分支定界法和割平面法
- 格式:docx
- 大小:99.50 KB
- 文档页数:6
Milp(Mixed Integer Linear Programming)是一类线性规划问题,其变量包括整数型和实数型变量。
对于Milp优化问题,常见的求解方法包括整数规划分支定界法、整数规划切割平面法、启发式算法等。
本文将着重介绍Milp优化问题的典型求解方法,以便读者更好地理解和应用这些方法。
一、整数规划分支定界法1. 整数规划分支定界法是一种常用的Milp求解方法,其基本思想是通过不断地分支和界定变量取值范围来逐步逼近最优解。
具体步骤包括:(1)初始化线性规划问题,将整数变量约束为取值范围。
(2)求解线性松弛问题,得到最优解和最优目标值。
(3)检查最优解中的整数变量是否满足整数条件,若满足则更新最优解和目标值,否则进行分支操作。
(4)重复步骤(2)和步骤(3)直至满足终止条件。
二、整数规划切割平面法2. 整数规划切割平面法是另一种常用的Milp求解方法,其核心思想是通过不断添加约束条件来逼近最优解。
具体步骤包括:(1)初始化线性规划问题,将整数变量约束为取值范围。
(2)求解线性松弛问题,得到最优解和最优目标值。
(3)检查最优解中的整数变量是否满足整数条件,若满足则更新最优解和目标值,否则添加约束条件。
(4)重复步骤(2)和步骤(3)直至满足终止条件。
三、启发式算法3. 启发式算法是一类常用的Milp求解方法,其特点是通过启发式策略来搜索最优解。
常见的启发式算法包括遗传算法、模拟退火算法、禁忌搜索算法等。
这些算法通过不断地迭代和搜索来寻找最优解,其求解步骤包括:(1)初始化种群或解空间。
(2)根据指定策略进行选择、交叉和变异操作。
(3)更新种群或解空间,并计算适应度值。
(4)重复步骤(2)和步骤(3)直至满足终止条件。
四、优化问题的特点及应用4. Milp优化问题的求解方法在实际应用中具有广泛的适用性,常见的应用领域包括生产调度、物流规划、网络设计等。
由于Milp问题的复杂性和求解困难性,对于实际问题的建模和求解需要充分考虑问题特点和求解方法的选择。
优化理论求解技巧优化理论是数学中的一个分支,主要研究如何找到最佳解或最优解的方法。
在实际问题中,优化理论可以应用于各个领域,例如经济学、工程学和运筹学等。
本文将介绍一些求解优化问题的技巧和方法。
一、线性规划问题的求解技巧线性规划是优化理论中的一个重要分支,常用于解决具有线性约束条件的最大化或最小化问题。
线性规划问题可以通过以下步骤进行求解。
1. 确定目标函数:首先,需要确定一个目标函数,表示要最大化或最小化的目标。
目标函数必须是线性函数,即只包含线性项和常数项。
2. 确定约束条件:接下来,需要确定一组约束条件,限制变量的取值范围。
约束条件也必须是线性的。
3. 构建线性规划模型:将目标函数和约束条件组合在一起,构建线性规划模型。
可以使用线性规划软件或编程语言来进行建模。
4. 求解线性规划问题:使用线性规划求解器来求解线性规划问题。
常用的线性规划求解器有Simplex算法和内点法等。
二、非线性规划问题的求解技巧非线性规划是求解非线性目标函数和约束条件的最优化问题。
由于非线性规划问题的复杂性,通常需要使用一些特殊的求解技巧。
1. 构造梯度和黑塞矩阵:对于非线性函数,常用的求解方法是通过计算目标函数的梯度向量和黑塞矩阵来找到最优解的方向。
2. 利用迭代算法:非线性规划问题通常无法直接求解,因此需要使用迭代算法来逐步逼近最优解。
常用的迭代算法有牛顿法、共轭梯度法和拟牛顿法等。
3. 多起点搜索:非线性规划问题由于存在局部最优解,因此可以通过多起点搜索的方式来寻找更好的解。
多起点搜索可以采用随机初始化的方法或从不同的初始点开始搜索。
