103单片机为基础,探讨其在数据采集系统中的设计原理、实现方法以及应用案例,旨在为同行业研究者提供参考和借鉴。
一、STM32F103单片机概述STM32F103单片机是意法半导体公司推出的一款32位MCU,采用ARM Cortex-M3内核,工作频率高达72MHz,具有高性能、低功耗、丰富的外设接口等特点。
在各种嵌入式系统中,STM32F103单片机的应用十分广泛,特别适用于需要较高计算性能和功耗要求低的场景。
二、数据采集系统概述数据采集系统是一种用于采集、处理和传输数据的系统,通常由传感器、数据采集设备、数据处理单元和通信模块等组成。
在工业控制、环境监测、医疗诊断等领域,数据采集系统扮演着重要角色,能够实时监测各种参数并进行数据分析,为决策提供数据支持。
三、STM32F103单片机在数据采集系统中的应用1. 数据采集系统设计原理数据采集系统的设计原理包括数据采集、数据处理和数据传输等环节。
在STM32F103单片机中,可以通过外设接口如ADC、UART等模块实现数据的采集和传输,通过中断和定时器等功能实现数据的处理和分析,从而构建完整的数据采集系统。
2. 数据采集系统实现方法基于STM32F103单片机的数据采集系统的实现方法主要包括硬件设计和软件编程两个方面。
在硬件设计方面,需要根据具体需求选择合适的传感器和外设接口,设计电路连接和布局;在软件编程方面,需要利用STM32CubeMX等工具进行初始化配置,编写相应的驱动程序和应用程序,实现数据的采集、处理和传输。
3. 数据采集系统应用案例以环境监测系统为例,我们可以利用STM32F103单片机搭建一个实时监测空气质量的数据采集系统。
基于stm32微控制器的过采样技术研究与实现过采样(Oversampling)技术是指通过提高采样率,对输入信号进行多次采样,以提高较低采样率下的信号精度和动态范围。
在基于STM32微控制器的过采样技术研究与实现上,通常会使用STM32的内置模数转换器(ADC)模块来进行过采样。
以下是一种可能的实现方法:1. 初始化ADC模块:首先,需要初始化ADC模块的相关参数,包括采样率、精度、通道等。
可以通过寄存器配置或者使用CubeMX等开发工具进行初始化。
2. 设置过采样参数:设置过采样率和过采样模式。
过采样率一般选择为4倍或8倍,可以根据实际需求进行调整。
过采样模式有两种:线性过采样和峰值过采样。
线性过采样模式将多次采样的结果相加取平均值,峰值过采样模式则选择多次采样中的最大值作为结果。
3. 进行过采样采样:按照设置的过采样率进行多次采样,可以使用ADC的DMA 模式进行连续采样,也可以使用定时器中断触发采样。
每次采样完成后,将采样结果保存到缓冲区中。
4. 处理过采样结果:根据选择的过采样模式,对采样结果进行处理。
线性过采样模式下,将多次采样结果相加,然后除以过采样率得到平均值;峰值过采样模式下,选择多次采样中的最大值作为结果。
处理后的结果可以直接使用,也可以进一步进行滤波等处理。
需要注意的是,在进行过采样时,需要考虑处理器的处理能力和存储空间。
过高的过采样率会占用较多的处理能力和存储空间,可能导致系统性能下降。
因此,需要根据实际需求进行权衡和优化。
此外,还可以使用STM32的其他功能模块,如滤波器模块和定时器模块,对过采样结果进行进一步处理和控制。
总之,基于STM32微控制器的过采样技术研究与实现可以通过配置ADC模块、设置过采样率和过采样模式、进行多次采样、处理采样结果等步骤来实现。
具体的实现方法可以根据实际应用需求和硬件资源进行调整和优化。
基于STM32单片机的多路数据采集系统设计毕业设计摘要:本篇设计主要以STM32单片机为核心,设计了一个多路数据采集系统。
该系统能够实现多路模拟量和数字量信号的采集和显示,并通过串口与上位机进行通信,实现数据上传和控制。
设计中使用了STM32单片机的AD转换功能实现模拟量信号的采集,使用GPIO口实现数字量信号的采集,通过串口与上位机进行通信。
经过实验验证,该系统能够稳定地采集多路数据,并实现远程数据传输和控制功能,具有较高的可靠性和实用性。
关键词:STM32单片机,数据采集,模拟量信号,数字量信号,上位机通信一、引言随着科技的发展,数据采集系统在工业控制、环境监测、生物医学等领域得到了广泛的应用。
数据采集系统可以将现实世界中的模拟量信号和数字量信号转换为数字信号,并进行处理和存储。
针对这一需求,本文设计了一个基于STM32单片机的多路数据采集系统。
二、设计思路本系统的设计思路是通过STM32单片机实现多路模拟量和数字量信号的采集和显示,并通过串口与上位机进行通信,实现数据上传和控制。
该系统采用了模块化设计方法,将系统分为采集模块、显示模块和通信模块。
