利用排列组合计算概率的练习题
- 格式:docx
- 大小:37.03 KB
- 文档页数:2
数学中的排列组合与概率运算测试题在我们的日常生活和学术研究中,数学中的排列组合与概率运算扮演着至关重要的角色。
它们不仅是数学学科的重要组成部分,还在众多领域如统计学、物理学、计算机科学等中有着广泛的应用。
为了帮助大家更好地理解和掌握这部分知识,下面为大家准备了一份测试题,一起来挑战一下吧!一、选择题(每题 5 分,共 30 分)1、从 5 个不同的元素中取出 3 个元素的排列数为()A 60B 10C 20D 1202、从 10 名学生中选出 3 名参加某项活动,不同的选法有()种。
A 120B 720C 100D 3603、有 5 本不同的书,从中任选 3 本送给 3 个同学,每人一本,不同的送法有()种。
A 60B 120C 10D 204、一个袋子里有 3 个红球和 2 个白球,从中任取 2 个球,恰好都是红球的概率是()A 3/10B 3/5C 9/25D 3/255、掷两枚骰子,点数之和为 7 的概率是()A 1/6B 1/9C 1/3D 1/126、从 5 个男生和 4 个女生中选出 3 个男生和 2 个女生排成一排,共有()种不同的排法。
A 7200B 3600C 14400D 720二、填空题(每题 5 分,共 30 分)1、从 8 个不同的元素中取出 2 个元素的组合数为_____。
2、有 4 个不同的小球,放入 3 个不同的盒子中,每个盒子至少放一个小球,共有_____种放法。
3、从 1、2、3、4、5 这五个数字中,任取三个数字组成没有重复数字的三位数,其中是奇数的有_____个。
4、一批产品共有 10 件,其中次品有 3 件,从这批产品中任取 3 件,恰好有 1 件次品的概率是_____。
5、一个口袋里有 5 个红球和 3 个白球,从中任取 3 个球,至少有1 个红球的概率是_____。
6、展开式\((x + 2)^6\)中\(x^3\)的系数是_____。
三、解答题(每题 20 分,共 40 分)1、 7 个人排成一排,其中甲、乙两人必须相邻,有多少种不同的排法?2、某班级有 10 名男生和 8 名女生,从中任选 4 名学生参加数学竞赛,求至少有 1 名女生的概率。
利用排列组合解决问题练习题排列组合是概率与统计中的一个重要概念,它在解决各种问题中起着关键作用。
本文就通过一些实际问题的练习题,来演示如何利用排列组合的知识来解决问题。
一、从n个元素中选取m个元素的排列问题排列是指从一组元素中选取一部分元素进行有序排列的方式。
假设有n个元素,要求从中选取m个元素进行排列,共有多少种排列方式呢?这个问题可以用排列数来解决。
排列数P(n, m)的公式如下:P(n, m) = n! / (n-m)!其中,"!"表示阶乘。
例如,当n=5,m=3时,排列数P(5, 3)的计算公式为:P(5, 3) = 5! / (5-3)! = 5! / 2! = 60 / 2 = 30所以,从5个元素中选取3个元素进行排列,共有30种排列方式。
二、从n个元素中选取m个元素的组合问题组合是指从一组元素中选取一部分元素进行无序组合的方式。
假设有n个元素,要求从中选取m个元素进行组合,共有多少种组合方式呢?这个问题可以用组合数来解决。
组合数C(n, m)的公式如下:C(n, m) = n! / (m! * (n-m)!)例如,当n=5,m=3时,组合数C(5, 3)的计算公式为:C(5, 3) = 5! / (3! * (5-3)!) = 5! / (3! * 2!) = 60 / (6 * 2) = 10所以,从5个元素中选取3个元素进行组合,共有10种组合方式。
三、排列组合在实际问题中的应用1. 教室座位问题假设有10个学生坐在一排座位上,求有多少种座位安排方式。
由于要求座位的有序性,这是一个排列问题。
根据排列数的公式,可以计算出座位安排的方式为:P(10, 10) = 10! / (10-10)! = 10! / 0! = 10! = 3,628,800所以,有10个学生坐在一排座位上,共有3,628,800种座位安排方式。
2. 奖项抽取问题某次抽奖活动中,参与者共有20人,要从中抽取一等奖、二等奖和三等奖各一名,求有多少种中奖方式。
