演示课件第二章牛顿插值法.ppt
- 格式:ppt
- 大小:1.65 MB
- 文档页数:33
第二章 插值法在科学研究与工程技术中,常常遇到这样的问题:由实验或测量得到一批离散样点,要求作出一条通过这些点的光滑曲线,以便满足设计要求或进行加工。
反映在数学上,即已知函数在一些点上的值,寻求它的分析表达式。
此外,一些函数虽有表达式,但因式子复杂,不易计算其值和进行理论分析,也需要构造一个简单函数来近似它。
解决这种问题的方法有两类:一类是给出函数()f x 的一些样点,选定一个便于计算的函数()x ϕ形式,如多项式、分式线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 的近似,这就是插值法;另一类方法在选定近似函数的形式后,不要求近似函数过已知样点,只要求在某种意义下在这些样点上的总偏差最小。
这类方法称为曲线(数据)拟合法。
设已知区间[,]a b 上的实值函数f 在1n +个相异点[,i x a b ∈处的函数值(),0,1,,i i f f x i n == ,要求构造一个简单函数()x ϕ作为函数()f x 的近似表达式()()f x x ϕ≈使得()(),0,1,,i i i x f x f i n ϕ=== (2-1)这类问题称为插值问题。
称f 为被插值函数;()x ϕ为插值函数;0,,n x x 为插值节点;(2-1)为插值条件。
若插值函数类{()}x ϕ是代数多项式,则相应的插值问题为代数插值。
若{()}x ϕ是三角多项式,则相应的插值问题称为三角插值。
若{()}x ϕ是有理分式,则相应的插值问题称为有理插值。
§1 Lagrange 插值1.1 Lagrange 插值多项式设函数f 在1n +个相异点01,,,n x x x 上的值(),0,1,,i i f f x i n == 是已知的,在次数不超过n 的多项式集合n P 中,求()n L x 使得(),0,1,,n i i L x f n n == (2-2)定理1 存在惟一的多项式n n L P ∈满足插值条件(2-2)。
牛顿插值法(1)牛顿真是牛,拉格朗日插值法只能算是数学意义上的插值,从插值基函数的巧妙选取,已经构造性的证明了插值法的存在性和惟一性,但是从实现的角度看并不很好,而牛顿很好的解决了这个问题。
牛顿插值是基于下面这些的公式:f[x0,x1,...xk]=(f[x1,...xk]-f[x0,...xk-1])/(xk-x0)f[x]=f(x)f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)前两个是均差的递推关系式,而后一个就是牛顿插值公式,其中N(x)=f(x)-Rn(x),即目标多项式,Rn(x)是n阶插值余项,我们就是用N(x)去近似f(x)。
可以构造这样一个均方差表:xk f(xk) 一阶均差二阶均差 ...x0 f(x0)x1 f(x1) f[x0,x1]x2 f(x2) f[x1,x2] f[x0,x1,x2]...如果有n个点插值,表会有(n*n)/2+n个表项,如果直接编程会有O(n*n)的空间复杂度,编程时做个简单的改进,不难发现在这个表中只有部分数据有用,对角线(斜行)它们是目标值,用来表示多项式的,左边的两纵行(实际上只需要x一行)以及最底下的一行,表示当前插值的状态。
经过改进后只需要O(n)的空间复杂度。
两个过程:1,新增加一个点时的更新。
只须更新最底下一行数据,其递推关系由均差公式给出,最后算出高一队的均差值,需时O(n)2,插入点完成后如何计算多项式在另外给定点的值N(x)。
由牛顿插值公式,最终的表达式为:N(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)如果直接将它展开,再算实在麻烦,实际上大可不必这样做,还记得多项式求值的秦九韶算法吗?将多项式‘叠’起来,从内层括号往外一层层拨开,n次多项多的计算,只需要做n次乘法,同样的思想,将上式改写成:N(x)=f[x0]+(x-x0){f[x0,x1]+(x-x1){f[x0,x1,x2]+(x-x2){...{f[x0,...xn-1]+(x-xn-1)f[x0, (x)n]}...}就可以同样简单的计算了,时间复杂度O(n)综合起来的性能:对于n个点的插值,产生多项式的时间复杂度是O(n*n),最终进行一个点的计算的时间复杂度是O(n)。