1.采集模块采集模块通过STM32单片机的AD转换功能实现模拟量信号的采集,通过GPIO口实现数字量信号的采集。
通过在程序中设置采样频率和采样精度,可以对不同类型的信号进行稳定和准确的采集。
2.显示模块显示模块通过LCD显示屏显示采集到的数据。
通过程序设计,可以实现数据的实时显示和曲线绘制,使得用户可以直观地观察到采集数据的变化。
3.通信模块通信模块通过串口与上位机进行通信。
上位机通过串口发送控制命令给STM32单片机,实现对系统的远程控制。
同时,STM32单片机可以将采集到的数据通过串口发送给上位机,实现数据的远程传输。
三、实验结果与分析通过实验验证,本系统能够稳定地采集多路模拟量和数字量信号,并通过串口与上位机进行通信。
系统能够将采集到的数据实时显示在LCD屏幕上,并通过串口传输给上位机。
基于STM32单片机的多路数据采集系统设计概述:多路数据采集系统是一种用于采集和处理多种传感器信号的系统。
基于STM32单片机的多路数据采集系统具有低功耗、高精度、稳定可靠的特点,广泛应用于工业控制、环境监测和医疗设备等领域。
本文将介绍基于STM32单片机的多路数据采集系统的设计方案及实现方法。
设计方案:1.系统硬件设计:系统硬件由STM32单片机、多路模拟输入通道、数模转换器(ADC)和相关模拟电路组成。
其中,多路模拟输入通道可以通过模拟开关电路实现多通道选通;ADC负责将模拟信号转换为数字信号;STM32单片机负责控制和处理这些数字信号。
2.系统软件设计:系统软件可以采用裸机编程或者使用基于STM32的开发平台来进行开发。
其中,主要包括数据采集控制、数据转换、数据处理和数据存储等功能。
具体实现方法如下:-数据采集控制:配置STM32单片机的ADC模块,设置采集通道和相关参数,启动数据采集。
-数据转换:ADC将模拟信号转换为相应的数字量,并通过DMA等方式将数据传输到内存中。
-数据处理:根据实际需求对采集到的数据进行预处理,包括滤波、放大、校准等操作。
-数据存储:将处理后的数据存储到外部存储器(如SD卡)或者通过通信接口(如UART、USB)发送到上位机进行进一步处理和分析。
实现方法:1.硬件实现:按照设计方案,选择适应的STM32单片机、模拟开关电路和ADC芯片,完成硬件电路的设计和布局。
在设计时要注意信号的良好地线与电源隔离。
2.软件实现:(1)搭建开发环境:选择适合的开发板和开发软件(如Keil MDK),配置开发环境。
(2)编写初始化程序:初始化STM32单片机的GPIO口、ADC和DMA等模块,配置系统时钟和相关中断。
(3)编写数据采集程序:设置采集参数,例如采样频率、触发方式等。
通过ADC的DMA功能,实现数据的连续采集。
(4)编写数据处理程序:根据实际需求,对采集到的数据进行预处理,例如滤波、放大、校准等操作。
基于STM32的智能数据采集系统作者:孙二威吴振磊来源:《甘肃科技纵横》2021年第08期摘要:本文设计了一种基于STM32主控芯片的智能数据采集系统。
该系统由STM32C8T6作为主控芯片,控制温湿度传感器与光照强度传感器来检测当前环境的温湿度值和光照强度值,以获取相关数据信息。
取得的数据经过处理后可在系统自带的0.96寸OLED显示屏上实时顯示,实现数据实时可视化的功能。
此外,还可根据预设值实现蜂鸣器报警和led指示灯报警的功能且可由按键手动控制其报警。
同时,该系统还具有网络互联功能,主控芯片获取的数据经由ESP8266模块将数据上传至服务器,通过基于TCP的MQTT协议订阅设备上的数据,来完成数据远程传输的功能。
这样用户就可使用微信小程序来获取采集到的数据信息,实现数据采集的智能化设计。
关键词:STM32C8T6;数据采集;ESP8266;微信小程序中图分类号:TP274.2;TP231 引言在时代飞速发展的社会背景中,如今智能设备的主要功能很大程度上取决于数据的采集,一代又一代的新产品其目的都是为了实现更好的数据获取和检测功能的方便快捷。
智能数据采集在居家、测量、监控等很多方面应用,通过智能数据采集系统可方便获取室内的温度值、湿度值、光照强度等一系列的数据参数,并通过这些数据去驱动智能家电准确工作。
一般的数据采集办法是利用常规采集仪器来完成,采集仪器体积大、重量重、功耗高且运输不便。
这时智能数据采集就显得尤为重要,无线数据的采集可以在时间片段下轮流采集,可解决有线数据采集的局限性能够得到有效的改善,提高了数据采集的完整性。
用户手机端的微信小程序可以作为一种远程获取数据的方式,使用户能够简便迅速地获取数据,并根据所获得的数据来自定义其用途和需求,以实现数据智能采集这一过程。