排列组合求概率解答题1甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92.(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.(04湖南19)解:(Ⅰ)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅.92)()(,121))(1()(,41))(1()(.92)(,121)(,41)(C P A P C P B P B P A P C A P C B P B A P 即由①、③得)(891)(C P B P -=代入②得27[P(C)]2-51P(C)+22=0.解得91132)(或=C P (舍去).将32)(=C P 分别代入③、②可得.41)(,31)(==B P A P 即甲、乙、丙三台机床各加工的零件是一等品的概率分别是.32,41,31(Ⅱ)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则.653143321))(1))((1))((1(1)(1)(=⋅⋅-=----=-=C P B P A P D P D P 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为.652.(本小题满分12分)为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P )和所需费用如下表:预防措施甲乙丙丁P 0.90.80.70.6费用(万元)90603010预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.(04湖北21)解:方案1:单独采用一种预防措施的费用均不超过120万元.由表可知,采用甲措施,可使此突发事件不发生的概率最大,其概率为0.9.方案2:联合采用两种预防措施,费用不超过120万元,由表可知.联合甲、丙两种预防措施可使此突发事件不发生的概率最大,其概率为1—(1—0.9)(1—0.7)=0.97.方法3:联合采用三种预防措施,费用不超过120万元,故只能联合乙、丙、丁三种预防措施,此时突发事件不发生的概率为1—(1—0.8)(1—0.7)(1—0.6)=1—0.024=0.976.综合上述三种预防方案可知,在总费用不超过120万元的前提下,联合使用乙、丙、丁三种预防措施可使此突发事件不发生的概率最大.3.(本小题满分12分)①②③甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)分别求甲、乙两人考试合格的概率;(Ⅱ)求甲、乙两人至少有一人考试合格的概率.(04福建18)解:(Ⅰ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32,P(B)=310381228C C C C +=1205656+=1514.答:甲、乙两人考试合格的概率分别为.151432和(Ⅱ)解法一、因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为P(B A ⋅)=P(A )P(B )=(1-32)(1-1514)=451.∴甲、乙两人至少有一人考试合格的概率为P=1-P(B A ⋅)=1-451=4544.答:甲、乙两人至少有一人考试合格的概率为4544.解法二:因为事件A 、B 相互独立,所以甲、乙两人至少有一人考试合格的概率为P=P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B)=32×151+31×1514+32×1514=4544.答:甲、乙两人至少有一人考试合格的概率为4544.4.(本小题满分12分)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。
数学下册综合算式专项练习题运用排列组合计算概率在数学中,排列组合是一种重要的数学工具,用于计算一系列事件发生的概率。
在数学下册的综合算式专项练习题中,我们将通过运用排列组合的方法来计算概率。
一、排列组合的基本概念在介绍具体的计算方法之前,我们先来了解一些排列组合的基本概念。
1. 排列排列是指从一组元素中选出若干元素按照一定顺序进行排列的方式。
通常用P(n,r)表示,表示从n个元素中选出r个元素进行排列。
2. 组合组合是指从一组元素中选出若干元素进行组合的方式。
不考虑元素的顺序,通常用C(n,r)表示,表示从n个元素中选出r个元素进行组合。
二、排列组合的计算方法1. 排列的计算方法对于排列问题,我们可以通过以下公式进行计算:P(n,r) = n! / (n-r)!其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
具体的计算步骤可以分为两部分,首先计算n的阶乘,然后再计算除法。
例如,要计算P(5,2),首先计算5! = 5 * 4 * 3 * 2 * 1 = 120,然后计算120 / (5-2)! = 120 / 3! = 20。
2. 组合的计算方法对于组合问题,我们可以通过以下公式进行计算:C(n,r) = n! / (r! * (n-r)!)同样,n!表示n的阶乘。
具体的计算步骤与排列相似,首先计算n的阶乘,然后计算除法。
