新北京课改版八年级数学下册期中考试模拟试题1及答案解析.docx
- 格式:docx
- 大小:339.43 KB
- 文档页数:21
一、选择题1.在ABCD 中AB BC ≠.F 是BC 上一点,AE 平分FAD ∠,且E 是CD 的中点,则下列结论:①AB BF =;②AF CF CD =+;③AF CF AD =+;④AE EF ⊥,其中正确的是( )A .①②B .②④C .③④D .①②④ 2.下列二次根式的运算:①2623⨯=,②1882-=,③255=,④()222-=-;其中运算正确的有( ).A .1个B .2个C .3个D .4个 3.下列计算正确的是( ) A .42=±B .22423x x x +=C .()326328a b a b -=-D .()235x x x -=÷ 4.已知三个数2,2,4如果再添加一个数,使这四个数成比例,则添加的数是( ).A .22B .22或22C .22,42或82D .22,22或425.下列四个式子中,与1(2021)2021a a --的值相等的是( ) A .2021a - B .2021a --C .2021a -D .2021a -- 6.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD 的周长为()433a b + 7.如图,已知ABC ∆的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4,BC CF =四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .6B .8C .3D .48.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠9.如图,在ABC 中,AB AC =,8BC cm =,AE 平分BAC ∠,交BC 于点E ,D 为AE 上一点,且ACD CAD ∠=∠,3DE cm =,连接CD .过点作DF AB ⊥,垂足为点F .则下列结论正确的有( )①5CD cm =;②10AC cm =;③3DF cm =;④ACD △的面积为210cmA .1B .2C .3D .410.在ABC 中,10AB =,40AC =,BC 边上的高6AD =,则另一边BC 等于( )A .10B .8C .6或10D .8或10 11.勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为( )A .2B .3C .5D .612.下图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边()x y >,下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( ).A .①③B .①②③C .②④D .①②③④二、填空题13.如图,四边形ABCD 为菱形,以AD 为斜边的Rt AED △的面积为3,2DE =,点E ,C 在BD 的同侧,点P 是BD 上的一动点,则PE PC +的最小值是_____________.14.如图,AC 是ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D =︒,则BAC ∠的度数是______.15.已知335x x y -+-=+,则3x y +的值为_________. 16.已知5ab =,则b a a b a b+=__. 17.若220x y -+=,则x y +=________.18.“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x 轴,星海街所在的直线为y 轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为4(6,)A -,小明所在位置的坐标为(2,2)B -,则小明与东方之门的实际距离为___________米.19.如图,点P 是等边ABC 内的一点,6PA =,8PB =,10PC =.若点P '是ABC 外的一点,且P AB PAC '≌△△,则APB ∠的度数为_____.20.如图,∠AOD =90°,OA =OB =BC =CD ,若AC =3,则AD =_______.三、解答题21.如图,在▱ABCD 中,AB =12cm ,BC =6cm ,∠A =60°,点P 沿AB 边从点A 开始以2cm/秒的速度向点B 移动,同时点Q 沿DA 边从点D 开始以1cm/秒的速度向点A 移动,用t 表示移动的时间(0≤t ≤6).(1)当t 为何值时,△PAQ 是等边三角形?(2)当t 为何值时,△PAQ 为直角三角形?22.如图,在四边形ABCD 中,90B D ∠=∠=︒,60C ∠=°,5AB =.2AD =.(1)求CD 的长;(2)求四边形ABCD 的面积.23.