2 系统的设计内容该设计是基于STM32的智能数据采集系统,通过主控芯片STM32C8T6接收传感器采集到光照强度和温湿度数据,经wifi通过路由器上传至云服务器,通过EMQX(MQTT消息代理)把获取到的数值经由蜂窝数据或路由器传输,用户可以利用手机远程订阅服务器上的数据,并下发数据至微信小程序实时观测。
基于STM32单片机的多路数据采集系统设计毕业设计本文将设计一种基于STM32单片机的多路数据采集系统。
该系统可以实现多个输入信号的采集和处理,在电子仪器、自动化控制、工业检测等领域具有广泛的应用前景。
首先,我们需要选择合适的STM32单片机作为系统的核心处理器。
STM32系列单片机具有低功耗、高性能和丰富的外设资源等优点,非常适合用于嵌入式数据采集系统的设计。
在选取单片机时,要考虑到系统对于处理速度、存储容量和外设接口的需求,以及预算等因素。
其次,我们需要设计合适的外部电路来连接待采集的信号源。
常用的信号源包括温度传感器、光敏电阻、加速度传感器等。
我们可以使用适当的模拟电路将这些信号转换为STM32单片机能够接收的电平。
此外,还可以考虑使用模数转换芯片来实现对多路模拟信号的高速采集。
接下来,我们需要设计软件算法来对采集到的数据进行处理。
在数据采集系统中,常见的算法包括滤波、数据压缩、数据存储等。
通过滤波算法可以去除噪声,提高信号的质量;数据压缩可以减少数据存储和传输的空间;数据存储可以将采集到的数据保存在存储介质中以供后续分析。
最后,我们需要设计用户界面以便用户能够方便地操作系统。
可以使用LCD屏幕和按键等外设来实现用户界面的设计。
用户界面应该直观简洁,提供友好的操作和显示效果,方便用户进行数据采集和系统设置。
综上所述,基于STM32单片机的多路数据采集系统设计需要考虑到硬件电路和软件算法的设计,以及用户界面的设计。
通过合理的设计和实现,可以实现多路信号的高速采集、滤波处理和存储,为电子仪器、自动化控制和工业检测等领域提供可靠的数据支持。
基于 STM32嵌入式多路数据采集存储系统的设计2.北京卫星导航中心,北京, 100094摘要针对多路信号采集,提出了一种嵌入式数据采集存储系统,该系统基于STM32微处理器和MDK KEIL软件开发平台设计。
详细介绍了系统的硬件设计和软件设计。
最后,通过两路电压数据采集存储分析试验,验证本系统的正确性和可靠性。
关键词嵌入式;STM32;多路数据采集;MDK中图分类号:P715.2 文献标识码:A0引言随着现代科学技术的不断发展,人们对多路数据采集存储技术的要求越来越高。
传统的基于单片机或工控机PLC的数据采集技术,因采集精度低、设计复杂等缺点,很难满足人们的要求。
将嵌入式引入采集技术中能够解决上述存在的问题[1]。
STM32微处理器作为成熟的ARM嵌入式芯片,有着丰富的外围接口、较高的处理速度以及较低的价格,在嵌入式技术领域有着广泛的应用[2]。
本文阐述基于STM32的多路数据采集存储系统的设计方法,希望提出一套具有一定借鉴意义的通用的开发方案。
1系统组成本系统主要由微处理器、多路数据采集模块、存储模块、电源模块、下载模块、时钟模块以及复位模块组成。
微处理器是本系统核心,控制整个系统的工作流程,包括启动和暂停数据采集存储、读写存储器等;多路数据采集模块对外部输入的信号进行数据采集;存储模块对采集得到的数据进行实时存储;本系统电源输入为12V电压,通过电源模块转换后可为系统各个模块提供5V、3.3V的标准电压;下载模块为本系统提供软件程序下载接口;时钟模块采用8MHz的高速外部晶振和32.768的低速外部晶振,通过倍频分频的方式,为处理器各个部分提供相应时钟;复位模块采用按键复位设计,为整个系统提供硬件复位功能。
系统组成如图1所示。
图1 系统组成示意图Fig. 1 Schematic diagram of composition of system2系统硬件设计2.1微处理器作为本系统核心,微处理器控制着整个系统的工作,包括启动和暂停数据采集存储、读写存储器等。
XXXX学院XX级嵌入式系统设计实验报告班级:指导老师:学期:小组成员:实验一我的第一个工程实验一.实验简介我的第一个工程,流水灯实验二.实验目的掌握STM32开发环境,掌握从无到有的构建工程。
三.实验内容熟悉MDK KEIL开发环境,构建基于固件库的工程,编写代码实现流水灯工程。
通过ISP下载代码到实验板,查看运行结果。
使用JLINK下载代码到目标板,查看运行结果,使用JLINK在线调试。
四.实验设备硬件部分:PC计算机(宿主机)、亮点STM32实验板、JLINK。
软件部分:PC机WINDOWS系统、MDK KEIL软件、ISP软件。