例如,要计算C(5,2),首先计算5! = 5 * 4 * 3 * 2 * 1 = 120,然后计算120 / (2! * (5-2)!) = 120 / (2 * 1 * 3!) = 10。
三、运用排列组合计算概率的示例下面,我们通过一个具体的示例来演示如何运用排列组合计算概率。
假设有一组数字,从1到9,我们要求从中随机选取3个数字,计算以下两种情况的概率:情况一:选取的3个数字都是偶数;情况二:选取的3个数字包含且仅包含一个奇数。
排列组合与概率练习《排列组合与概率练习》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!测试卷《排列组合》习题一、选择题(每题5分,计60分)1、书架上同一层任意立放着不同的10本书,那么指定的3本书连在一起的概率为(A)A、1/15B、1/120C、1/90D、1/302、甲盒中有200个螺杆,其中有160个A型的,乙盒中有240个螺母,其中有180个A型的,现从甲乙两盒中各任取一个,则能配成A型的螺栓的概率为(C)A、1/20B、15/16C、3/5D、19/203、一个小孩用13个字母:3个A,2个I,2个M,2个J其它C、E、H、N各一个作组字游戏,恰好组成“MATHEMATICIAN”一词的概率为(D)A、B、C、D、4、袋中有红球、黄球、白球各1个,每次任取一个,有放回地抽取3次,则下旬事件中概率是8/9的是(B)A、颜色全相同B、颜色不全相同C、颜色全不同D、颜色无红色5、某射手命中目标的概率为P,则在三次射击中至少有1次未命中目标的概率为(C)A、P3B、(1—P)3C、1—P3D、1—(1-P)36.2004年7月7日,甲地下雨的概率是0.15,乙地下雨的概率是0.12。
假定在这天两地是否下雨相互之间没有影响,那么甲、乙都不下雨的概率是(C)(A)0.102(B)0.132(C)0.748(D)0.9827.电灯泡使用时数在1000小时以上的概率为0.8,则3个灯泡在使用1000小时后坏了1个的概率是(D)(A)0.128(B)(C)0.104(D)0.3848.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率BA.小B.大C.相等D.大小不能确定9.16支球队,其中6支欧洲队、4支美洲队、3支亚洲队、3支非洲队,从中任抽一队为欧洲队或美洲队的概率为(D)10.两袋分别装有写着0、1、2、3、4、5六个数字的6张卡片,从每袋中各任取一张卡片,所得两数之和等于7的概率为(B)11.在100个产品中有10个次品,从中任取4个恰有1个次品的概率为(D)12.某人有9把钥匙,其中一把是开办公室门的,现随机取一把,取后不放回,则第5次能打开办公室门的概率为(A)二、填空题(每题5分,计20分)13.两名战士在一次射击比赛中,甲得1分,2分,3分的概率分别是0.2,0.3,0.5,乙得1分,2分,3分的概率分别是0.1,0.6,0.3,那么两名战士哪一位得胜的希望较大_____战士甲________.14.有两组问题,其中第一组中有数学题6个,物理题4个;第二组中有数学题4个,物理题6个。
排列组合二项式概率测试题满分120分 时间 120分钟一、选择题(本题共15个小题,每小题 3分,共45分)1.某段铁路共有5个车站,共准备多少种不同的车票( ).A .10B .20C .15D .322.某地生态园有4个出入口,若某游客从任一出入口进入,并且从另外3个出入口之一走出,进出方案种数为( )A .4B .7C .10D .123.将4封不同的信投入3个不同的信箱,则不同的投送方法有多少种( ).A . 43B . 34C . 34C D . 34P4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( )A .6B .4C .8D .105.某商场有四个大门,若从一个门进入,购买商品后再从另一个门出去,不同的进出方法共有多少种 ( ).A .12B .20C .24D .286.6名学生站成一排,其中甲不能站在排尾的不同排法种数是( ).A.1556P P B .1555P P C .56P D .6565P 2P -7.n N ∈,n <25,则乘积(25-n )(26-n )⋅⋅⋅(39-n )等于( ).A.2539P n n -- B .1539P n - C .1525P n - D . 1439P n -8.从集合A ={2,3,5,7,11}中任取两个数作为对数log a x 的底数和真数,则可以得到不同的对数值为( ).A .20B .30C .40D .609.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( )A .72种B .84种C .120种D .168种10.在二项式521x -()的展开式中,含2x 的项是( ).A .25x -B .25xC .240x -D .240x11.