5.用更相减损术求294和84的最大公约数时,第一步是 【解析】由于294和84都是偶数,先用2约简. 答案:用2约简
.
一、辗转相除法与更相减损术 根据辗转相除法与更相减损术求两个正整数最大公约数的步骤,探究下列问题: 探究1:(1)用辗转相除法可以求两个正整数m,n的最大公约数,那么用什么逻辑 结构来设计算法?其算法步骤如何设计?
1.辗转相除法可解决下列问题中的 ( ) A.求两个正整数的最大公约数 B.多项式求值 C.求两个正整数的最小公倍数 D.排序问题 【解析】选A.辗转相除法可以求两个正整数的最大公约数.
2.用更相减损术可求得78与36的最大公约数是 ( ) A.24 B.18 C.12 D.6 【解析】选D.先用2约简得39,18;然后辗转相减得39-18=21, 21-18=3,18-3=15,15-3=12,12-3=9,9-3=6,6-3=3.所以所求的最大公约数为 3×2=6.
种算法由欧几里得在公元前300年左右首先提出,因而又叫
_____________. (2)算法步骤: 第一步,给定两个正整数m,n. 第二步,计算m除以n所得的余数r. 第三步,m=n,n=r. r=0 则m,n的最大公约数等于m;否则,返回第二步. 第四步,若____,
欧几里得算法
2.更相减损术
莫忘记求得的相等两数乘以约简的数才是所求最大公约数.
二、秦九韶算法 根据秦九韶算法的含义和步骤探究下列各题: 探究1:秦九韶算法的实质是什么? 提示:秦九韶算法的实质是:求多项式f(x)=anxn+an-1xn-1 +…+a1x+a0的值时,转化为求n个一次多项式的值,共进行n次乘法运算和n次加 法运算.这种算法的运算次数较少,是多项式求值比较先进的算法.