五.实验步骤1.熟悉MDK KEIL开发环境2.熟悉串口编程软件ISP3.查看固件库结构和文件4.建立工程目录,复制库文件5.建立和配置工程6.编写代码7.编译代码8.使用ISP下载到实验板9.测试运行结果10.使用JLINK下载到实验板11.单步调试12.记录实验过程,撰写实验报告六.实验结果及测试七.实验总结实验二带按键控制的流水灯实验一.实验简介在实验一的基础上,使用按键控制流水灯速度,及使用按键控制流水灯流水方向。
二.实验目的熟练使用库函数操作GPIO,掌握中断配置和中断服务程序编写方法,掌握通过全局变量在中断服务程序和主程序间通信的方法。
三.实验内容实现初始化GPIO,并配置中断,在中断服务程序中通过修改全局变量,达到控制流水灯速度及方向。
使用JLINK下载代码到目标板,查看运行结果,使用JLINK在线调试。
四.实验设备硬件部分:PC计算机(宿主机)、亮点STM32实验板、JLINK、示波器。
软件部分:PC机WINDOWS系统、MDK KEIL软件、ISP软件。
五.实验步骤1在实验1代码的基础上,编写中断初始化代码2在主程序中声明全局变量,用于和中断服务程序通信,编写完成主程序3编写中断服务程序4编译代码,使用JLINK下载到实验板5.单步调试6记录实验过程,撰写实验报告六.实验结果及测试七.实验总结实验三串口发送和接收实验一.实验简介编写代码实现串口发送和接收,将通过串口发送来的数据回送回去。
㊀2021年㊀第1期仪表技术与传感器Instrument㊀Technique㊀and㊀Sensor2021㊀No.1㊀基金项目:国家重点研发计划(2016YFC0302100);青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2017ASKJ01)收稿日期:2019-11-21基于STM32微控制器和CH438Q数据采集器的设计与实现刘㊀君,程㊀凯,赵培刚,徐㊀爽,马㊀超(中国海洋大学,光学光电子青岛市重点实验室,山东青岛㊀266100)㊀㊀摘要:为有效解决深海资源探测传感器搭载数量以及控制系统小型化问题,结合STM32F103RCT6和CH438Q设计了一种能够在深海区域控制多种传感器并将实时探测到的数据进行分类存储的小型化数据采集控制系统㊂海上试验结果表明,数据采集系统工作稳定㊁数据完整,可广泛应用于各种海洋环境监测和深海资源探测系统的建设中㊂关键词:数据采集;海洋探测;串口扩展;STM32;CH438Q中图分类号:TP368.1㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1002-1841(2021)01-0030-03DesignandImplementationofDataCollectorBasedonSTM32MicrocontrollersandCH438QLIUJun,CHENGKai,ZHAOPei⁃gang,XUShuang,MAChao(OceanUniversityofChina,TheLaboratoryofOpticsandOptoelectronics,Qingdao266100,China)Abstract:Aimingattheproblemofcarryingnumberofdeep⁃searesourceexplorationsensorsandminiaturizationofthecon⁃trolsystem,atestingminiaturizeddataacquisitionandcontrolsystemforcontrolmultiplesensorsinthedeep⁃seaareatoclassifyandstorethereal⁃timedetecteddatabasedonSTM32F103RCT6andCH438Qwasdesigned.Theoffshoreexperimentsshowthatthedataacquisitionsystemisstableandcomplete,whichcanbewidelyusedinvariousmarineenvironmentalmonitoringanddeep⁃searesourceexplorationsystemconstruction.Keywords:dataacquisition;marineexploration;serialportextension;STM32;CH438Q0㊀引言海洋为人类提供了丰富的海洋资源与发展空间[1]㊂传统的海洋科学研究方法只能从地面或者乘船从海面观察海洋,随着卫星遥感技术的发展,也可从空中对海洋进行观测,但这些方法都只能得到海洋表面的数据[2]㊂随着科学技术的发展,海洋探测技术也相应的在不断发展与改进㊂深海运载器探测技术㊁深海光学传感器探测技术㊁深海电磁学传感器技术等[3]为人类科学地认识深海提供了