抛掷两枚硬币,则两枚硬币都正面朝上的概率为( ).A . 12B . 14C . 18D . 3412.甲、乙两人进行射击比赛,甲击中目标的概率是0.8,乙击中目标的概率是0.6,则甲乙二人恰有一人击中目标的概率是( ).A .0.32B .0.44C .0.12D .0.5613.从“舞蹈、相声、小品……”等5个候选节目中选出4个节目参加“艺术节”的汇演,其中第一出场节目不能是“舞蹈”,也不能是“相声”,则不同的演出方案种数是( )A . 48B . 72C . 96D .10814.某人参加一次考试,4道题中解对3道题则为及格,已知他的解题正确率为0.6,则他能及格的概率是( ).A .0.3456B .0.1296C .0.4752D .0.524815.袋中有5个大小相同的球,其中2个红球,3个白球,从袋中任意抽取2个球,抽取的球为不 同颜色的概率是( ).A . 25B . 35C . 715D . 1225二、填空题(本题有15个空,每空2分,共30分)16.已知事件A 在一次试验中不发生的概率为0.2,则事件A 发生的概率为_____.17.在学校举行的演讲比赛中,共有6名选手进入决赛,则选手甲不在第一个也不在最后一个演讲的概率为______.18.从甲地到乙地有3条路可走,从乙地到丙地有4条路可走,从甲地不经过乙地到丙地有2条路可走,那么从甲地到丙地有______种走法.19.若43410n n C C C +=,则n =______.20.某铁路客运段上有9个站,那么该线路上共有______种不同的票价. 21.7个座位,3个人去坐,每人坐一个座位,有______种不同的坐法.22.612x (+)展开式中二项式系数最大的项是第______项.23.245n nC -=,则n =_________. 24.在三次独立重复试验中,事件A 至少发生1次的概率为6364.则事件A 在一次试验中发生 的概率为_________.25.抛掷两颗骰子,出现总数之和等于7的概率为_________.26.5个人用抽签的方法分配两张电影票,第二个人抽到电影票的概率是_____. 27.4名男同学和3名女同学站成一排照相,则男同学与女同学相间排列的排法种数有_____种.28.从1到100中任取一个数,则这个数既能被2整除,又能被5整除的概率是_______.29.一批产品的次品率为0.1,有放回的抽取3次,则恰好有1次取到次品的概率是_______.30.右表是某个随机变量ξ的概率分布,其中m 的值是_________.三、解答题(本题共7个小题,共45分) 31.用0,1,2,3,4,5可以组成多少个没有重复数字的三位偶数?32. 7个人站成一排照相,(1)若甲不能站在中间,共有多少种不同的排法?(2)若甲必须站在两端,共有多少种不同的排法?(3)若甲乙中间必须间隔一个人,共有多少种不同的排法?33.甲乙两人参加安全知识竞赛,共有10道不同题目,其中选择题7道,判断题3道,甲乙二人依次各抽一题,(1)甲抽到选择题,乙抽到判断题的概率是多 少?(2)甲乙二人抽到不同题型的概率是多少?34.求101x x-()的展开式中的常数项. 35. 7()2x x-的二项展开式中,求(1)第4项;(2)含3x 项的系数. 36.某小组有3名男生和2名女生,任选3个人去参加某项活动,求所选3个人中女生数目ξ的概 率分布.37.一个袋中装有10个形状和大小相同的球,其中8个红球和2个白球,(1)若从中任取1球,求出现白球的概率;(2)若从中有放回地任取1个,连取2次,求出现白球次数ξ的概率分布.排列组合二项式概率测试题答案一、 选择题1—5 B D A B A 6—10 B B A C C 11—15 B B B C B二、填空题16.0.8 17. 2318.14 19.920.36 21.21022.4 23.1024. 34 25. 1626. 2527.144 28. 11029.0.243 30.0.04三、解答题31.个位数字为0有25P 20=个位数字不为0,有11442P P 32=种 故所求没有重复数字共有211544P 2P P 52+=个. 32.(1)1666P P 4320=种 (2)1626C P 1440=种(3) 152552C P P 1200=种33.(1)设A ={甲抽到选择题,乙抽到判断题}()117311109C C 7C C 30P A ==(2)设B ={甲乙二人抽到不同题型}()1111733711109C C C C 7C C 15P A +== 34. 101101C m m m m T xx -+⎛⎫=- ⎪⎝⎭ ()102101C m m m x-=- 令1020m -=,得5m =故,第6项为常数项.()556101C 252T =-=- 35.