§2.4 差商与Newton插值公式
- 格式:ppt
- 大小:3.87 MB
- 文档页数:22
多项式的插值多项式与Newton插值知识点多项式的插值多项式是数值分析中的一个重要概念,它用于将给定的一组数据点拟合为一个多项式函数。
在多项式的插值问题中,给定n + 1个数据点(x0, y0), (x1, y1), ... , (xn, yn),其中xi不相等,yi可以是任意实数,要求找到一个n次多项式P(x),使得P(xi) = yi,i = 0, 1, ..., n。
插值多项式的目的是通过已知的数据点,找到一个多项式函数,从而能够在这些数据点上精确地插值。
Newton插值是一种常用的插值方法,它采用了差商的概念。
差商是一种用于表示多项式系数的方法,通过递推关系可以快速计算出插值多项式的系数。
为了使用Newton插值,首先需要计算出差商表。
差商表的第一列是给定的数据点的纵坐标值,第二列是相邻数据点的差商,第三列是相邻差商的差商,以此类推。
差商表的对角线上的元素即为插值多项式的系数。
插值多项式的计算过程可以通过以下步骤来完成:1. 根据给定的数据点,构建差商表。
2. 根据差商表的对角线上的元素,计算插值多项式的系数。
3. 根据插值多项式的系数,构建插值多项式。
在实际应用中,多项式的插值多项式可以用于数据的拟合和插值计算。
通过插值多项式,我们可以通过已知数据点推断出未知数据点的值,从而实现对数据的预测和估计。
总结起来,多项式的插值多项式与Newton插值是数值分析中常用的方法。
它们通过利用已知的数据点,构建插值多项式来拟合数据,从而实现数据的预测和插值计算。
在实际应用中,我们可以根据具体的问题和数据特点选择适合的插值方法,并利用插值多项式进行数据的分析和处理。
Newton 插值的算法实现Lagrange 插值公式结构紧凑,便于理论分析。
利用插值基函数也容易到插值多项式的值。
Lagrange 插值公式的缺点是,当插值节点增加,或其位置变化时,全部插值基函数均要随之变化,从而整个插值公式的结构也发生变化,这在实际计算中是非常不利的。
下面引入的Newton 插值公式可以克服这个缺点。
1、问题描述当n=1时,由点斜式直线方程知,过两点00(,())x f x 和11(,())x f x 的直线方程为1010010()()()()().f x f x N x f x x x x x −=+−−若记 100110()()[,],f x f x f x x x x −=−则可把1()N x 写成10010()()[,]().N x f x f x x x x =+−显然,1()N x 就是一次Lagrange 插值多项式1()L x 。
由于1()y N x =表示通过两点00(,())x f x 和11(,())x f x 的直线,因此一次插值亦称为线性插值。
当n=2时,进而记120121*********[,][,]()()[,],[,,]f x x f x x f x f x f x x f x x x x x x x −−==−−类似地,构造不超过二次的多项式2001001201()()[,]()[,,]()().N x f x f x x x x f x x x x x x x =+−+−−容易检验,这样的2()N x 满足插值条件200211222()(),()(),()().N x f x N x f x N x f x ===因此,2()N x 就是二次Lagrange 插值多项式2()L x 。
二次插值的几何解释是,用通过三点00(,())x f x ,11(,())x f x ,22(,())x f x 的抛物线2()y N x =来近似所考察的曲线()y f x =,因此这类插值亦称为抛物线插值。
差商公式推导牛顿插值公式
设有n+1个数据点(x0,y0),(x1,y1),...,(xn,yn),要求通过
这些数据点构造一个n次多项式P(x),用于近似原函数的插值。
牛顿插值公式的一般形式为:
P(x)=f[x0]+f[x0,x1](xx0)+f[x0,x1,x2](xx0)(xx1)+...+f [x0,x1,...,xn](xx0)(xx1)...(xxn1)
其中f[x0]代表差商,f[x0,x1]代表二阶差商,以此类推。
1.一阶差商的计算:
f[xi]=(yiy0)/(xix0)
2.二阶差商的计算:
f[xi,xi+1]=(f[xi+1]f[xi])/(xi+1xi)
3.三阶及更高阶差商的计算:
f[xi,xi+1,...,xi+k]=(f[xi+1,xi+2,...,xi+k]f[xi,xi+1,...,xi
+k1])/(xi+kxi)
4.将差商代入牛顿插值公式中,得到:
P(x)=f[x0]+f[x0,x1](xx0)+f[x0,x1,x2](xx0)(xx1)+...+f [x0,x1,...,xn](xx0)(xx1)...(xxn1)
这样就得到了n次牛顿插值公式。
总结起来,差商公式的推导过程就是根据给定的数据点,计算不同阶次的差商,然后将差商代入牛顿插值公式中得到n次多项式。
通过这个多项式,我们可以在给定的数据点间进行插值,从而近似原函数的数值。