计算:(1231(12)272224--- (2) 248(31)(31)(31)(31)1++++- 24.观察,计算,判断:(只填写符号:>,<,=)(1)①当2a =,2b =时,2a b +ab ②当3a =,3b =时,2a b +ab ; ③当4a =,1b =时,2a b +ab ④当5a =,3b =时,2a b +ab (2)写出关于2a b +ab ______探究证明:(提示:20a b ≥)(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为______.25.如图,在Rt △ABC 中,∠C =90°,AC =8,AB =10,AB 的垂直平分线分别交AB 、AC 于点D 、E .求AE 的长.26.本题分为A,B两题,可以自由选择一题,你选择题A:如图,小明想知道学校旗杆的高度,他将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端6m处,发现此时绳子底端距离打结处2m,则旗杆的高度为多少米?B:如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两只猴子所经路程都是16m,求树高AB.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】首先延长AD,交FE的延长线于点M,易证得△DEM≌△CEF,即可得EM=EF,又由AE平分∠FAD ,即可判定△AEM 是等腰三角形,由三线合一的知识,可得AE ⊥EF ,进而可对各选项进行判断.【详解】解:延长AD ,交FE 的延长线于点M ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠M =∠EFC ,∵E 是CD 的中点,∴DE =CE ,在△DEM 和△CEF 中,M EFC DEM CEF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEM ≌△CEF (AAS ),∴EM =EF ,∵AE 平分∠FAD ,∴AM =AF ,AE ⊥EF .即AF =AD +DM =CF +AD ;故③,④正确,②错误.∵AF 不一定是∠BAD 的角平分线,∴AB 不一定等于BF ,故①错误.故选:C .【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 2.C解析:C【分析】由二次根式的性质、二次根式的混合运算进行计算,再进行判断,即可得到答案.【详解】 2623=,故①正确;18832222==②正确;255=,故③正确;2,故④错误;∴正确的3个;故选:C .【点睛】本题考查了二次根式的性质、二次根式的混合运算,解题的关键是熟练掌握运算法则进行计算.3.C解析:C【分析】A 选项利用二次根式的化简判断即可;B 利用合并同类项的运算判断即可;C 利用积的乘方判断即可;D 利用同底数幂的除法判断即可;【详解】A 2= ,不符合二次根式的化简,故该选项错误;B 、22223x x x += ,不符合合并同类项的运算,故该选项错误;C 、()326328a ba b -=-,故该选项正确; D 、()523x x x -÷=- ,不符合同底数幂的除法,故该选项错误;故选:C .【点睛】本题考查了二次根式的化简,合并同类项,整数指数幂,正确掌握公式是解题的关键; 4.D解析:D【分析】运用比例的基本性质,将所添的数当作比例式a :b =c :d 中的任何一项,进行计算即可,【详解】设添加的这个数是x当24:x =时,2x =x =当2:4x =时,2x =x =当2:4x =时,4x =2x =,当2:4x =8=, 解得x =故选D .【点睛】本题考查比例的基本性质,注意写比例式的时候,一定要按照顺序写,顺序不同,结果不同.5.D解析:D【分析】根据二次根式有意义的条件可得出20210a ->,可得20210a -<,由此可将2021a -变形得出答案.【详解】由题意得:20210a ->,可得20210a -<,∴((2021a a ---== 故选:D .【点睛】本题考查了二次根式的性质与化简,关键是由等式可确定出20210a ->. 6.C解析:C【分析】由平行四边形的性质得出//AD BC ,AD BC =,AB CD =,B D ∠=∠,得出180D C ∠+∠=︒,求出180EAF C ∠+∠=︒,得出B D EAF α∠=∠=∠=;由平行四边形ABCD 的面积得出::a b CD BC =;若60α=︒,则60B D ∠=∠=︒,求出30BAE DAF ∠=∠=︒,由直角三角形的性质得出BE AE ==,DF ,得出2AB BE =,2AD DF ==,求出平行四边形ABCD 的周长2())AB AD a b =+=+;求出ABE ∆的面积212BE AE =⨯=,ADF ∆的面积2=,平行四边形ABCD 的面积BC AE a =⨯=⨯=,得出四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半;即可得出结论. 