初中数学一次函数的图象和性质
- 格式:doc
- 大小:23.50 KB
- 文档页数:5
初中数学知识归纳一次函数初中数学知识归纳:一次函数一次函数是初中数学中的重要内容,它是一种线性函数,具有以下形式:y = ax + b。
在一次函数中,a 是斜率,表示函数图像的斜率;b 是常数项,表示函数图像与 y 轴的截距。
一、一次函数的图像特点1. 一次函数的图像是一条直线,可以通过两个点确定。
2. 斜率 a 决定了直线的倾斜程度,a > 0 表示直线向上倾斜,a < 0 表示直线向下倾斜。
3. 常数项 b 决定了直线与 y 轴的截距,当 x = 0 时,y 的值为 b。
二、一次函数的性质1. 函数图像经过第一个点 (x₁, y₁) 和第二个点 (x₂, y₂),可使用坐标求斜率公式计算斜率:a = (y₂ - y₁) / (x₂ - x₁)2. 当一次函数的斜率为正数时,函数图像向右上方倾斜;当斜率为负数时,函数图像向右下方倾斜。
3. 如果两个一次函数的斜率相等,则它们的图像平行。
4. 如果两个一次函数的截距相等,则它们的图像重合。
5. 一次函数的图像在 x 轴上的截距为 (0, b)。
三、一次函数的应用场景1. 物体的运动:当物体做匀速直线运动时,可以使用一次函数来描述其位置与时间之间的关系。
2. 成本和收益分析:在经济学中,一次函数可以描述生产成本与产量之间的关系,以及销售收益与产量之间的关系。
3. 温度变化:温度随时间的变化通常可以用一次函数来表示。
四、一次函数与其他函数的关系1. 一次函数是最简单的函数,其他函数可以通过一次函数进行组合、变形和推广。
2. 二次函数、指数函数、对数函数等都可以通过一次函数进行变换得到。
总结:初中数学中的一次函数是一种线性函数,由斜率和常数项决定。
一次函数的图像是一条直线,通过斜率和截距可以确定直线的特点。
一次函数的应用非常广泛,可以用于描述物体的运动、成本与收益分析等问题。
同时,一次函数也是其他函数的基础,其他函数可以通过一次函数进行推导和变形。
初中数学什么是一次函数它有什么特点一次函数,也被称为线性函数,是初中数学中的一个重要概念。
它是一个以x 的一次方程表示的函数,具有以下形式:f(x) = ax + b,其中a 和 b 是常数。
一次函数在数学中有着广泛的应用,并且具有一些特点和性质。
在本文中,我们将详细讨论一次函数的概念、特点和性质。
一次函数的一般形式为f(x) = ax + b,其中a 和 b 是常数。
其中a 被称为斜率,代表了函数图像的倾斜程度;b 被称为截距,表示函数图像与y 轴的交点。
一次函数的特点和性质如下:1. 直线图像:一次函数的图像是一条直线。
这是因为一次函数是一个一次方程,其图像是一个直线。
直线可以通过两个点来确定,因此我们只需要确定两个点就可以画出一次函数的图像。
2. 斜率:一次函数的斜率决定了函数图像的倾斜程度。
斜率表示了函数在x 方向上的变化率。
当斜率为正时,函数图像向上倾斜;当斜率为负时,函数图像向下倾斜;当斜率为零时,函数图像是水平的。
3. 截距:一次函数的截距决定了函数图像与y 轴的交点。
当x = 0 时,我们可以计算出函数的截距。
截距表示了函数图像与y 轴的位置关系。
4. 增减性:一次函数的增减性由斜率来决定。
当斜率为正时,函数是递增的,即随着x 的增大,函数值也增大;当斜率为负时,函数是递减的,即随着x 的增大,函数值减小。
5. 零点:一次函数的零点表示了函数图像与x 轴的交点。
当函数的值为零时,我们可以求解出函数的零点。
零点表示了函数在x 轴上的位置。
6. 平行和垂直:一次函数的平行和垂直关系可以通过斜率来确定。
如果两个一次函数的斜率相等,则它们是平行的;如果一个函数的斜率是另一个函数斜率的倒数的相反数,则它们是垂直的。
7. 线性关系:一次函数是一种线性关系。
线性关系表示了两个变量之间的直接关系。
在一次函数中,x 和f(x) 之间存在着线性关系,即x 的增加或减少会导致f(x) 的相应变化。
通过以上的讨论,我们可以了解一次函数的概念、特点和性质。
初中数学一次函数的图象、性质、解析式及应用1、一次函数的定义:一般地,如果变量y与变量x有关系式y=kx+b(k,b是常数,且k≠0)那么y叫x的一次函数。
一次函数y=kx+b中,若b=0,此时变成y=kx(k≠0)称y是x的正比例函数。
2、一次函数的图象(1)一次函数y=kx+b的图象是一条直线,这条直线与y 轴相交于(0,b),这里b叫作直线y=kx+b的截距。
(2)y=kx(k≠0)的图象经过原点,y=kx+b(k≠0,b≠0)的图象不经过原点,与两坐标轴交点分别为(0,b),(,0)。
(3)对于直线,如果,且,那么这两条直线平行,反之也成立。
如果,那么这两条直线相交,反之也成立。
(4)直线y=kx+b可以看作是由直线y=kx平移而来。
(5)(k≠0)的图象的不同情形,即当k值、b值不同时图象所处的位置。