三、整数规划问题的求解技巧整数规划是一类特殊的线性规划问题,变量需要满足整数约束条件。
整数规划问题的求解相对困难,常用的求解技巧有以下几种。
1. 分支定界法:分支定界法是整数规划问题的一种求解方法。
该方法通过将问题分解为若干个子问题,并通过不断分支和剪枝的方式来确定最优解。
2. 割平面法:割平面法是一种通过逐步添加线性约束条件来修正松弛问题的方法。
求解整数规划的方法整数规划是一种最优化问题,其解决方案限制了决策变量必须取整数值。
整数规划的应用非常广泛,涉及到许多实际问题,如制造业生产调度、物流优化、资源分配等。
在本文中,我们将介绍几种常用的整数规划方法。
一、分支定界法分支定界法是一种常用的整数规划求解方法,它通过不断将解空间分割为子问题并求解这些子问题,最终找到整数规划的最优解。
具体步骤如下:1. 初始时,将整数规划问题转化为一个线性规划问题,并求解线性规划问题的松弛解。
2. 如果松弛解满足整数约束条件,则找到一个整数解,更新当前最优解。
3. 如果松弛解不满足整数约束条件,则选择一个变量将其分割为两个子问题,并分别求解这两个子问题。
4. 对每个子问题,递归地应用上述步骤,直到找到一个整数解或者确定当前子问题的上界小于当前最优解。
5. 最终,得到整数规划的最优解。
分支定界法的优点是能够保证找到最优解,但其缺点是计算复杂度较高,特别是在问题规模较大时,会导致计算时间过长。
二、整数规划的近似算法当整数规划问题规模较大时,找到精确解的计算复杂度可能变得非常高,此时可以考虑使用近似算法来求解。
近似算法的思想是通过放松整数约束条件,将整数规划问题转化为一个线性规划问题,并对线性规划问题进行求解。
然后,根据线性规划问题的解,对整数规划问题进行修正,得到整数规划问题的一个近似解。
三、割平面法割平面法是一种常用的整数规划求解方法,它通过添加一系列线性不等式(割平面)来逐步减小可行解空间,最终找到整数规划的最优解。
具体步骤如下:1. 初始时,将整数规划问题转化为一个线性规划问题,并求解线性规划问题的松弛解。
2. 如果松弛解满足整数约束条件,则找到一个整数解,更新当前最优解。
3. 如果松弛解不满足整数约束条件,则根据当前松弛解所对应的目标函数值,添加一系列线性不等式(割平面)来限制可行解空间。
4. 对添加了割平面约束的线性规划问题,继续求解,并更新最优解。
5. 重复以上步骤,直到找到一个整数解或者确定当前问题的上界小于当前最优解。
整数规划知识点总结一、整数规划基本概念整数规划是指决策变量的取值受到整数限制的线性规划问题。
数学形式可以表示为:\[\min c^Tx\]\[ s.t. Ax \leq b\]\[x\geq0 \]\[x_i \in \{0, 1, 2, ...\}\]其中,c为目标函数系数,x是决策变量,A是约束系数矩阵,b是约束条件的右端向量,决策变量x是整数。
当所有的决策变量都是整数时,称为纯粹整数规划(Pure Integer Programming)。
当部分决策变量为整数,部分为连续变量时,称为混合整数规划(Mixed Integer Programming, MIP)。
二、整数规划解法整数规划问题的求解可以采用分支定界法、割平面法、隐枚举法等不同方法。
下面将对常用的整数规划解法进行简要介绍。
1.分支定界法分支定界法是一种求整数规划解的有效方法,它通过对决策变量进行分支,将整数规划问题不断分解为子问题,然后采用线性规划方法求解子问题。
具体步骤如下:1)求解线性规划松弛问题,得到一个整数解。
2)若解为整数,则成为可行解,否则确定需要分支的决策变量,分为两个子问题。
3)对子问题继续重复上述过程,直到无法再分或求解出整数解为止。
2.割平面法割平面法是在分支定界法的基础上进行改进,它在每一次迭代求解线性规划松弛问题后,引入一些额外的不等式(割平面)来改进松弛问题的界。