【详解】 解:四边形ABCD 是平行四边形,//AD BC ∴,AD BC =,AB CD =,B D ∠=∠,180D C ∴∠+∠=︒,AE BC ⊥于点E ,AF CD ⊥于点F ,360290180EAF C ∴∠+∠=︒-⨯︒=︒,B D EAF α∴∠=∠=∠=;平行四边形ABCD 的面积BC AE CD AF =⨯=⨯,AE a =,AF b =,BC a CD b ∴⨯=⨯,::a b CD BC ∴=;若60α=︒,则60B D ∠=∠=︒,30BAE DAF ∴∠=∠=︒,33BE AE a ∴==,33DF AF b ==, 232AB BE a ∴==,232AD DF b ==, ∴平行四边形ABCD 的周长42()3()3AB AD a b =+=+; ABE ∆的面积2113322BE AE a a a =⨯=⨯⨯=,ADF ∆的面积2113322DF AF b b b =⨯=⨯⨯=,平行四边形ABCD 的面积2323BC AE b a ab =⨯=⨯=, ∴四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22233()ab a b =-+≠平行四边形ABCD 面积的一半; 综上所述,选项A 、B 、D 不符合题意,选项C 符合题意;故选:C .【点睛】本题考查了平行四边形的性质、直角三角形的性质、三角形面积等知识;熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.7.A解析:A【分析】想办法证明S 阴=S △ADE +S △DEC =S △AEC ,再由EF ∥AC ,可得S △AEC =S △ACF 解决问题;【详解】解:如图连接AF 、EC .∵BC=4CF ,S △ABC =24,∴S △ACF = 14×24=6, ∵四边形CDEF 是平行四边形,∴DE ∥CF ,EF ∥AC ,∴S △DEB =S △DEC ,∴S 阴=S △ADE +S △DEC =S △AEC ,∵EF ∥AC ,∴S △AEC =S △ACF =6,∴S 阴=6.故选:A .【点睛】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.8.D解析:D【分析】先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合题意;B 、AB=BE 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;C 、DF=EF 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;D 、当DE 平分ADB ∠时,四边形AEBD 是菱形,故该选项符合题意;故选:D .【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.9.B解析:B【分析】根据AB AC =,AE 平分BAC ∠,得AE BC ⊥,12BE EC BC ==,从而得CD ,结合ACD CAD ∠=∠,得AD CD =,从而计算得AE ;连接BD ,通过证明BED CED △≌△,得BD CD AD ==,通过勾股定理得DF ,即可完成求解.【详解】∵AB AC =,AE 平分BAC ∠∴AE BC ⊥,142BE EC BC === ∴2222345CD DE EC =+=+=∵ACD CAD ∠=∠∴5AD CD ==cm ,故①正确;∴8AE AD DE =+= ∴22224845AC EC AE =+=+=cm ,故②错误; ∴45AB AC ==如图,连接BD∵90DE DE DEB DEF BE EC =⎧⎪∠=∠=⎨⎪=⎩∴BED CED △≌△∴BD CD =∴5BD CD AD ===∵DF AB ⊥∴1252AF BF AB === ∴()22225255DF AD AF =-=-=cm ,故③错误; ∴11541022ACD S AD EC =⨯=⨯⨯=△cm ,故④正确; 故选:B .【点睛】本题考查了等腰三角形、勾股定理、全等三角形的知识;解题的关键是熟练掌握等腰三角形三线合一、勾股定理、全等三角形的性质,从而完成求解. 10.C解析:C【分析】分两种情况分类讨论,如图所示,分别在Rt ABD △与Rt ACD △中,利用勾股定理求出BD 与CD 的长,即可求出BC 的长.