方法㊂认识海洋的前提是需要依靠各种传感器探测到的数据,传感器在不同海洋环境下的控制和传感器数据存取则主要依托于数据采集系统㊂在设计数据采集系统中,采用微控制器STM32作为系统的控制核心,由于试验需要搭载多种RS232串行接口的传感器进行测试,而STM32所提供的3个串口不能满足需求,必须进行串口扩展㊂本文结合STM32单片机和串口扩张芯片CH438Q设计实现了一种集成度高㊁配置灵活㊁小型化㊁多种传感器接入的数据采集系统㊂1㊀系统架构海洋数据采集系统集传感器供电与管理于一体,兼容数字量㊁模拟量等接口传感器,可以广泛地应用在各种海洋监测平台系统建设中,能够满足在线观测与自容监测的设计需要[4]㊂数据采集系统的整体设计是基于深海环境背景下设计的,其整体设计图如图1所示㊂图1㊀海洋探测数据采集器整体设计框图㊀㊀㊀㊀㊀第1期刘君等:基于STM32微控制器和CH438Q数据采集器的设计与实现31㊀㊀数据采集系统主要分为供电电源,微控制器,串口扩展三部分㊂供电电源负责为微控制器㊁串口扩展以及外接传感器提供电源管理;串口扩展部分负责与各种传感器进行通信对接,将传感器探测的数据传输到微控制器之中㊂微控制器是整个数据采集系统的核心,负责控制整个数据采集系统的工作,需要对各类数据进行采集㊁处理㊁存储,对各种传感器工作状态工作进行监控,保证整个采集工作的稳定进行㊂数据采集系统各部分的详细设计需要考虑所搭载传感器的工作电压㊁通信方式㊁通信速率㊁数据格式等主要参数㊂本试验所搭载的主要传感器和其性能参数如表1所示㊂表1㊀传感器类型及性能参数传感器类型工作电压通信方式通信速率CTD9 24VDCRS232115200bit/s甲烷9 36VDCRS2329600bit/sMiniCO25 30VDCRS2329600bit/s自研CO212VDCRS2329600bit/s㊀㊀传感器返回的数据格式如下所示㊂(1)CTD返回的数据格式为:温度,电导率,压力,盐度,声速,日期,时间㊂(2)甲烷返回的数据格式为:1:甲烷浓度对应的电压值;2:温度;3:保留;4:保留;5:保留;6:保留;7:保留;8:保留㊂(3)自研CO2返回的数据格式为:开始标志,年月,日,时,分,秒,参考A/D,当前A/D,未校正CO2浓度,校正后CO2浓度,传感器温度,气压,内部电池温度,电源电压,记录器温度,模拟输入1,模拟输入2,数字输入1,数字输入2㊂(4)MiniCO2返回的数据格式为:CO2浓度㊂2㊀串口扩展串口扩展部分是数据采集器中的重要部分,它主要负责接收各种传感器探测获得的数据㊁将微控制器发送的指令传达给部分传感器以及将接收到的数据再返回到微控制器,微控制器再进行相应的分类存储㊂在此部分的设计中,选用了CH438Q芯片进行串口扩展㊂CH438Q芯片可以扩展为8路串口,只需要在控制部分进行相应的初始化配置即可使用,而不会影响单片机自身具备的串口功能,且支持最高4Mbit/s的通讯波特率,可以用于单片机/嵌入式系统的RS232串口扩展㊁带自动硬件速率控制的高速串口等,支持串口低功耗睡眠模式㊂CH438Q与STM32通信原理如图2所示㊂图2㊀CH438Q与STM32F103RCT6通信原理图CH438Q集成扩展出来的通信接口为TTL电平,在本次数据采集器中所要搭载的传感器均为RS232通信方式,因此,在串口扩展设计模块中,需要采用MAX3232芯片将TTL电平转换成RS232电平与传感器进行通信㊂3㊀控制部分设计微控制器采用STM32F103RCT6芯片,它基于高性能㊁低成本㊁低功耗嵌入式应用的ARMCortex-M3内核,采用ARMV7构架,支持Thum-2指令集,具有位带操作㊁定时器㊁可嵌套中断㊁低成本㊁低功耗㊁接口丰富等优势[5]㊂在数据采集系统中,STM32微控制器负责对串口扩展模块中的CH438Q寄存器进行初始化㊁将采集到的数据进行整合㊁存储以及对整个系统运行进行监测㊂微控制器主要功能示意图如图3所示㊂图3㊀控制模块主要功能示意图控制模块的软件设计部分是在KeiluVision5集成开发环境下完成的㊂软件架构基于模块化思想,针对不同的功能模块进行函数封装,提高了软件重用性和简洁性㊂3.1㊀CH438软件配置CH438Q芯片内部具有8个完全独立的异步串口,在寄存器地址空间分布上,每个串口各占用8个字节的地址空间㊂对CH438Q的串口进行初始化要根据串口号对应的地址进行相应的设置,主要包括:波特率㊁内部时钟频率㊁FIFO的设置㊂(1)波特率的设置是基于搭载传感器的波特率大小选择的㊂在本次试验中将串口1的波特率设置为115200bit/s,其他串口统一设置为9600bit/s㊂(2)内部时钟频率的大小要根据CH438Q外部晶体的大小进行计算,其计算公式为:内部时钟频率=外部晶振频率基准时钟ˑ16ˑ所