!!!!比例变量泵控马达系统的建模与仿真
- 格式:pdf
- 大小:272.62 KB
- 文档页数:4
基于AMESim和Simulink联合仿真的定量泵-变量马达系
统转速控制研究
邬凯;陈朋威
【期刊名称】《价值工程》
【年(卷),期】2024(43)9
【摘要】本文使用了AMESim和Simulink软件构建了定量泵-变量马达系统仿真模型,用于定量泵-变量马达系统的分析,并采用Simulink为主的联合仿真方法。
进行了PID和模糊PID两种控制策略的比较研究。
结果表明,与传统PID控制相比,模糊PID控制策略在系统响应时间和稳定性方面表现更出色,尤其在恒转速控制方面表现更佳。
【总页数】4页(P136-139)
【作者】邬凯;陈朋威
【作者单位】陕西工业职业技术学院机械工程学院;复合型移动机器人陕西省高校工程研究中心
【正文语种】中文
【中图分类】TH137
【相关文献】
1.基于AMESim/Simulink的轮式两栖车静压行驶驱动系统马达同步控制联合仿真研究
2.基于AMESim和Simulink联合仿真的阀控马达转速控制
3.变转速输入定
量泵-恒转速输出变量马达系统恒转速控制方法研究4.基于AMESim和Simulink 联合仿真的马达转速自适应控制
因版权原因,仅展示原文概要,查看原文内容请购买。
高技术的现代战争要求地面雷达具有良好的机动性能。
雷达天线车的快速架设、调平和撤收系统是雷达的重要系统之一,直接影响到雷达的机动性能。
电液比例控制技术填补了开关液压控制技术与伺服控制技术之间的空白,已成为液压技术中最富活力的分支。
把电液比例阀控技术成功地应用雷达车调平系统中,对于提升雷达机动性能具有重要的意义。
本文所介绍的电液比例阀控液压自动调平系统,采用了比例多路阀控制,多个调平支腿执行元件可以实现不受负载约束的无级调速控制,这是实现高效调平性能的关键。
1 调平系统特点某雷达天线车自重45 t,要求工作状态时天线水平基准小于3’,整车展开并完成调平的时间控制在2 min以内。
雷达车采用四点支撑实现系统调平的方式。
系统设计采用液压作为动力源,由电机一液压泵驱动,通过液压控制阀控制四条液压支腿的升降运动,将天线车由运输状态转架为正常工作状态,并保持水平状态的稳定。
要实现本系统的功能有两个关键技术需要解决:一是调平支腿的性能问题;二是驱动控制方式和控制策略问题。
本系统方案摒弃了常规的开关阀控设计,采用性能更为先进的电液比例控制技术,提升液压系统执行机构的控制性能,实现多个执行元件同时相互独立地在不同的速度和压力下工作,使得调平控制更为灵活,实现柔性的控制策略;功能上解决了落地检测的问题,实现了一键式调平的全自动功能,有效地保证了调平时间指标的实现。
调平支腿采用带抱闸制动功能的液压马达驱动滚珠丝杆的结构设计,机械效率高,承载能力强,满足了大吨位雷达车的使用要求;通过专门研制的液压马达制动控制阀集成模块对调平支腿实施驱动和控制。
该设计方案在满足系统要求的前提下,具备了技术的先进性,同时具有很好的通用性和可扩展性。
2 系统设计2.1液压系统工作原理及工作过程液压调平系统原理图如图1所示,液压泵采用负载敏感恒功率变量泵,泵源额定压力为180 bar,最大流量为90 L/min,电机功率11 kW。
图1液压系统原理图液压比例控制阀为负载敏感式换向阀,从执行元件通路引出的控制油信号经过换向滑阀中的信号孔引出,然后合成一个公共的信号通路,并且保证只是从某一侧获得的控制压差作用于流量调节装置。
基于SIMULINK 泵控马达调速系统建模仿真摘要:依据泵控马达工作原理,建立了变量泵控马达数学模型,利用MATLAB/simulink 并对其进行仿真分析,分别考察系统有无PID 控制,负载的不同输入时刻,负载的输入大小对系统响应的影响,并且在MATLAB 命令窗口绘出了以上不同参数的对比图。
关键词:泵控马达; MATLAB/simulink; PID 控制;负载引 言泵控马达容积调速系统主要由电液比例变量泵和定量液压马达组成,其采用改变液压泵的排量来实现速度调节的,从原理上讲没有节流,溢流和压力损失,并且具有效率高、产生的热量少、调速范围大、输出转矩恒定的优点,因而被广泛应用到大功率或对发热有严格限制的液压系统中。
本文从建立泵控容积调速系统的数学模型出发,利用MATLAB/SIMULINK 对其进行仿真,来研究泵控马达的动态特性和影响因素,进而制定更好的控制策略,以达到较好控制液压马达输出转速的目的。
图1 变量泵定量马达原理图1 变量泵定量马达容积调速系统建模变量泵一定量马达液压容积调速系统的原理如图所示。