3、一次函数的性质一般地,一次函数y=kx+b(k,b为常数,k≠0)有下列性质当k>0时,y随x的增大而增大,图象是自左到右上升的直线当k<0时,y随x的增大而减小,图象是自左到右下降的直线4、用待定系数法求一次函数的解析式待定系数法:先设待求函数关系式(其中含有未知常数,系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。
用待定系数法求一次函数解析式的步骤:第一步:设关系式第二步:列方程(组)第三步:求出结果,写出关系式5、运用一次函数解决实际问题建立数学模型运用一次函数解决实际问题的一般步骤(1)通过实验,测量获得数量足够多的两个变量的对应值。
(2)建立合适的直角坐标系,在坐标系中,以各对应值为坐标描点,并画出函数图象。
(3)观察图象特征,判定函数类型。
(4)运用得到的经验公式,进一步求得所需要的结果。
例1、已知函数是一次函数,求m的值及函数关系式。
分析:一次函数满足:自变量的次数为1;自变量的系数不为0。
解析:∵是一次函数所以解得m=1所以函数关系式例2、下图不可能是关于x的一次函数的图象是()分析:一次函数中的m的取值应是一致的,应从一次函数的图象和性质出发A中,m>0,3-m>0,即A是0<m<3时的图象B中,直线经过原点,所以,m=3,即B是m=3时的图象C中,截距在x轴下方,∴3-m<0,m>3直线是呈下降趋势的,所以m<0,而无解,即C不可能D中,截距在x轴上方,所以3-m>0,m<3,图象呈下降趋势,故m<0即D是m<0时的图象解析:选C例3、已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,求直线y=kx+b的解析式。
初中数学知识归纳一次函数的像与性质初中数学知识归纳:一次函数的像与性质一次函数在初中数学中占据着重要的地位,它是一种线性函数,也被称为直线函数。
在这篇文章中,我们将归纳一次函数的像与性质,以帮助读者更好地理解和应用这一概念。
一、函数的定义与表达方式一次函数可以表示为 f(x) = ax + b 的形式。
其中,a 和 b 分别是实数,且a ≠ 0。
函数 f(x) 的定义域是全体实数集 R,值域也是全体实数集 R。
二、一次函数的图像特点1. 直线图像一次函数的图像是一条直线,可以用直线的斜率和截距来确定。
斜率 a 决定了直线的倾斜程度,而截距 b 决定了直线与 y 轴的交点。
2. 斜率的意义斜率 a 反映了函数的变化率。
当 a > 0 时,直线向右上方倾斜;当 a < 0 时,直线向右下方倾斜;当 a = 0 时,直线水平。
斜率的绝对值越大,表示直线的变化越快。
3. 截距的意义截距 b 表示了直线与 y 轴的交点,也就是在 x = 0 时,函数的值。
当 b > 0 时,直线在 y 轴的下方交点;当 b < 0 时,直线在 y 轴的上方交点;当 b = 0 时,直线经过原点。
三、一次函数的像一次函数的像指的是函数中的自变量对应的函数值,也就是函数的输出值。
对于一次函数 f(x) = ax + b,我们可以通过给出 x 的值,计算得到对应的 y 值。
1. 函数值的计算给定一个 x 值,计算对应的 y 值可以使用函数表达式 f(x) = ax + b。
将 x 值代入表达式中,即可得到 y 的值。
2. 函数值的含义一次函数的像反映了自变量和函数值之间的对应关系。
通过计算函数值,我们可以推断自变量的变化对函数值的影响。
四、一次函数的性质一次函数具有一些重要的性质,我们将逐一进行归纳。
1. 线性关系一次函数是一种线性函数,它满足函数关系的线性特性。
换句话说,函数的图像是一条直线,而且随着自变量的变化,函数值也呈线性变化。
一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。
(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。
(常数项)b决定图象与y轴交点位置。
五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。
一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。
因此,正比例函数是一次函数当b=0时的特殊情况。
正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。
在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。
确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。
但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。
若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。