【详解】根据题意画出图形,如图所示,AD 是ABC 的高,∴90ADB ADC ∠=∠=︒,如图1,10AB =,40AC ,6AD =,在Rt ABD △中,由勾股定理得:222AD BD AB +=, ∴22221068BD AB AD =--=,在Rt ACD △中,由勾股定理得:222AD CD AC +=, ∴()22224062CD AC AD =-=-=,∴10BC BD CD =+=;如图2,10AB =,40AC 6AD =,在Rt ABD △中,由勾股定理得:222AD BD AB +=, ∴22221068BD AB AD =--=,在Rt ACD △中,由勾股定理得:222AD CD AC +=,∴()22224062CD AC AD =-=-=,∴6BC BD CD =-=,∴BC 的长度为:6或10.故选:C .【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.B解析:B【分析】由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .【点睛】本题主要考查勾股定理与图形面积,灵活运用勾股定理处理图形面积之间的转化是解题关键.12.B解析:B【分析】根据直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】解:如图所示,∵△ABC 是直角三角形,∴根据勾股定理:22249x y AB +==,故①正确; 由图可知42x y CE -===,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为144492xy ⨯+=, 即2449xy +=,故③正确; 由2449xy +=可得245xy =,又∵2249x y +=,两式相加得:2224945x xy y ++=+,整理得:()294x y +=,9x y +=≠,故④错误; 故正确的是①②③.故选:B .【点睛】 本题主要考查了勾股定理的应用,掌握勾股定理、直角三角形的面积公式和完全平方公式是解题的关键.二、填空题13.3【分析】根据菱形的轴对称性可得AC 关于BD 对称当APE 三点共线时的值最小为AE 再根据三角形的面积即可得出答案【详解】解:∵四边形菱形∴AC 关于BD 对称∵点EC 在BD 的同侧∴当APE 三点共线时的值最 解析:3【分析】根据菱形的轴对称性可得A 、C 关于BD 对称,当A 、P 、E 三点共线时,PE PC +的值最小为AE ,再根据三角形的面积即可得出答案.【详解】解:∵四边形ABCD 菱形,∴A 、C 关于BD 对称,∵点E ,C 在BD 的同侧,∴当A 、P 、E 三点共线时,PE PC +的值最小,且最小值为AE ;∵以AD 为斜边的Rt AED △的面积为3, 2DE =, ∴112322⨯=⨯=AE DE AE , ∴AE=3, ∴PE PC +的最小值是3故答案为:3.【点睛】本题考查了菱形的性质、最短问题、面积法等知识,解题的关键是利用轴对称解决最值问题,是中考常考题型.14.【分析】由四边形ABCD 是平行四边形得到∠ABC=∠D=102°再AD=AE=BE 得出∠EAB=∠EBA ∠BEC=∠BCA 继而得到∠ACB=2∠BAC 再根据∠BAC+∠ACB=3∠BAC=180°-解析:26︒【分析】由四边形ABCD 是平行四边形,得到∠ABC=∠D=102°,再AD=AE=BE ,得出∠EAB=∠EBA ,∠BEC=∠BCA ,继而得到∠ACB=2∠BAC ,再根据∠BAC+∠ACB=3∠BAC=180°-∠ABC 求解即可.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC , ∠ABC=∠D=102°,∵AD=AE=BE ,∴BC=AE=BE ,∴∠EAB=∠EBA ,∠BEC=∠BCA ,∵∠BEC=∠EAB +∠EBA=2∠EAB ,∴∠ACB=2∠BAC ,∴∠BAC+∠ACB=3∠BAC=180°-∠ABC=180°-102°=78°,∴3∠BAC=78°,即∠BAC=26°,故答案为:26°.【点睛】本题考查平行四边形的性质、三角形外角的性质、等腰三角形的性质,解题的关键是综合运用相关知识.15.2【分析】依据二次根式有意义的条件可求得x 的值然后可得到y 的值最后代入计算即可【详解】∵∴∴故答案为:2【点睛】本题主要考查了二次根式有意义的条件依据二次根式有意义的条件得到xy 的值是解题的关键解析:2【分析】依据二次根式有意义的条件可求得x 的值,然后可得到y 的值,最后代入计算即可.【详解】∵5y =, ∴3x =,5y =.∴2==.故答案为:2.【点睛】本题主要考查了二次根式有意义的条件,依据二次根式有意义的条件得到x 、y 的值是解题的关键.16.【分析】先利用二次根式化简然后分和两种情况解答即可【详解】解:原式当时原式;当时原式;即故答案为【点睛】本题主要考查了二次根式的性质和绝对值的性质根据二次根式的性质化简所给的二次根式是解答本题的关键解析:±【分析】先利用二次根式化简,然后分0a >、0b >和0a <,0b <两种情况解答即可.