这些割平面是通过分析整数规划问题的特性产生的,可以有效提高整数规划问题求解的效率。
3.隐枚举法隐枚举法是一种通过隐藏对决策变量的枚举,将整数规划问题转化为线性规划问题进行求解的方法。
该方法可以高效地求解整数规划问题,是一种常用的整数规划求解算法。
以上是整数规划常用的三种求解方法,通过不同的算法可以解决不同种类的整数规划问题。
三、整数规划应用领域整数规划在实际决策问题中有着广泛的应用,如生产计划、运输调度、项目投资、资源配置等诸多领域。
下面将对整数规划在不同应用领域的具体案例进行介绍。
缺点:某些变量要求整数不能运用到对数,指数函数中分支界定法:分枝定界法是一个用途十分广泛的算法,运用这种算法的技巧性很强,不同类型的问题解法也各不相同。
分支定界法的基本思想是对有约束条件的最优化问题的所有可行解(数目有限)空间进行搜索。
该算法在具体执行时,把全部可行的解空间不断分割为越来越小的子集(称为分支),并为每个子集内的解的值计算一个下界或上界(称为定界)。
在每次分支后,对凡是界限超出已知可行解值那些子集不再做进一步分支。
这样,解的许多子集(即搜索树上的许多结点)就可以不予考虑了,从而缩小了搜索范围。
这一过程一直进行到找出可行解为止,该可行解的值不大于任何子集的界限。
分枝定界法已经成功地应用于求解整数规划问题、生产进度表问题、货郎担问题、选址问题、背包问题以及可行解的数目为有限的许多其它问题割平面法:它的基本思想和分枝界定法基本上一致,首先不考虑变量的整数约束,利用单纯形法求解出线性规划的最优解,如果得到的解是整数那么这个最优解就是原来问题的最优解,如果最优解不是整数解,则就用一张平面将原来的含有最优解的非整数点但不包含整数可行解的点的那一部分可行域切割掉,也就是在原来的整数线性规划的基础上增加适当的线性约束不等式,这个约束不等式就叫切割不等式当其取等号时就是割平面了。
此后,继续解这个新得到的整数线性规划,如果得到的新最优解是整数,运算就停止,如果不是整数则继续增加适当的线性约束不等式,直到求出的解满足最优整数要求为止。
通过构造一系列平面来切割掉不含有任何整数可行解的部分,最终获得一个具有整数坐标的顶点的可行域,而该顶点恰好是原整数规划的最优解。
割平面法的关键在于,如何构造切割不等式,使增加该约束后能达到真正的切割而且没有切割掉任何整数可行解。
单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。
单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。
minlp求解方法摘要:一、引言二、MINLP求解方法概述1.混合整数线性规划(MILP)2.混合整数二次规划(MIQP)3.混合整数非线性规划(MINLP)三、MINLP求解算法1.分支定界法2.割平面法3.启发式方法四、应用案例1.电力系统优化2.交通运输规划3.工程设计五、我国在MINLP研究中的应用与发展六、结论与展望正文:一、引言混合整数非线性规划(MINLP)是一种广泛应用于工程、经济、管理等领域的优化问题。
MINLP问题通常具有较高的复杂性,需要采用有效的求解方法才能在合理的时间内得到满意的结果。
本文将对MINLP求解方法进行概述,并介绍一些常用的算法及其应用案例。
二、MINLP求解方法概述1.混合整数线性规划(MILP)MILP是MINLP的一种特例,它的目标是找到使线性目标函数最优的整数解。
MILP可以通过常用的线性规划算法(如单纯形法、内点法等)求解。
2.混合整数二次规划(MIQP)MIQP是MINLP的另一种特例,它的目标是找到使二次目标函数最优的整数解。
MIQP可以使用一些成熟的整数优化算法(如分支定界法、割平面法等)进行求解。