初中数学知识归纳一次函数的性质和像初中数学知识归纳:一次函数的性质和像一次函数是数学中较为基础和常见的函数类型之一。
它的表达式可以写作y = ax + b,其中a和b都是常数,且a ≠ 0。
本文将归纳一次函数的性质和像,以帮助读者更好地理解和掌握这一概念。
1. 第一性质:一次函数的图像是直线一次函数的图像永远是一条直线,不论参数a和b的取值如何。
这意味着当我们绘制一次函数的图像时,得到的线条总是直线而不会出现弯曲或曲线。
2. 第二性质:斜率决定直线的倾斜程度在一次函数中,斜率a决定了直线的倾斜程度。
斜率表示单位变化y对应的x的变化量。
当斜率为正时,直线向上倾斜;当斜率为负时,直线向下倾斜;当斜率为零时,直线平行于x轴。
3. 第三性质:截距决定直线与y轴的交点位置一次函数中的截距b决定了直线与y轴的交点位置。
截距表示当x 为零时,函数值y所对应的点在y轴上的位置。
若截距为正,交点在y 轴上方;若截距为负,交点在y轴下方;若截距为零,交点与y轴相交于原点。
4. 第四性质:在直线上的两点可以得到一次函数的表达式已知一次函数经过直线上的两点A(x1, y1)和B(x2, y2),我们可以利用这两点间的斜率来求取一次函数的表达式。
斜率k的计算公式为k = (y2 - y1) / (x2 - x1)。
在得到斜率k后,我们可以选择其中一个点,代入一次函数的表达式y = ax + b中,求取b的值。
5. 第五性质:一次函数的图像与平行和垂直关系两个一次函数如果有相同的斜率a,则它们的图像是平行的。
这是因为它们的直线具有相同的倾斜程度。
另一方面,两个一次函数如果斜率互为倒数,即a1 = -1/a2,则它们的图像是垂直的。
这是因为它们的直线互相垂直。
通过对一次函数的性质的归纳总结,我们可以更好地理解和应用这一概念。
一次函数的图像是直线,斜率决定直线的倾斜程度,截距决定直线与y轴的交点位置,已知两点可以求解一次函数的表达式,而斜率则决定了图像之间的平行和垂直关系。
一次函数的图象和性质
一、知识要点:
1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;
(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线
(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。
(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。
(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:
(1)图象在平面直角坐标系中的位置:
(2)增减性:
k>0时,y随x增大而增大;
k<0时,y随x增大而减小。
4、求一次函数解析式的方法
求函数解析式的方法主要有三种:
一是由已知函数推导,如例题1;
二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:
例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。
解:∵y=2y1
y1=3x+2,
∴y=2(3x+2)=6x+4,
即变量y与x的关系为:y=6x+4。
例2、解答下列题目
(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。
(A)(0,–3)(B)(C)(D)(0,3)
(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。
(A)(B)(C)(D)
(3)(福州市中考题)一次函数y=x+1的图象,不经过的象限是()。
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
分析与答案:
(1) 直线与y轴交点坐标,特点是横坐标是0,纵坐标可代入函数关系求得。
或者直接利用直线和y轴交点为(0,b),得到交点(0,3),答案为D。
(2) 求解析式的关键是确定系数k,本题已知x=-3时,y=6,代入到y=kx中,解析式可确定。
答案D: y=-2x。
(3) 由一次函数y=kx+b的图象性质,有以下结论:
,
题目中y=x+1,k=1>0,则函数图象必过一、三象限;b=1>0,则直线和y轴交于正半轴,可以判定直线位置,也可以画草图,或取两个点画草图判断,图像不过第四象限。
答案:D。
例3、(辽宁省中考题)某单位急需用车;但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同。
设汽车每月行驶x千米,应付给个体车主的月费用是y1元,应付给出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?