【详解】解:原式=+a b =+,=5ab =,∴当0a >,0b >时,原式==当0a <,0b <时,原式=-=-即=±故答案为±【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据二次根式的性质化简所给的二次根式是解答本题的关键.17.2【分析】先根据非负数的性质得出关于xy 的方程求出xy 的值代入x+y 进行计算即可【详解】解得故答案为:2【点睛】本题考查的是非负数的性质解题的关键是掌握非负数的性质即几个非负数的和为0时这几个非负数解析:2【分析】先根据非负数的性质得出关于x 、y 的方程,求出x 、y 的值,代入x+y 进行计算即可.【详解】220x y -+=,20x ∴-=,0y =,解得2x =,202x y +=+=.故答案为:2.【点睛】本题考查的是非负数的性质.解题的关键是掌握非负数的性质,即几个非负数的和为0时,这几个非负数都为0.18.【分析】运用勾股定理可求出平面直角坐标系中AB 的长度再根据个单位长度表示的实际距离为米求出结果即可【详解】解:如图AC=6-(-2)=8BC=2-(-4)=6∴∴小明与东方之门的实际距离为10×10解析:1000【分析】运用勾股定理可求出平面直角坐标系中AB 的长度,再根据1个单位长度表示的实际距离为100米求出结果即可.【详解】解:如图,AC=6-(-2)=8,BC=2-(-4)=6 ∴2222=6+8=10AB BC AC +∴小明与东方之门的实际距离为10×100=1000(米)故答案为:1000.【点睛】此题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解答此题的关键. 19.150°【分析】由可知:PA =P′A ∠P′AB =∠PACBP′=CP 然后依据等式的性质可得到∠P′AP =∠BAC =60°从而可得到△APP′为等边三角形可求得PP′由△APP′为等边三角形得∠APP解析:150°【分析】由P AB PAC '≌△△可知:PA =P′A ,∠P′AB =∠PAC ,BP′=CP ,然后依据等式的性质可得到∠P′AP =∠BAC =60°,从而可得到△APP′为等边三角形,可求得PP′,由△APP′为等边三角形,得∠APP′=60°,在△PP′B 中,用勾股定理逆定理证出直角三角形,得出∠P′PB =90°,进而可求∠APB 的度数.【详解】连接PP′,∵P AB PAC '≌△△,∴PA =P′A=6,∠P ′AB =∠PAC ,BP′=CP=10,∴∠P′AP =∠BAC =60°,∴△APP′为等边三角形,∴PP′=AP =AP′=6,又∵8PB =,∴PP′2+BP 2=BP′2,∴△BPP′为直角三角形,且∠BPP′=90°∴∠APB =90°+60°=150°,故答案是:150°【点睛】本题主要考查的是全等三角形的性质、等边三角形的判定、勾股定理的逆定理的应用,证得△APP′为等边三角形、△BPP′为直角三角形是解题的关键.20.【分析】设OA=OB=BC=CD=a 可知AB=AC=AD=由题意知AC=3即可求出AD 的长;【详解】∵OA=OB=BC=CD ∴设OA=OB=BC=CD=a ∵∠AOD=90°∴AC===∴∵AC==3 解析:32【分析】设OA=OB=BC=CD=a ,可知2a ,5a ,10a ,由题意知AC=3,即可求出AD 的长;【详解】∵ OA=OB=BC=CD ,∴ 设OA=OB=BC=CD=a ,∵∠AOD=90°,∴22AO OC +()222a a +5a , ∴2222(3)10AD OD OA a a a =+=+=,∵5a =3, ∴35∴5=故答案为:【点睛】本意考查了等腰直角三角形的性质,勾股定理,正确掌握等腰直角三角形的性质和勾股定理是解题的关键;三、解答题21.(1)t=2;(2)t=3或65t=.【分析】(1)根据等边三角形的性质,列出关于t的方程,进而即可求解.(2)根据△PAQ是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP=2t(米),AQ=6-t(米).∵∠A=60°,∴当△PAQ是等边三角形时,AQ=AP,即2t=6-t,解得:t=2,∴当t=2时,△PAQ是等边三角形.(2)∵△PAQ是直角三角形,∴当∠AQP=90°时,有∠APQ=30°,即AP=2AQ,∴2t=2(6-t),解得:t=3(秒),当∠APQ=90°时,有∠AQP=30°,即AQ=2AP,∴6-t=2·2t,解得65t=(秒),∴当t=3或65t=时,△PAQ是直角三角形.【定睛】本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.22.(1)2)2【分析】(1)作DM⊥BC,AN⊥DM垂足分别为M、N,易知四边形MNAB是矩形,分别在Rt△ADN中求出DN,利用含60°的直角三角形求CD即可;(2)由(1)可知,四边形ABCD的面积就是△DCM与梯形ADMB的面积和.【详解】解:(1)如图作DM⊥BC,AN⊥DM垂足分别为M、N.