3.混合整数非线性规划(MINLP)MINLP是一种更一般化的优化问题,它的目标是在满足约束条件的前提下,找到使非线性目标函数最优的整数解。
由于MINLP问题的复杂性,求解起来相对困难。
三、MINLP求解算法1.分支定界法分支定界法是一种常用的MINLP求解方法。
它通过不断地生成子问题并修剪可行解空间,最终找到最优解。
分支定界法具有较高的求解效率,但计算复杂度较高。
2.割平面法割平面法是一种通过添加割平面约束来逐步缩小可行解空间的求解方法。
割平面法具有较强的实用性,尤其在处理大规模MINLP问题时表现出色。
3.启发式方法启发式方法是一种较为简便的MINLP求解方法,它通过引入启发式因子来加速搜索过程。
启发式方法在求解实际问题时具有一定的局限性,但在某些情况下能取得较好的效果。
整数规划问题的求解策略探讨整数规划问题是指在约束条件下,目标函数为整数线性函数的优化问题。
在实际应用中,整数规划问题广泛存在于生产调度、资源分配、网络设计等领域。
由于整数规划问题的复杂性,其求解过程需要采用合适的策略和方法。
本文将探讨整数规划问题的求解策略,包括分枝定界法、割平面法、启发式算法等,并分析它们的优缺点及适用场景。
一、分枝定界法分枝定界法是求解整数规划问题最常用的方法之一。
其基本思想是通过不断地将问题分解为子问题,并对每个子问题进行求解,直到找到最优解为止。
在分枝定界法中,通常采用深度优先搜索或广度优先搜索的方式遍历搜索空间,通过对搜索树的分支进行限界,剪去一些不必要的分支,从而提高求解效率。
分枝定界法的优点在于能够确保找到最优解,尤其适用于规模较小的整数规划问题。
然而,对于规模较大的问题,分枝定界法的计算复杂度会随着搜索空间的增大而急剧增加,导致求解时间过长。
因此,在实际应用中,需要结合问题的特点和求解需求来选择是否采用分枝定界法。
二、割平面法割平面法是另一种常用的整数规划求解方法。
该方法通过引入额外的线性约束(割平面)来逐步逼近整数规划问题的最优解。
割平面法的核心思想是通过不断添加线性不等式约束,将整数规划问题的凸包逼近到凸壳,从而逐步缩小搜索空间,最终找到最优解。
割平面法的优点在于能够有效地提高求解效率,尤其适用于存在大量连续约束的整数规划问题。
然而,割平面法的实现过程较为复杂,需要对问题的线性松弛模型进行求解,并不断生成有效的割平面。
因此,对于一些特定结构的整数规划问题,割平面法可能并不是最优的求解策略。
三、启发式算法除了传统的分枝定界法和割平面法外,启发式算法也被广泛应用于整数规划问题的求解中。
启发式算法是一类基于经验和规则的启发式搜索方法,通过模拟生物进化、群体智能等自然现象,寻找最优解或近似最优解。
常见的启发式算法包括遗传算法、蚁群算法、模拟退火算法等。
这些算法在求解整数规划问题时,能够有效地避免陷入局部最优解,提高求解速度和质量。
分支定界法和割平面法在上学期课程中学习的线性规划问题中,有些最优解可能是分数或消失,但现实中某些具体的问题,常要求最优解必须是整数,这样就有了对于整数规划的研究。
整数规划有以下几种分类:(1)如果整数规划中所有的变量都限制为(非负)整数,就称为纯整数规划或全整数规划;(2)如果仅一部分变量限制为整数,则称为混合整数规划;(3)整数规划还有一种特殊情形是0-1规划,他的变量取值仅限于0或1。
本文就适用于纯整数线性规划和混合整数线性规划求解的分支定界法和割平面法,做相应的介绍。
一、分支定界法在求解整数规划是,如果可行域是有界的,首先容易想到的方法就是穷举变量的所有可行的整数组合,然后比较它们的目标函数值以定出最优解。
对于小型问题,变量数量很少,可行的整数组合数也是很小时,这个方法是可行的,也是有效的。