变量泵的输入转速pn 、马达的排量m D 一定的情况下,通过改变变量泵的排量pD ,达到调节马达输出转速m n 的目的。
为简化分析,参考文献等作如下假设:(1)泵和马达的泄漏为层流,忽略低压腔壳体的外泄漏,泵和马达的壳体回油压力为大气压; (2)泵和马达组成的两个腔室的总容积相等,每个腔室内油液的温度和体积弹性模量均为常数,且压力均匀相等;(3)液压泵和液压马达之间的连接管道很短,可以1忽略管道中的压力损失、流体质量效应和管道动态忽略不计;2(4)补油系统的压力、流量没有滞后,忽略负载瞬变的影响,认为补油压力为常数,为工作时低压油腔的压力,仅高压腔压力发生变化;(5)马达和负载之间的连接结构刚度很大,忽略结构柔度的影响;(6)输入信号较小,不发生压力饱和现象。
管道中不产生压力冲击,压力超过安全阀压力。
卷扬升降机电液比例阀控马达系统PID控制及仿真PID控制是一种线性控制,将设定值w与实际输出y进行比较构成偏差e=w-y并按其比例、积分、微分通过线性组合构成控制量。
在实际应用中,根据对象的特性和控制要求,也可灵活地改变其结构,取其中一部分环节构成控制规律。
1 PID算法由于计算机控制是一种采样控制它只能根据采样时刻的偏差值计算控制量因此微分项和积分项不能准确的计算出,只能用数值计算方法逼近。
数字式的PID控制算法为:u■=k[e■+T/T■■e■+T■/T(e■-e■)]增量式PID控制算法为:△u■=u■-u■=k[e■-e■+T/T■e■+T■/T(e■-2e■+e■)]计算机控制系统采用恒定的采样周期T,故在确定了k、T■、T■后,根据前后三次的测量偏差就可以求出控制增量。
实际上,位置式与增量式控制对整个闭环系统并无本质差别,只是将原来全部由计算机承担的算式,分出一部分由其他的部件完成。
2 积分分离PID控制阀控马达系统在控制过程的启动、结束或大幅度增减设定时,短时间内系统输出有很大的偏差,会造成PID运算的积分累加,致使控制量超过执行机构可能允许的最大动作范围对应的极限控制量,引起系统较大的超调,甚至引起系统较大的振荡。
采用积分PID控制算法,当被控量与设定值偏差较大时,取消积分作用,以免由于积分作用使系统的稳定性降低,超调量增大;当被控量接近给定值时,引入积分控制,以便消除静差,提高控制精度。
其基本思想是:根据系统情况设置分离用的门限值(也称阀值)A。
当偏差大于规定的门限值A时,删除积分作用。
当偏差值比较小时,采用PID控制,可保证系统的控制精度。
控制算法可表示如下:u■=k■e(k)+βk■■e(i)+k■[e(k)-e(k-1)]式中:β=1,e(k)≤A,采用PID控制;β=0,e(k)>A,采用PD控制。
3 PID调节器参数选择选择调节器的参数,必须根据工程的具体问题来考虑。
泵控液压马达系统模型建立及试验验证康晶晶;郭姗姗;闫诚诚;李鲜花;肖茂华【摘要】泵控液压马达系统对实现液压机械无级变速箱性能的控制非常重要,文章建立了泵控液压马达系统的模型,基于已搭建的泵控液压马达系统,研究泵控液压马达系统的传动比和比例电磁铁通电电压的关系,检验仿真模型的正确性,更好的了解系统性能,对实际变速箱的设计起到非常重要的作用.【期刊名称】《南方农机》【年(卷),期】2018(049)002【总页数】1页(P30)【关键词】泵控液压马达系统;建模试验;变速箱性能【作者】康晶晶;郭姗姗;闫诚诚;李鲜花;肖茂华【作者单位】南京农业大学工学院,江苏南京 210031;南京农业大学工学院,江苏南京 210031;南京农业大学工学院,江苏南京 210031;南京农业大学工学院,江苏南京 210031;南京农业大学工学院,江苏南京 210031【正文语种】中文【中图分类】TH137.51泵控液压马达系统是液压机械无级变速箱液压传动环节的重要组成部分,主要由马达和泵组成,液压马达的输出转速受液压泵的溢流阀的工作点变化的影响[1],通过控制变量泵排量来控制液压功率流速率,使变速箱实现段位无级调速。
本试验基于MATLAB自主开发控制程序,与单片机接口连接控制变量泵比例电磁通电情况,进而控制变速箱,验证建立的泵控液压马达系统调速特性的正确性。
1 泵控液压马达系统模型建立在signal,control库中选取信号源signal模块,采用连续信号代替比例电磁铁控制变量泵斜盘旋转,实现供油方向和排量变化[2]。
再添加相应的辅助元件,最终得到如下的泵控液压马达系统仿真模型如图1所示。
图1 变泵控液压马达系统仿真模型2 泵控液压马达系统实验验证2.1 泵控液压马达调速试验根据油路实物图,进行泵-马达液压系统调速试验。