(1)33443172C T T x x +⎛⎫==- ⎪⎝⎭()333471C 2x x ⎛⎫=- ⎪⎝⎭()43358x x -=⨯-280x =- (2)7172C mm m m T x x -+⎛⎫=- ⎪⎝⎭()77C 2m m m m x x --=-()7272C m m m x -=- 令723m -=,得2m =故第三项为含3x 的项,该项的系数为()2272C 84-= 36.ξ的可能取值为0,1,2.()032335C C 1P 0C 10ξ===;()122335C C 63P 1C 105ξ====,()212335C C 3P 2C 10ξ=== 所以,ξ的概率分布为37.(1)设A ={出现白球},则()21P 105A == (2)ξ的可能取值为0,1,2. 有放回的任取一球,取到白球的概率不变,每次取到白球的概率都是12p =. ()02214160C 5525p ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()121481C 5525p ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 所以,ξ的概率分布为。
数学概率(排列组合)练习题(含答案)1.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、文综4科的专题讲座,每科一节课,每节至少有一科,且数学、文综不安排在同一节,则不同的安排方法共有.2.从4名男生4名女生中选3位代表,其中至少两名女生的选法有种.3.用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个(用数字作答).4.将一个白球,一个红球,三个相同的黄球摆放成一排,则白球与红球不相邻的放法有.5.用1、2、3、4、5、6六个数组成没有重复数字的六位数,其中5、6均排在3的同侧,这样的六位数共有个(用数字作答).6.某工厂将4名新招聘员工分配至三个不同的车间,每个车间至少分配一名员工,甲、乙两名员工必须分配至同一车间,则不同的分配方法总数为(用数字作答).7.用4种颜色给一个正四面体的4个顶点染色,若同一条棱的两个端点不能用相同的颜色,那么不同的染色方法共有_____________种。
8.数字1,2,3,4,5,6按如图形式随机排列,设第一行的数为N1,其中N2,N3分别表示第二、三行中的最大数,则满足N1<N2<N3的所有排列的个数是________.9. 4名男生和2名女生站成一排照相,要求男生甲不站在最左端,女生乙不站在最右端,有种不同的站法.(用数字作答)10.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有种(用数字作答)122名女生中选派4人参加社区服务,如果要求至少有1名女11生,那么不同的选派方案种数为.(用数字作答)13.将7个市三好学生名额分配给5个不同的学校,其中甲、乙两校至少各有两个名额,则不同的分配方案种数有 _________ .xx2x?214.方程C17-C16=C16的解集是________.15.从4名男生、3名女生中任选3人参加一次公益活动,其中男生、女生均不少于1人的组合种数为(用数字作答).16.从4名同学中选出3人,参加一项活动,则不同的选方法有种(用数据作答);17.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有________种.18.将6位志愿者分配到甲、已、丙3个志愿者工作站,每个工作站2人,由于志愿者特长不同,A不能去甲工作站,B只能去丙工作站,则不同的分配方法共有__________种.19.现有一大批种子,其中优良种占30℅,从中任取8粒,记X为8粒种子中的优质试卷第1页,总9页。
排列与组合练习题1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是(A )37 (B )47 (C )114 (D )1314 答案:D解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是39C .所以39613114C -=. 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有(A )6种 (B )9种 (C )11种 (D )13种答案:B解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法.3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有(A )30个 (B )20个 (C )35个 (D )15个答案:A解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=⋅C C 个,于是最多有30个交点.