∵∠B=∠NMB=∠MNA=90°,∴四边形MNAB是矩形,∴MN=AB=5,AN=BM,∠BAN=90°,∵∠C +∠B +∠ADC +∠BAD =360°,∠C =60°,∠B =∠ADC =90°,∴∠DAN =∠BAD ﹣∠BAN =30°,在RT △AND 中,∵AD =2,∠DAN =30°,∴DN =12AD =1,AN =2222213AD DN -=-=, 在RT △DMC 中,∵DM =DN +MN =6,∠C =60°,∴∠CDM =30°,∴CD =2MC ,设MC =x ,则CD =2x ,∵CD 2=DM 2+CM 2,∴4x 2=x 2+62,∵x >0∴x =23,∴CD =43.(2)由(1)得,112366322DCM S CM DM =⨯⨯=⨯⨯=, 1111()3113222ADMB S AN DM AB =⨯⨯+=⨯⨯=梯形, 1123633322DCM ABCD ADMB S S S =+=+=四边形梯形.【点睛】本题考查了勾股定理和含有30°角的直角三角形的性质,通过作辅助线,构建特殊的直角三角形是解题关键.23.(1)52;(2)16332- 【分析】(1)先由二次根式的性质、立方根、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)由平方差公式进行化简,然后得到答案.【详解】解:(1)原式3213222=++52=;(2)原式248(31)(31)(31)(31)(31)12-++++=-16163133122--=-=. 【点睛】本题考查了平方差公式,实数的混合运算,二次根式的性质,以及绝对值的化简,解题的关键是熟练掌握运算法则进行计算.24.(1)①=;②=;③>;④>;(2)2a b +≥,证明见解析;(3)4. 【分析】(1)①、②、③、④直接将a 、b 的值代入计算即可;(2)由20≥可得0a b -≥,最后移项即可说明;(3)当镜框为正方形时,周长最小,即然后根据正方形的面积求出边长即可解答.【详解】(1)①当2a =,2b =时,2a b +=2,则2a b +②当3a =,3b =时,2a b +=3,则2a b +③当4a =,1b =时,2a b +=2.5,则2a b +④当5a =,3b =时,2a b +=42a b + 故:①=,②=,③>,④>;(2)2a b +≥ 20≥,∴0a b -≥,整理得,2a b +≥; (3)当镜框为正方形时,周长最小∵镜框的面积为1∴镜框的边长为1,即周长为4.【点睛】 本题主要考查了二次根式的应用,确定出两个算式的大小关系并灵活运用这种关系成为解答本题的关键.25.254【分析】连接BE ,先利用勾股定理求出BC 的长,根据线段垂直平分线的性质可得AE =BE ,然后设AE =BE =x ,再由勾股定理可得方程(8−x )2+62=x 2,求解后即可得出答案.【详解】解:连接BE ,在Rt △ABC 中,∵∠C =90°,AC =8,AB =10,∴AC 2+BC 2=AB 2.即82+BC 2=102,解得:BC =6.∵DE 是AB 的垂直平分线,∴AE =BE .设AE =BE =x ,则EC =8−x ,∵Rt △BCE 中,EC 2+BC 2=BE 2,∴(8−x )2+62=x 2,解得:x =254, ∴AE =254. 【点睛】此题考查了线段垂直平分线的性质以及勾股定理,掌握线段垂直平分线的性质并结合勾股定理求解线段的长度是解题的关键,且要注意数形结合思想应用.26.A 题:8米;B 题:41213m 【分析】A 题:设出旗杆的高度,利用勾股定理解答即可;B 题:根据题意表示出AD 、AC 、BC 的长,进而利用勾股定理求出AD 的长,即可得出答案.【详解】解:A 题:设旗杆的高度为x 米,则绳子长为(x+2)米,由勾股定理得:()22226x x +=+,解得:8x =,答:旗杆的高度为8米;B 题:由题意可得:BD=10m ,BC=6m ,设AD=xm ,则有:AC=()16x -m ,在Rt △ABC 中,222AB BC AC +=, 即()()22210616x x ++=-, 解得:3013x =, 故AB=30410121313+=m , 答:树高AB 为41213m . 【点睛】本题考察勾股定理的应用,善于观察题目的信息是解题的关键.。