主要试验步骤如下:①从发动机仪表盘的控制钥匙启动发动机,使其处于空挡怠速状态(750r/min)下空转15min;②通过控制系统显示屏幕打开程序控制系统,将变速箱切换至HM1段,观察变速箱的运转稳定情况;③将发动机的转速稳定控制在750r/min。
基于SimulationX的泵控马达调速系统建模仿真高翔;胡亚男【摘要】为了深入研究液压机械无级变速器中液压系统的特性,利用SimulationX 建立了液压泵控马达系统及其排量伺服机构的物理模型,对整个系统的动态特性和效率进行了仿真研究,并应用PID控制.仿真结果表明系统的控制性能有了明显的改善,能够使系统的抗负载干扰能力提高,实现马达恒转速控制;另外,研究了排量比、输入转速和外负载这三个参数对马达输出效率的影响.【期刊名称】《液压与气动》【年(卷),期】2015(000)010【总页数】5页(P56-60)【关键词】泵控马达;SimulationX;PID控制;效率【作者】高翔;胡亚男【作者单位】江苏大学汽车与交通工程学院,江苏镇江212013;江苏大学汽车与交通工程学院,江苏镇江212013【正文语种】中文【中图分类】TH137引言国外农用大功率拖拉机为了提高作业效率,降低劳动强度,适应工作负载频繁变化,多采用液压机械无级变速器(HMCVT)。
液压机械无级变速器采用的是液压功率流与机械功率流组合传递的双功率流无级变速传动形式,既能实现较高的传动效率,又能实现无级变速,同时兼顾了液压系统良好的控制性[1]。
HMCVT的传动效率是由机械效率和液压效率共同决定的,一般认为机械效率变化不大,则液压传动系统的效率变化影响整个传动系统的效率,研究液压系统的调速特性和效率对液压机械无级变速传动系统的性能研究有重要意义[2]。
目前已有的一些研究针对变量泵-定量马达容积调速回路的特性,也有针对伺服变量机构的动态特性[3-6],但是对变量泵-马达系统与伺服变量机构结合进行的分析和研究很少见。
由于变量泵输出流量的调节是由液压伺服机构来完成的,研究由液压伺服机构控制的变量泵-定量马达容积调速系统。
1 液压泵控马达调速系统的工作原理液压泵控马达调速系统主要是由由变量泵-定量马达系统和伺服变量机构组成的,如图1所示。
利用M AT LAB 实现变量泵定量马达调速系统的动态仿真张红俊1,李增玲2(1.山西煤炭职业技术学院,山西太原030031;2.山东省东营市东营区试验中学,山东东营257000)摘 要:通过对变量泵定量马达容积调速系统的数学建模和利用M AT L AB 进行动态仿真,直观地分析了系统的动态特性以及影响特性的因素和影响规律,仿真结果与系统的理论分析相符合。
关键词:容积调速系统;动态特性;动态仿真中图分类号:T P393 文献标识码:A 文章编号:1008-8881(2004)01-0082-02工程实际中广泛利用变量泵定量马达调速系统,尤其是大型工业机械。
系统回路的动态分析是系统设计及生产实际的需要,利用M AT L AB 这一强大的工程工具进行计算机动态特性的分析是十分有效和有实际意义的。
一、液压调速系统原理变量泵定量马达的调速系统如图1。
图1 容积调速液压系统原理通过改变泵的每转排量q p 来调节马达的转速n m 。
n m =q p n p q m(1)式中:n p )))变量泵的转速;q m )))定量马达的每转排量。
二、系统数学模型的建立为了分析方便,作如下假设:液压泵的吸油口和液压马达的回油口油压力为零;油液的粘性不变;液压泵和液压马达的泄漏油流为层流;不考虑油液的液阻和液感及管路中的动态过程,仅考虑液容;不考虑液压泵的脉动性。
1.流量连续性方程n p q p -(c p +c m )p-n m q m =v k dpdt(2)式中:n p ,n m )))泵和马达的转速;v )))压力油腔总容积;q p ,q m )))泵和马达的排量;p )))压力油腔压力;k )))油液体积弹性模量;c p ,c m )))泵和马达的泄漏系数。
2.液压马达转矩平衡方程q m p=Jdn mdt+Bn m +T l (3)式中:J )))马达及负载折算到马达轴上的等效转动惯量;B )))粘性阻尼系数;T 1)))负载力矩。
第1篇一、实验目的1. 了解泵控马达的工作原理和系统结构。
2. 掌握泵控马达的调速控制方法。
3. 分析泵控马达在不同工况下的性能表现。
4. 评估泵控马达系统的稳定性和鲁棒性。
二、实验原理泵控马达系统由定量泵、变量马达、控制阀和执行机构组成。
通过调节定量泵的排量,实现变量马达的转速控制。