而对于大型的问题,可行的整数组合数很大时,这种方法就不可取了。
所以我们的方法一般是仅检查可行的整数组合的一部分,就能定出最有的整数解。
分支定界法就是其中一个。
分枝定界法可用于解纯整数或混合的整数规划问题。
在二十世纪六十年代初由Land Doig 和Dakin 等人提出。
由于这方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。
目前已成功地应用于求解生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题等。
设有最大化的整数规划问题A ,与它相应的线性规划为问题B ,从解问题B 开始,若其最优解不符合A 的整数条件,那么B 的最优目标函数必是A 的最优目标函数z *的上界,记作z ;而A 的任意可行解的目标函数值将是z *的一个下界z 。
分枝定界法就是将B 的可行域分成子区域再求其最大值的方法。
逐步减小z 和增大z ,最终求到z *。
现用下例来说明:例1 求解下述整数规划 219040Maxx x z +=⎪⎩⎪⎨⎧≥≥+≤+且为整数0,702075679212121x x x x x x解 (1)先不考虑整数限制,即解相应的线性规划B ,得最优解为:124.81, 1.82,356x x z ===可见它不符合整数条件。
整数规划模型的构建及求解方法整数规划是一种数学优化问题,其目标是在给定的约束条件下,寻找能够使目标函数最大或最小的整数解。
在实际应用中,整数规划模型常被用于决策问题的求解,如生产计划、物流调度、资源分配等。
本文将介绍整数规划模型的构建方法以及常用的求解方法。
一、整数规划模型的构建方法1.确定决策变量:首先需要确定问题中的决策变量,即可用整数来表示的变量。
这些变量一般代表决策问题中的选择或分配方案。
例如,在生产计划问题中,决策变量可以是不同产品的生产数量。
2.定义目标函数:目标函数是整数规划问题中要最大化或最小化的指标。
根据问题的具体要求,可将目标函数设定为各个决策变量的线性组合或非线性函数。
例如,生产计划问题中,目标函数可以是利润的最大化或成本的最小化。
3.确定约束条件:约束条件用于限制决策变量的取值范围,以满足问题的实际限制。
约束条件可以是等式或不等式。
例如,在物流调度问题中,约束条件可以包括产品的需求量、供应量以及运输容量等。
4.完善模型:为了更准确地描述问题,还需要考虑一些特殊约束条件和问题的具体要求。
例如,某些决策变量可能需要满足某种关系或限制条件,或者需要指定某些变量的取值范围。
二、整数规划模型的求解方法1.穷举法:穷举法是最简单直接的求解方法,即将所有可能的整数解都列举出来,并计算对应的目标函数值,最后选取最优解。
然而,穷举法由于计算复杂度高,只适用于问题规模较小的情况。
2.分支定界法:分支定界法是一种逐步缩小解空间的方法。
通过将整数规划问题分解成若干个子问题,并为每个子问题设定上下界,不断迭代求解,最终找到最优解。
这种方法可以高效地搜索整数解空间,但对于规模较大的问题,计算时间可能会很长。
3.割平面法:割平面法是一种逐步划分解空间的方法。
它通过添加割平面来修正原始线性规划松弛的解,使其成为整数解。
这种方法能够快速收敛到最优解,并且具有较好的计算效率。
4.分枝定界法:分枝定界法是将分支定界法和割平面法相结合的方法。
分支定界法和割平面法的基本原理分支定界法和割平面法是一种在数学和计算机科学领域中常用的问题求解方法。
本文将分别介绍这两种方法的基本原理。
一、分支定界法的基本原理分支定界法是一种通过将问题划分为多个子问题,并对每个子问题进行求解来解决复杂问题的方法。
其基本思想是通过对问题的解空间进行划分,每次选择一个子问题进行求解,并根据已知的信息对该子问题的解空间进行进一步的缩小。