北京课改版八年级下册数学期中考试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题(题型注释) 1.如图,在△ABC 中,AB=4,BC=6,DE 、DF 是△ABC 的中位线,则四边形BEDF 的周长是( )A .5B .7C .8D .102.如图,四边形ABCD 是平行四边形,BE 平分∠ABC ,CF 平分∠BCD ,BE 、CF 交于点G .若使EF D 14A =,那么平行四边形ABCD 应满足的条件是【 】A .∠ABC=60° B.AB :BC=1:4C .AB :BC=5:2D .AB :BC=5:83.下列说法错误的是( )A .有一组对边平行但不相等的四边形是梯形B .有一个角是直角的梯形是直角梯形C .等腰梯形的两底角相等D .直角梯形的两条对角线不相等4.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是( )A. 梯形B. 矩形C. 菱形D. 正方形5.如图,在矩形ABCD 中,O 是BC 的中点,∠AOD = 90°,若矩形ABCD 的周长为30 cm ,则AB 的长为( )A.5 cmB.10 cmC.15 cmD.7.5 cm 6.函数y=1x -的自变量x 的取值范围是A .x=1B .x ≠1C .x ≥1D .x ≤17.如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 于E ,则△CDE 的周长是( )A .6B .8C .9D .108.已知▱ABCD 的周长为32,AB=4,则BC=( )A 、4B 、12C 、24D 、289.若一个多边形的内角和等于720°,则这个多边形的边数是( )A . 5B . 6C . 7D . 810.已知一次函数y=x ﹣2,当函数值y >0时,自变量x 的取值范围在数轴上表示正确的是【 】A .B .C .评卷人得分 二、填空题11.y =yy +y ,当自变量y 的取值为−2≤y ≤5时,相应的函数值的范围为−3≤y ≤−6,则该函数的解析式为 。
(新课标)京改版八年级数学下册期中质量检测 初 二 数 学一、选择题(每小题的四个选项中,只有一个是符合题目要求的.请将你认为符合要求的一项的序号填在题中的括号内.每题3分,共30分)1. 下列各组数中,能成为直角三角形的三条边长的是 ( ).A .3,5,7 B. 5,7,8 C. 4,6,7 D. 13 22. 直角三角形的两条直角边的长分别为5,12,则斜边上的中线长为( ).A. 6013cmB. 132cm C. 6cm D. 13cm3. 已知□ABCD 中,∠A+∠C=200°,则∠B 的度数是( ).A. 100°B. 160°C. 80°D. 60°4.如图,在□ABCD 中,已知AD =8cm ,AB =6cm ,DE 平分∠ADC 交BC 边于点E ,则BE 等于( ).试卷说明:1.本试卷共4页,计三道大题,26道小题; 2.卷面分值100分,考试时间为90分钟。
12-3-210-13A A .2cmB .4cmC .6cmD .8cm 5. 20axbx c ++=是关于x 的一元二次方程的条件是( ).A. ,,a b c 为任意实数B. ,a b 不同时为0C. a 不为0D. ,b c 不同时为0 6. 2240x+=的根是( ).A. 122,2x x ==-B. 2x =C.无实根D. 以上均不正确7. 已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是( ).A. 2680x x -+= B.2230x x +-= C.260x x --=D.260xx +-=8. 如图,数轴上点A 所表示的数为a ,则a 的值是( ). A .5—1 B .—5+1 C .5+1 D .59.若三角形的三边长分别为2,6,2,则此三角形的面积为( ).A.22B.2C.3 D.310.如图,四边形ABCD 中,AC =a ,BD =b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( ). ①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形;ODCBA③四边形A 5B 5C 5D 5的周长是4a b+;错误!未找到引用源。
2017-2018学年(新课标)京改版八年级数学下册期中模拟试题总分:100分 考试时间:100分钟(本大题共30分,每小题3分)选择题(下列各题均有四个选项,其中有且只有一个是符合题意的。
请你将正确选项前的字母填在下表中相应的位置): 1.一个正多边形的一个外角是40°,这个正多边形的边数是A .10B .9C .8D .5 2.在平面直角坐标系中,点P 坐标为(4,-3),则点P 在A.第一象限B.第二象限C.第三象限D.第四象限 3.点A (5,-2)关于y 轴的对称点的坐标是A. (-5,-2)B. (5,-2)C.(-5,2)D.(5,2) 4.下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D 5.函数2y x =+中,自变量x 的取值范围是 A.2x >-B .2x -≥C .2x ≠-D .2x -≤6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 7.ABCD 中, ∠A 比∠B 小200,则∠A 的度数为( )A. 600B. 800C. 1000D. 1200 8将矩形纸片ABCD 按如图所示的方式折叠, 得到菱形AECF .