当定量泵的排量与变量马达的排量相等时,系统达到稳态,转速保持恒定。
三、实验设备1. 泵控马达实验平台2. 变频器3. 数据采集器4. 控制软件四、实验步骤1. 系统初始化:连接实验平台各部分,打开控制软件,设置实验参数。
2. 稳态实验:调整变频器输出频率,使系统达到稳态,记录转速、流量、压力等数据。
3. 变转速实验:逐步改变变频器输出频率,观察系统转速、流量、压力等参数的变化。
4. 负载实验:在系统达到稳态后,逐步增加负载,观察系统转速、流量、压力等参数的变化。
5. 控制策略实验:改变控制策略,观察系统性能的变化。
五、实验结果与分析1. 稳态实验:实验结果表明,系统在稳态时转速、流量、压力等参数基本稳定,符合预期。
2. 变转速实验:实验结果表明,随着变频器输出频率的增加,系统转速逐渐升高,流量和压力也随之增加。
3. 负载实验:实验结果表明,在系统达到稳态后,增加负载会导致转速下降,流量和压力增加。
4. 控制策略实验:实验结果表明,不同的控制策略对系统性能有显著影响。
例如,采用前馈补偿控制可以有效地提高系统的鲁棒性和稳定性。
六、结论1. 泵控马达系统具有调速范围广、响应速度快、控制精度高等优点。
2. 通过实验验证了不同工况下泵控马达系统的性能表现。
3. 前馈补偿控制等控制策略可以有效地提高泵控马达系统的稳定性和鲁棒性。
七、实验心得通过本次实验,我对泵控马达系统有了更深入的了解,掌握了泵控马达的调速控制方法,并学会了如何分析系统性能。
同时,实验过程中也遇到了一些问题,如系统稳定性不足、响应速度较慢等,通过查阅资料和请教老师,最终找到了解决方法。
石家庄铁道大学毕业设计泵控马达速度控制系统PID控制器的设计与仿真Design of PID Controller for Pump Controlled Motor Speed Control System2016 届电气与电子工程学院专业电气工程及其自动化学号20122629学生姓名武云飞指导教师郑海青完成日期2016年6月11 日摘要随着科学水平的发展,泵控马达系统越来越多的应用于民用以及军用领域,这是由于泵控马达具有一些其他系统不具备的优点,该系统效率高、转动惯量小同时其响应速度迅速。
然而泵控马达系统在实际的生产生活中常常会出现系统负载频繁变化的情况,这种情况会导致系统的输出速度不稳定,严重时可能导致系统的瘫痪。
本设计的目的就是为了寻找一个较为适合泵控马达系统的控制系统用以克服外负载以及模型变化对系统产生的影响。
通过对泵控马达系统的组成的学习和研究以及对液压回路的工作原理的分析,建立起泵控马达速度控制系统的数学模型,借此来实现对泵控马达速度控制系统的仿真模拟。
在该数学模型的基础上,采用PID控制器作为系统的控制环节,分别对传统PID 控制器、位置式PID控制器、增量式PID控制器以及抗积分饱和PID控制器进行系统的仿真模拟,通过对系统进行仿真,比较在外负载干扰的情况下马达转速的响应曲线,从而得出哪种PID控制器更适合泵控马达调速系统。
经过仿真分析对比,可以看出,抗积分饱和PID控制器较其他三种PID控制器有着更短的调节时间以及平滑的曲线,能更符合系统对于马达转速控制的要求。
所以最终选择抗积分饱和PID控制器作为系统的控制环节。
关键词:泵控马达;PID控制器;仿真AbstractWith the development of technology, pump controlled motor system more and more applied in civil and military fields, this is because the pump controlled motor system has some advantages that other systems do not have, this system is highly efficient, low mom -ent of inertia, and fast response. However, pump controlled motor system often appears system load change in actually, the load change can cause the system output speed not stable, severe cases may lead to paralysis of the system. The purpose of this design