推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的交点最多有22m n C C ⋅个变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点.答案:412C4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是(A )15 (B )25 (C )35 (D ) 45答案:B111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭解析:由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34答案:A解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=. 6.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(|)P B A =A .18B .14C .25D .12答案:B 解析:2()5P A =,1()10P AB =,()1(|)()4P AB P B A P A ==. 7.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .34 答案:D解析:由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率11132224P =+⋅=.所以选D . 8.如图,用K 、A 1、A 2三类不同的元件连成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为KA 2A 1A .0.960B .0.864C .0.720D .0.576答案:B解析:系统正常工作概率为120.90.8(10.8)0.90.80.80.864C ⨯⨯⨯-+⨯⨯=,所以选B.9.甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(A )136 (B )19 (C )536 (D )16 答案:D解析:各自独立地从1到6号景点中任选4个进行游览有1111111166554433C C C C C C C C 种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C 种,则最后一小时他们同在一个景点的概率是11111116554433111111116655443316C C C C C C C p C C C C C C C C ==,故选D . 10.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n =( ) (A )415 (B )13 (C )25 (D )23答案:B解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 11.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13C .12D .23答案:C解析:显然ABE ∆面积为矩形ABCD 面积的一半,故选C .12.在204(3)x y +展开式中,系数为有理数的项共有 项.答案:6解析:二项式展开式的通项公式为20204412020(3)(3)(020)r r r r r r r r T C x y C x y r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.13.集合{1,2,3,4,5,6,7,8,9,10}M =,从集合M 中取出4个元素构成集合P ,并且集合P 中任意两个元素,x y 满足||2x y -≥,则这样的集合P 的个数为____.答案:35解析:其实就是从1到10这十个自然数中取出不相邻的四个数,共有多少方法的问题.因此这样的集合P 共有4735C =个.14.在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有___种栽种方案.答案:732解析:共分三类:(1)A 、C 、E 三块种同一种植物;(2)A 、B 、C 三块种两种植物(三块中有两块种相同植物,而与另一块所种植物不同);(3)A 、B 、C 三块种三种不同的植物.将三类相加得732.15.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望()E X .解:(I )设A 表示事件“购买甲种保险”,B 表示购买乙种保险. ()A B A A B =并且A 与A B 是互斥事件,所以()()()0.50.30.8P A B P A P A B =+=+=答:该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8. (II )由(I )得任意1位车主两种保险都不购买的概率为()10.80.2p p A B ==-=. 又(3,0.2)XB ,所以()20E X =.所以X 的期望()20E X =.。