分析:因给出了两个函数的图象可知一个是一次函数,一个是一次函数的特殊形式正比例函数,两条直线交点的横坐标为1500,表明当x=1500时,两条直线的函数值y相等,并且根据图像可以知道x>1500时,y2在y1上方;0<x<1500时,y2在y1下方。
利用图象,三个问题很容易解答。
答:(1)每月行驶的路程小于1500千米时,租国营公司的车合算。
[或答:当0≤x<1500(千米)时,租国营公司的车合算]。
(2)每月行驶的路程等于1500千米时,租两家车的费用相同。
(3)如果每月行驶的路程为2300千米,那么这个单位租个体车主的车合算。
例4、(河北省中考题)某工厂有甲、乙两条生产线先后投产。
在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30吨成品。
(1)分别求出甲、乙两条生产线投产后,各自总产量y(吨)与从乙开始投产以来所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;
(2)在如图所示的直角坐标系中,作出上述两个函数在第一象限内的图象;观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高?
分析:(1)根据给出的条件先列出y与x的函数式,=20x+200,=30x,当= 时,求出x。
(2)在给出的直角坐标系中画出两个函数的图象,根据点的坐标可以看出第15天和25天结束时,甲、乙两条生产线的总产量的高低。
解:(1)由题意可得:
甲生产线生产时对应的函数关系式是:y=20x+200,
乙生产线生产时对应的函数关系式是:y=30x,
令20x+200=30x,解得x=20,即第20天结束时,两条生产线的产量相同。
(2)由(1)可知,甲生产线所对应的生产函数图象一定经过两点A(0,200)和
B(20,600);
乙生产线所对应的生产函数图象一定经过两点O(0,0)和B(20,600)。
因此图象如右图所示,由图象可知:第15天结束时,甲生产线的总产量高;第25天结束时,乙生产线的总产量高。
例5.直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。
分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y 轴的交点,若两直线平行,则解析式的一次项系数k相等。
例如y=2x,y=2x+3的图象平行。
解:∵y=kx+b与y=5-4x平行,
∴k=-4,
∵y=kx+b与y=-3(x-6)=-3x+18相交于y轴,
∴b=18,
∴y=-4x+18。
说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b 来定点,即函数图象平行于直线y=kx,经过(0,b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。
例6.直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。
解:∵点B到x轴的距离为2,
∴点B的坐标为(0,±2),
设直线的解析式为y=kx±2,
∵直线过点A(-4,0),
∴0=-4k±2,
解得:k=± ,
∴直线AB的解析式为y= x+2或y=- x-2。
说明:此例看起来很简单,但实际上隐含了很多推理过程,而这些推理是求一次函数解析式必备的。
(1)图象是直线的函数是一次函数;
(2)直线与y轴交于B点,则点B(0,yB);
(3)点B到x轴距离为2,则|yB|=2;
(4)点B的纵坐标等于直线解析式的常数项,即b=yB;
(5)已知直线与y轴交点的纵坐标yB,可设y=kx+yB;
下面只需待定k即可。
三、提高与思考
例1.已知一次函数y1=(n-2)x+n的图象与y轴交点的纵坐标为-1,判断y2=(3- )xn+2是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。
解:依题意,得
解得n=-1,
∴y1=-3x-1,
y2=(3- )x, y2是正比例函数;
y1=-3x-1的图象经过第二、三、四象限,y1随x的增大而减小;
y2=(3- )x的图象经过第一、三象限,y2随x的增大而增大。
说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n 的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。
例2.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式。
分析:自画草图如下:
解:设正比例函数y=kx,
一次函数y=ax+b,
∵点B在第三象限,横坐标为-2,
设B(-2,yB),其中yB<0,
∵=6,
∴AO·|yB|=6,
∴yB=-2,
把点B(-2,-2)代入正比例函数y=kx,得k=1,
把点A(-6,0)、B(-2,-2)代入y=ax+b,
得
解得:
∴y=x, y=- x-3即所求。
说明:(1)此例需要利用正比例函数、一次函数定义写出含待定系数的结构式,注意两个函数中的系数要用不同字母表示;
(2)此例需要把条件(面积)转化为点B的坐标。
这个转化实质含有两步:一是利用面积公式AO·
BD=6(过点B作BD⊥AO于D)计算出线段长BD=2,再利用|yB|=BD及点B 在第三象限计算出yB=-2。
若去掉第三象限的条件,想一想点B的位置有几种可
能,结果会有什么变化?(答:有两种可能,点B可能在第二象限(-2,2),结果增加一组y=-x, y= (x+3)。