is to find a suitable control system that can solve to the impact of load changes.Through to the study of pump controlled motor system and the analysis of the hydraulic circuit, we establish the mathematical model of pump controlled motor system, with the system, we can realize the simulation of the pump controlled motor control system. On the basis of the mathematical model, we simulate the traditional PID controller, posi -tional PID controller, incremental PID controller and anti-windup PID controller for respectively. By compare the motor speed response curve which in the case of external load disturbance, which PID controller we can draw is more suitable for pump controlled motor speed control system. Through simulation comparison, we can get that anti-windup PID controller has a more smooth curve and a shorter adjusting time. So we finally choose anti-windup PID controller as the control link of the system.Key words:pump motor control;t he PID controller;simulation目录第1章绪论 (1)1.1 课题研究的背景意义 (1)1.2 PID控制器简介 (3)1.3 主要内容 (5)第2章泵控马达调速系统模型的建立 (6)2.1 泵控马达调速系统基本原理 (6)2.2 时域数学模型 (7)2.2.1 电-机械转换元件的模型建立 (7)2.2.2 比例方向控制阀4WRA6的模型建立 (8)2.2.3 变量泵的阀控液压缸模型的建立 (9)2.2.4 活塞-斜盘倾角环节模型的建立 (11)2.2.5 建立泵控马达的回路模型 (12)2.2.6 速度传感器以及比例放大器的模型建立 (14)2.2.7 建立系统的开环传递函数 (15)2.3 系统中各环节参数的整定 (17)2.3.1 求解比例放大器的增益系数 (17)2.3.2 比例方向控制阀的增益系数 (17)2.3.3 系统的流量增益系数 (17)2.3.4 活塞斜盘倾角传递函数 (17)2.3.5 泵-马达环节的参数整定 (18)2.4 对系统稳定性的检测 (19)2.4.1 控制系统的基本要求 (19)2.4.2 系统稳定性检测 (19)2.5 本章小结 (20)第3章泵控马达PID控制器设计与仿真 (21)3.1 PID控制器的基本原理 (21)3.2 四种PID控制器简介 (21)3.2.1 位置式PID控制算法 (21)3.2.2 增量式PID控制算法 (23)3.2.3 抗积分饱和PID控制算法 (24)3.2 PID控制器设计 (25)3.3 PID控制器参数的整定 (26)3.4 PID控制器仿真 (26)3.4.1 关于Simulink的简介 (26)3.4.2 PID控制器的仿真分析 (26)3.5 泵控马达速度控制系统的仿真模拟 (28)3.6 本章小结 (33)第4章结论与展望 (34)4.1 结论 (34)4.2 展望 (34)参考文献 (36)致谢 (37)附录 (38)附录A 外文资料翻译 (38)A.1 英文 (38)A.2 译文 (43)附录B 泵控马达速度控制系统仿真图 (47)第1章绪论1.1 课题研究的背景意义随着时代的发展,各种科技也在飞快的发展着,工业自动化水平的高低早已经成为了衡量各个部门现代化水平的标志,而工业自动化必然离不开动力的源泉——马达。