这样,不断缩小解空间,最终找到问题的最优解或最优解的近似解。
具体来说,分支定界法包括以下几个步骤:1. 初始划分:将问题的解空间划分为多个子问题,并选择一个子问题进行求解。
2. 求解子问题:对选定的子问题进行求解,得到一个解或一个解的集合。
3. 解空间缩减:根据已知的信息,对选定的子问题的解空间进行缩减,即排除一些不可能的解或不优的解。
4. 判断终止条件:判断是否满足终止条件,如果满足,则停止求解;否则,返回第2步,选择一个新的子问题进行求解。
分支定界法的优点是可以找到问题的最优解或最优解的近似解,并且可以通过对解空间的划分和缩减,减少问题的求解空间,提高求解效率。
但是,分支定界法的缺点是在问题的解空间较大时,可能需要遍历大量的子问题,导致求解时间较长。
二、割平面法的基本原理割平面法是一种通过不断添加约束条件来逼近问题的最优解的方法。
其基本思想是通过向问题的线性规划模型中添加额外的约束条件,使得新的线性规划模型的解逐步逼近问题的最优解。
具体来说,割平面法包括以下几个步骤:1. 初始线性规划模型:根据问题的要求,建立一个初始的线性规划模型。
2. 求解线性规划模型:对初始的线性规划模型进行求解,得到一个解或一个解的集合。
3. 添加割平面:根据已知的信息,找到一个新的约束条件,并将其添加到线性规划模型中。
4. 更新线性规划模型:根据添加的割平面,更新线性规划模型,并返回第2步,求解更新后的线性规划模型。
割平面法的优点是可以逐步逼近问题的最优解,且可以通过添加割平面来减小解空间,提高求解效率。
数模竞赛常用算法数模竞赛(数学建模竞赛)是指通过数学建模与算法求解问题的比赛。
在数模竞赛中,常用的算法有很多种。
以下是一些常见的数模竞赛常用算法:一、线性规划算法:1.单纯形法:是一种用于求解线性规划问题的常用方法,通过不断迭代找到目标函数取得最大(或最小)值的解。
2.内点法:也是一种求解线性规划问题的方法,通过在可行域内不断向内部移动来逼近最优解。
与单纯形法相比,内点法在求解大规模问题时更具优势。
二、整数规划算法:1.分支定界法:将整数规划问题不断划分为更小的子问题,并通过对子问题的求解来逐步确定最优解。
针对子问题,可以再次应用分支定界法,形成逐层递归的求解过程。
2.割平面法:通过不断添加割平面(约束条件)来逼近整数规划问题的最优解。
通过割平面法,可以有效地减少空间,提高求解效率。
三、动态规划算法:1.最优化原理:将原问题划分为若干子问题,利用子问题的最优解构造出原问题的最优解。
2.状态转移方程:通过定义状态和状态之间的转移关系,将原问题转化为一个递推求解的问题。
四、图论算法:1.最短路径算法:-Dijkstra算法:通过确定节点到源节点的最短路径长度来更新其他节点的最短路径。
-Floyd-Warshall算法:通过动态规划的方法计算图中所有节点间的最短路径。
2.最小生成树算法:-Prim算法:通过不断选择与当前生成树连接的最小权值边来构建最小生成树。
-Kruskal算法:通过按照边的权值递增的顺序,依次选择权值最小且不形成环的边来构建最小生成树。
3.网络流算法:-Ford-Fulkerson算法:通过不断寻找增广路径来增加流量,直至找不到增广路径为止。
-最小费用流算法:在网络流问题的基础上,引入边的费用,最终求解费用最小的流量分配方案。
五、模拟退火算法:模拟退火算法是一种经典的优化算法,模拟物质退火过程的特性,通过随机和接受劣解的策略,逐步逼近最优解。
六、遗传算法:遗传算法是一种模拟自然界生物进化过程的优化算法,通过对一组候选解(个体)进行遗传操作(如交叉、变异、选择等),逐代进化出适应度更高的解。
分支定界法和割平面法
在上学期课程中学习的线性规划问题中,有些最优解可能是分数或消失,但现实中某些