初三数学概率与排列组合练习题及答案20题1、某班级有24名学生,其中12人喜欢音乐,15人喜欢篮球。
有4人既喜欢音乐又喜欢篮球。
某学生只有喜欢音乐或者喜欢篮球。
请问该班级有多少名学生既不喜欢音乐也不喜欢篮球?解答:根据题意,喜欢音乐的学生数量为12,喜欢篮球的学生数量为15,既喜欢音乐又喜欢篮球的学生数量为4。
根据集合的性质可知,喜欢音乐或者喜欢篮球的学生数量应为喜欢音乐的学生数量加上喜欢篮球的学生数量,再减去既喜欢音乐又喜欢篮球的学生数量。
即 12 + 15 - 4 = 23。
所以,该班级共有23名学生既不喜欢音乐也不喜欢篮球。
2、小明有6只不同颜色的球,他想把这些球放入4个不同的盒子中。
每个盒子至少放一个球。
问他有多少种不同的放置方法?解答:首先,我们需要找到小明将6个球分配到4个盒子中的所有可能性。
假设每个盒子中放了a、b、c、d个球,根据题意可知,a、b、c、d都是大于等于1的正整数,并且a + b + c + d = 6。
我们可以使用组合数学中的排列组合方法来解答这个问题。
首先,将6个球放到4个盒子中,相当于在6个位置中插入3个分隔符,将这6个位置分为4个区域。
例如,位置间隔和分隔符的排列可以表示为:OO|OOO|O|。
根据排列组合的知识,将3个相同的分隔符插入6个位置中的所有不同方法数为 C(6, 3) = 20。
所以,小明有20种不同的放置方法。
3、在一副标准扑克牌中,从中随机抽取3张牌。
请问有多少种可能的抽牌结果?解答:一副标准扑克牌共有52张牌,我们需要从中抽取3张牌,而每张牌的选取都是独立的,所以我们可以使用排列组合的方法计算总的可能性。
根据组合数学的知识,从n个元素中选取m个元素的组合数可以表示为 C(n, m) = n! / (m! * (n - m)!)。
所以,从52张牌中选取3张牌的组合数为 C(52, 3) = 22,100。
因此,有22,100种可能的抽牌结果。
4、一枚硬币抛掷8次,问出现正面的次数为奇数的概率是多少?解答:一枚硬币抛掷8次,每次抛掷都有两种可能的结果:正面或反面。
利用排列组合计算概率的练习题在数学中,排列组合是一种十分重要的概念,特别是在概率计算中。
通过掌握排列组合的知识和技巧,我们可以解决各种与概率有关的问题。
本文将通过一些练习题来展示如何利用排列组合计算概率。
练习题1:从10个不同的球中,随机取3个,计算取出的球至少有
一个是红色的概率。
假设我们用R表示红色球,用B表示蓝色球,那么我们可以列出所有可能的组合:
RBB, RBR, RRB, RRR, BBB, BBR, BRB, BRR
共有8种可能的组合。
其中,有3种组合至少有一个红色球,它们是:RBB, RBR和RRR。
因此,取出的球至少有一个是红色的概率为
3/8。
练习题2:一副扑克牌共有52张牌,从中随机取5张,计算取到的
牌全为黑桃的概率。
在一副扑克牌中,有13张黑桃牌。
我们需要计算从13张黑桃牌中
选取5张的可能性,以及从52张牌中选取5张的可能性。
首先,我们计算从13张黑桃牌中选取5张的可能性,即13选5。
这个可以通过排列组合公式来计算:13! / (5! * (13-5)!) = 1287。
接下来,我们计算从52张牌中选取5张的可能性,即52选5。
也
可以使用排列组合公式来计算:52! / (5! * (52-5)!) = 2598960。
所以,取到的牌全为黑桃的概率为1287 / 2598960,约为0.000495。
练习题3:一个由0和1组成的4位数,以及一个由1和2组成的3位数,它们的百位、十位、个位各位上的数字都不相同,计算两个数
相加等于300的概率。
我们需要计算满足条件的组合有多少种,以及总的组合有多少种。
首先,我们计算满足条件的组合数。
对于由0和1组成的4位数,
百位不能为0,但可以为1,十位、个位不能为0或1,所以满足条件
的组合数为1 * 2 * 1 * 1 = 2。
对于由1和2组成的3位数,百位和十位不能为1,所以满足条件
的组合数为1 * 1 * 1 = 1。
因此,两个数相加等于300且满足条件的概率为2 / (2 * 1) = 1/2。
通过以上三个练习题,我们可以看到排列组合在计算概率中的应用。
掌握了排列组合的知识和技巧,我们能够更加准确地计算各种概率问题,解决各类实际问题。
因此,学习和理解排列组合的概念对于数学
的学习和应用具有重要意义。
通过以上练习题的讲解,相信大家对于利用排列组合计算概率有了
更深入的理解。
希望本文对于大家的学习有所帮助。