需通讯波特率㊀㊀㊀㊀㊀32㊀InstrumentTechniqueandSensorJan.2021㊀设计中选用了频率为7.3728MHz石英振荡器作为外部晶振,以1.8432MHz作为串口内部基准时钟,所需波特率为9600bit/s,则公式计算后,内部时钟频率大小为0.6144MHz㊂(3)设置FIFO模式为打开状态,触发点为112字节,便于数据缓存㊂3.2㊀数据处理考虑到所搭载传感器的数量和返回数据的重复,有必要对数据进行相应的处理,这样有利于数据的存储以及后期处理㊂微控制器将接收到CTD传感器㊁甲烷传感器㊁MiniCO2传感器㊁自研CO2传感器㊁舱内温湿度传感器以及pH传感器数据,每个传感器保留必要的数据后并用分号隔开进行组合㊂数据处理后的格式为:标志位,日期,时间,温度,电导率,压力,溶解氧,盐度,声速;甲烷浓度;参考A/D,当前A/D,未校正CO2浓度,校正后CO2浓度,传感器温度,气压,内部电池温度,电源电压;CO2浓度;舱内温度,舱内湿度;pH值㊂3.3㊀数据存取存储模块应具有非易失性,及在掉电后的数据不会被丢失㊂常用的有固化存储器主要包括FLASH㊁E2PROM和SD卡[6]㊂在深海探测时,由于深度原因,数据一般无法进行实时传输到水面,可以采用大容量存储设备,以存储数据㊂这里选用SD卡作为数据存储器是非常合适的㊂它不仅容量可以做到很大(32GB以上),而且方便移动,并且有几种体积的尺寸可供选择(标准的SD卡尺寸,以及TF卡尺寸等),能满足不同应用的要求㊂微控制器在将数据处理完成之后,将数据以.TXT文件格式存储到SD卡之中,并以时间作为文件名㊂此外,为了方便测试后数据读取处理,设计了USB的硬件接口功能并编制了相应的控制程序,方便了数据的读取㊂4㊀近海实验结果数据采集系统装载在耐压舱体中,通过定制电缆分别与CTD传感器㊁甲烷传感器㊁自研CO2传感器㊁MiniCO2传感器等进行连接,工作电源由AUV提供24V直流电源㊂近海试验表明,数据采集器在长时间运行下可以稳定工作,通过USB读取的实验数据分类存储完整,达到了预期目标㊂部分实验数据整理后如表2 表4所示㊂表2㊀CTD传感器数据标志位日期时刻温度/ħ电导率/(S㊃m-1)压力/Pa溶解氧/(mg㊃L-1)盐度/(mg㊃L-1)声速/(m㊃s-1)#2019-04-1209:21:2911.00740.00031-0.1687.2480.00667.248#2019-04-1209:21:3910.99220.00031-0.1897.2570.00661451.177#2019-04-1209:21:4910.93270.000320.0537.3660.00661450.950#2019-04-1209:21:5910.90900.000310.0137.4170.00661450.858#2019-04-1209:22:0910.94710.00031-0.1307.3300.00661451.003表3㊀甲烷和MiniCO2传感器数据甲烷浓度/(mg㊃L-1)参考A/D当前A/D未校正CO2浓度/(mg㊃L-1)校正后CO2浓度/(mg㊃L-1)传感器温度/ħ气压/Pa内部电池温度/ħ电源电压/V0.3620148701758-250.00-252.9811.31988.220.1711.880.4350184802151-250.00-252.8811.30988.6170.3511.80.5570187402177-250.00-252.7511.27989.130.4011.80.7970187702181-250.00-252.7711.26989.050.5211.80.9100187702181559.00565.3411.23988.790.5211.8表4㊀自研CO2㊁温湿度㊁pH传感器数据CO2浓度/(mg㊃L-1)舱内温度/ħ舱内湿度/%RHpH值52810.943.85.17752011.043.85.20152911.043.85.21152911.043.75.21152611.043.75.2265㊀结束语针对于深海资源探测设计的数据采集系统,在完成了串口扩展问题的基础上,不仅做到了集成度高㊁低功耗㊁低成本,还可以根据不同的探测任务需求,灵活搭载不同的传感器㊂后期还可以针对微控制器STM32功能进行深入开发,设计不同的功能模块,满足不同领域通信控制和数据传输的需求㊂(下转第47页)㊀㊀㊀㊀㊀第1期甄国涌等:基于CameraLink的高可靠性图像数据传输设计47㊀㊀图8㊀16bit灰度图像表1㊀误码统计表测试序号传输距离/m数据量/GB误码个数双校验前双校验后重传次数14162600243257003616520046329600581610602683219828710161757238103245316315㊀结束语针对图像数据在高速传输时可靠性较低的问题,设计了基于CameraLink的高可靠性图像数据传输系统㊂通过对接口时序进行优化设计以及使用CRC校验与ECC校验结合的双校验方法,提高了CameraLink接口在传输图像数据的可靠性㊂经试验验证,加入双校验逻辑后,误码率低于一百亿分之一,图像数据传输可靠性显著提升㊂参考文献:[1]㊀杜文略,李红薇,高越.