具体的问题,常要求最优解必须是整数,这样就有了对于整数规划的研究。
整数规划有以下几种分类:(1)如果整数规划中所有的变量都限制为(非负)整数,就
称为纯整数规划或全整数规划;(2)如果仅一部分变量限制为整数,则称为混合整数规划;
(3)整数规划还有一种特殊情形是0-1规划,他的变量取值仅限于0或1。
本文就适用于
纯整数线性规划和混合整数线性规划求解的分支定界法和割平面法,做相应的介绍。
一、分支定界法
在求解整数规划是,如果可行域是有界的,首先容易想到的方法就是穷举变量的所有可行的整数组合,然后比较它们的目标函数值以定出最优解。
对于小型问题,变量数量很少,可行的整数组合数也是很小时,这个方法是可行的,也是有效的。
而对于大型的问题,可行的整数组合数很大时,这种方法就不可取了。
所以我们的方法一般是仅检查可行的整数组合的一部分,就能定出最有的整数解。
分支定界法就是其中一个。
分枝定界法可用于解纯整数或混合的整数规划问题。
在二十世纪六十年代初
由Land Doig和Dakin等人提出。
由于这方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。
目前已成功地应用于求解生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题等。
设有最大化的整数规划问题A,与它相应的线性规划为问题B,从解问题B开始,若其最优解不符合A的整数条件,那么B的最优目标函数必是A的最优目标函数z*的上界,记作z ;而A的任意可行解的目标函数值将是z*的一个下界z。
分枝定界法就是将B的可行域分成子区域再求其最大值的方法。
逐步减小z和增大z,最终求到z*。
现用下例来说明:例1求解下述整数规划
Max z = 40x「90x2
9X1 7X2 -56
7X1 20X2 - 70
x1,x2 -0 且为整数
解(1)先不考虑整数限制,即解相应的线性规划B,得最优解为:
洛=4.81,x2= 1.82, z 二356
可见它不符合整数条件。
这时z是问题A的最优目标函数值z*的上界,记作z。
而X1=0, X2=0显然是问题A的一个整数可行解,这时z = 0,是z*的一个下界,记作z,即0w z*< 356。
(2)因为X1X2当前均为非整数,故不满足整数要求,任选一个进行分枝。
设选X1进行分枝,于是对原问题增加两个约束条件:
x, -〔4.81 丨-4“ 一〔4.811 1 =5
于是可将原问题分解为两个子问题B1和B2 (即两支),给每支增加一个约束条件并不影响问题
A的可行域,不考虑整数条件解问题B1和B2,称此为第一次迭代。
得到最优解
为:
显然没有得到全部变量时整数的解,于是再定界
:0岂Z :乞349。
(3)继续对问题B i 和B 2因乙〉Z 2,故先分解B i 为两支,增加条件 X 冬2,称为 B 3;增加条件
X 2> 3,称为B 4。
再舍去X 2>2与X 3< 3之间的可行域,再进行第二次迭代。
解题过程如图:
由图可知,B 3的解已都是整数,他的目标函数值Z 3 =340
,可取为z ,而它大于Z 4 =327。
所以,再分解B 4已无必要。
而问题B 2的Z 2 =341,所以z *可能在340和341之间有整数解。
于是对B 2分解,得问题B 5,既非整数解且Z 5 =308< Z 3,问题B 6为无可行解。
于是有
z =Z 3=z=340
问题B 3的解X i =4.00, X 2=2.00为最优整数解。
340
从以上解题过程可得用分枝定界法求解整数规划(最大化)问题的步骤为:开始,将要求解的整数规划问题称为问题A,将与它相应的线性规划问题称为问题B。
(1)解问题B可能得到以下情况之一:
(a)B没有可行解,这时A也没有可行解,则停止.
(b)B有最优解,并符合问题A的整数条件,B的最优解即为A的最优解,则停止。
(c)B有最优解,但不符合问题A的整数条件,记它的目标函数值为z。
(2)用观察法找问题A的一个整数可行解,一般可取X j =0,j =1,…,n,试探,求得其目标函数值,并记作z。
以z*表示问题A的最优目标函数值;这时有
*
z _ z - z
进行迭代。
第一步:分枝,在B的最优解中任选一个不符合整数条件的变量X j,其值为b j,以[b j]
表示小于b j的最大整数。
构造两个约束条件
X j 乞[b j]和X j -[b j] 1
将这两个约束条件,分别加入问题B,求两个后继规划问题 B i和B2。
不考虑整数条件求解
这两个后继问题。
定界,以每个后继问题为一分枝标明求解的结果,与其它问题的解的结果中,找出最优
目标函数值最大者作为新的上界z。
从已符合整数条件的各分支中,找出目标函数值为最大
者作为新的下界z,若无作用z = 0。
第二步:比较与剪枝,各分枝的最优目标函数中若有小于z者,则剪掉这枝,即以后
不再考虑了。
若大于z,且不符合整数条件,则重复第一步骤。
一直到最后得到z* =z为止。
得最优整数解X*, j =1/\n。
二、割平面法
割平面法德基础仍然是用解线性规划得方法去解整数规划问题,首先不考虑变量X i是
整数这一条件,但增加线性约束条件使得有缘可行域中切割掉一部分,这部分只包含非整数解,但没有切割掉任何整数可行解。
这个方法就是指出怎样找到适当的割平面,是切割后最
终得到这样的可行域,它的一个有整数坐标的几点恰好是问题的最优解。
现用下例来说明:
maxZ = X2
3捲+2x2兰6 」
一3x1 +2x2 兰0
X1, X2 - 0且为整数
增加松弛变量X3和X4,得到初始单纯形表和最优单纯形表如下图:
C j
1 0 0 C B
X B
b X 1 X 2 X 3 X 4 初始 0 X 3 6 3 2 1 0 计 0
X 4
0 -3 2 0 1 算表 一
Z 0
0 1 0 0 最终 0
X 1 1 1 0 1/6 -1/6 计
X 2
3/2 0 1 1/4 1/4 算表
一
Z -3/2
-1/4
-1/4 此题的最优解为:X*= (1 , 3/2) , Z = 3/2,但不是整数最优解,引入割平面。
以 x
2
为源
行生成割平面,由于1/4=0+1/4, 3/2=1 + 1/2,我们已将所需要的数分解为整数和分数, 所以,
生成割平面的条件为:
1 1 1
X 3
X 4
4 4
2
得到等价的割平面条件: X 2< 1见下图。
现将生成的割平面条件加入松弛变匙X 然后加到表中: S !
4
4
也即:
X 2 X 2 X 2
1 1 3 + — X 3
X 4
4 4 "2 1 1 1 + 一 X 3 X 4 =1 _ 4
4 2 1 1 .
-仁厂(4X
3
-
X4)
将 X 3=6-3X 1-2X 2 , X 4=3X 1-2X 2J ,带入
X 4
从而得到:
易
b
£ £2
st
2/3 1 0 0 -1/3 2/3 1
1
0 1 (1 0 1 0
2
0 0 1 1 -4 —
1
1)
1
此时,X1 = (2/3, 1), Z =1,仍不是整数解。
纟继续二X1为源行生成割平面,其条件为:
3 3 3
得到:
X B
h X,
町
Sjt
1
1 0 0
0 1 1/2 i
1
0 1 册
0 1 0
X
J
1
0 0 1 0 -5 3/2
1
0 0 1 1 -3/2 —
-1 1}
(>
-J
{>
x1 > X2见图:
3
3
3。