水下试验图像数据采集存储系统的设计与实现[J].电子器件,2019,42(3):733-739.[2]㊀隋延林,何斌,张立国,等.基于FPGA的超高速CameraLink图像传输[J].吉林大学学报(工学版),2017,47(5):1634-1643.[3]㊀邱扬刚,邱琦,赵民伟,等.基于CameraLink的高速图像采集技术研究与应用[J].计算机测量与控制,2018,26(4):239-242.[4]㊀魏淑稳.基于FPGA的CameraLink图像数据采集装置的研究与实现[D].太原:中北大学,2019.[5]㊀张维达,崔明,张甫恺.基于异步FIFO的CameraLink数字图像光纤传输技术[J].仪表技术与传感器,2016(7):47-50.[6]㊀汝兴海.图像数据高速传输和数据存储的关键技术研究与实现[D].太原:中北大学,2016.[7]㊀刘源,李庆,梁艳菊.基于FPGA的红外目标自动检测系统[J].红外技术,2019,41(6):521-526.[8]㊀李辉景,王淑琴,任勇峰,等.基于CRC校验的高速长线LVDS传输设计[J].电子器件,2015,38(6):1346-1351.[9]㊀朱金瑞,王代华,苏尚恩,等.存储式弹载数据记录仪存储可靠性技术研究[J].兵器装备工程学报,2019,40(1):159-162.[10]㊀范君健,吴国东,王志军,等.基于FPGA的高精度弹载压力数据采集系统[J].兵器装备工程学报,2017,38(9):102-107.作者简介:甄国涌(1971 ),教授,博士,主要研究领域为动态测试技术㊂E⁃mail:zhenguoyong@nuc.edu.cn丁润琦(1996 ),硕士研究生,主要研究领域为动态测试技术,电路与系统㊂E⁃mail:drqdrq10000@163.com(上接第32页)参考文献:[1]㊀韩增林,李博,陈明宝,等. 海洋经济高质量发展 笔谈[J].中国海洋大学学报(社会科学版),2019(5):13-21.[2]㊀吴邦春,彭晓彤,周怀阳,等.基于海底观测网的深海化学监测系统的设计[J].仪器仪表学报,2011,32(5):1171-1176.[3]㊀丁忠军,任玉刚,张奕,等.深海探测技术研发和展望[J].海洋开发与管理,2019,36(4):71-77.[4]㊀张涌萍,杨汝.具有优越陷波选择性和带宽的超宽带缝隙天线[J].现代电子技术,2014,37(15):86-88.[5]㊀魏旭可.基于STM32单片机的光谱仪数据采集与处理系统[D].青岛:中国海洋大学,2012.[6]㊀陈作聪.一种用于海洋大数据的低功耗数据采集器设计[J].计算机测量与控制,2018,26(7):306-308.作者简介:刘君(1993 ),硕士研究生,主要研究方向为光电探测与控制技术㊂E⁃mail:1432701713@qq.com通信作者:程凯(1974 ),高级工程师,博士,主要研究方向为海洋信息探测与处理㊂E⁃mail:chengkai@ouc.edu.cn。
基于STM32及AD7606的16通道同步数据采集系统设计摘要: 介绍了基于STM32及AD7606的同步数据采集系统的软硬件设计。
主控芯片采用基于ARM Cortex -M4内核的STM32F407IGT6,实现对AD 采集数据的实时计算并通过以太网络进行数据传输。
A7606为16位、8通道同步采样模数数据采集系统[],利用两片AD7606,可以实现对16路通道的实时同步采样。
经过测试,该系统可以实现较高精度的实时数据采集。
0 引言[此处找书介绍STM32],该芯片主频可达168MHz,具有丰富的片内外设,并且与前代相比增加了浮点运算单元(Floating Point Unit,FPU),使其可以满足数据采集系统中的 [介绍AD7606]1 系统总体方案设计整个系统由传感器模块、信号调理模块、数据采集模块、处理器STM32、及通信模块及上位机系统组成。
系统整体结构框图如图1所示。
本系统是为液态金属电池性能测试设计,需要测量电池的充放电电压、电流以及交流加热系统的电压、电流,并以此计算出整个液态金属电池储能系统的效率。
因此两片AD7606的16个通道分为两组,每组8个通道,这两组分别测量4路直流、交流的电压和电流信号。
AD7606通过并行接口与STM32连接,STM32读取AD 采样数据后进行计算,并将数据通过网络芯片DP83848通过UDP 协议发送给上位机。
上位机负责显示各通道采集信息、绘制波形以及保存数据等。
STM32F407IGT6霍尔直流传感器上位机软件DP83848直流信号交流信号交流互感器调理电路调理电路AD7606AD7606图1 系统整体结构框图2 系统硬件设计2.1 模拟信号采集电路设计 模拟信号的采集包含直流电压、电流,交流电压、电流四部分。
直流信号的采集分别使用霍尔电压传感器HNV025A 和霍尔电流传感器HNC100B ,两种传感器的电路原理图类似,仅以霍尔电压传感器电路原理图为例说明,如图2-1所示。
基于STM32的AD采集与SD卡数据存储作者:杜佳良丁亚东赵俊杰来源:《电脑知识与技术》2016年第12期摘要:设计一种基于STM32的AD信号采集并且将采集相关信息在SD卡上存储的系统。
利用计算机软件将SD卡上的文本格式数据信息转换成EXCEL格式,方便用户对信息进行查询管理,在实际工程中具有很高的应用价值。
关键词:STM32;SD卡;数据存储中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2016)12-0235-03Abstract:Based on STM32,designing an analog to digital acquisition and related information will be collected on the SD card storage system. Using computer software to convert the text format data on the SD card into EXCEL format, user-friendly information query has a high value in the actual project.Key words: STM32; SD card; data storage随着工业自动化的发展,控制设备在各领域得到了广泛的应用。
在一个控制系统中,外界的传感器相当于一个系统的“鼻子”和“眼睛”,往往决定系统中下一步的动作,是一个系统的关键。
现在的32位处理器基本都具有ADC模块,免去了使用8位单片机需要外搭ADC电路的过程,简化电路设计并提高了转换的快速性和准确性。
现在加工制造业的迅速发展,对系统数据的实时性也提出了更高的要求,迫切需要一种简单方便的方式对大量数据进行存储。
大型控制系统通常会采用485通讯、以太网的方式将数据直接传送到上位机,建立数据库,而对于一些小型控制设备,这会大大增加设备的成本,相比之下,利用单片机和存储介质就地存储就显得更有优势。
页眉内容基于STM32的过采样技术研究与实现吴家平1,沈建华2(华东师范大学计算机科学与技术系,上海200241)摘要针对微控制器自带ADC精度较低的情况,介绍了过采样技术提高微控制器ADC精度的基本原理,给出了在ARMCortex-M3内核微控制器Abstractessor.器专门设计于满足集高性能、低功耗、实时应用、具有竞争性价格于一体的嵌入式领域的要求。
但是其自带的ADC只有12位精度,在某些场合满足不了要求,通过引入过采样技术,能够有效的增加数据采样精度,解决了使用外部专用ADC带来的成本问题。
2过采样技术原理2.1量化噪声分析ADC采样过程其实是一个将连续的模拟信号量化成有限的数字的过程,每个数字代表一次采样所获得的信号。
量化时,根据数据位把整个幅度划分为量化级,例如12位数据位则表示212个量化级,16位数据则表示216个量化级,把落入同一级的样本值归为一类,并给定一个量化值。
由于模拟信号的是连续的,量化结果和被实际模拟量的之间会存在差值,该差值被称作量化误差(e q ),也称量化噪声。
根据参考电压(V ref )和量化的数字的位数(N),能够确定最小的分辨率:△=N refV 2(1)N 越大,△就越小,量化误差也就越小。
在没有其它能造成误差的因素例如热噪声、杂色噪声、参考电压变化的理想情况,量化误差应该在±0.5△之内,即q e ≤±0.5△。
假设输入信号的变化大于△,并且在△间随机分布,可以将量化噪声看成白噪声,其总功率为一个常数,平分分布在0~fs 的频带内,如样来增加采样精度,必须满下面两个条件:(1)输入信号里必须存在一些噪音,这些噪音必须是白噪音,功率平均分配在整个有用的频带内。
(2)噪声的幅度必须能够对输入信号产生足够大的影响,以使得ADC 转换的结果能随机的翻转至少1位,否则的话所有的输入信号将会转换出同样的值,对这些值进行的抽取操作将不会带来精度的提高。