若AB =6,则BC 的长为 A .1 B .22C .23 D .129.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y •(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .4二、(本大题共24分,每题3分)填空题11.如图,在平行四边形ABCD 中,已知AD=9㎝,AB=5㎝, AE 平分∠BAD 交BC 边于点E,则EC 的长为_______.12.如图所示,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,如果矩形的面积为12,那么阴影部分的面积是________.13. 将直线y=-2x+3向下平移1个单位长度,所得直线的解析式为 .14. 如果菱形的两条对角线的长分别为6cm 和8cm,则此菱形的边长是 cm,面积是 cm 2.15.点A (3,1y )和点B (-2,2y )都在直线y=3x+2上,则1y ,2y 的大小关系是( )E BA CD10题图G FEAD CB(选填“>”“=”“<”)。
2020-2021学年北京课改八年级下册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列图形中,不能代表y是x函数的是()A.B.C.D.3.在平面直角坐标系xOy中,已知点A(﹣1,﹣1),B(5,1),C(7,7),D(1,5).若一次函数y=mx﹣5m+1的图象将四边形ABCD分成面积比为1:3的两部分,则m的值为()A.﹣5或﹣B.﹣4或﹣C.﹣4或﹣D.﹣5或﹣4.方程5x2=4x的解是()A.x=0B.x=C.x1=0,x2=D.x1=0或x2=5.用配方法解一元二次方程x2﹣9x+19=0,配方后的方程为()A.(x﹣)2=B.(x+)2=C.(x﹣9)2=62D.(x+9)2=62 6.已知直线y=kx+b经过第一、二、三象限,且点(2,1)在该直线上,设m=2k﹣b,则m的取值范围是()A.0<m<1B.﹣1<m<1C.1<m<2D.﹣1<m<2 7.在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.8.某单位为了解某次“爱心捐款”的情况,从2000名职工中随机抽取部分职工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是()A.样本中位数是200元B.样本众数是100元C.样本平均数是180元D.估计所有员工中,捐款金额为200元的有500人二.填空题(共8小题,满分16分,每小题2分)9.函数y=+的自变量x的取值范围是.10.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则(m+n)2020的值是.11.如图是甲、乙两名射击运动员10次射击成绩的统计表和折线统计图.平均数中位数众数甲888乙888你认为甲、乙两名运动员,的射击成绩更稳定.(填甲或乙)12.如图,已知一次函数y=kx﹣b与y=x的图象相交于点A(a,1),则关于x的方程(k﹣)x=b的解x=.13.如果关于x的一元二次方程ax2+bx﹣1=0的一个解是x=1,则2021﹣a﹣b=.14.写出一个y关于x的函数,同时满足两个条件:①图象过点(2,3);②当x>0时,y 随x的增大而减小,则这个函数解析式为(写出一个即可).15.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是.16.在平面直角坐标系中,解析式为y=x+1的直线a、解析式为y=x的直线b如图所示,直线a交y轴于点A,以OA为边作第一个等边三角形△OAB,过点B作y轴的平行线交直线a于点A1,以A1B为边作第二个等边三角形△A1BB1,……顺次这样做下去,第2020个等边三角形的边长为.三.解答题(共12小题,满分60分)17.定义运算:m*n=mn2﹣mn﹣3,例如:4*2=4×22﹣4×2﹣3=5.解方程:1*x=0.18.解方程:2x2﹣3x﹣5=0.19.已知函数y=(2m+1)x+m﹣3.(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.20.已知关于x的一元二次方程(m﹣2)x2﹣2x+1=0有两个实数根.(1)求m的取值范围;(2)在1,2,4三个数中,取一个合适的m值代入方程,并解这个方程.21.小涛根据学习函数的经验,对函数y=ax|x﹣2|的图象与性质进行了探究,下面是小涛的探究过程,请补充完整:(1)如表是x与y的几组对应值x…﹣2﹣10121+3…y…﹣8﹣30m n13…请直接写出:a=,m=,n=;(2)如图,小涛在平面直角坐标系中,描出了上表中已经给出的部分对应值为坐标的点,再描出剩下的点,并画出该函数的图象;(3)请直接写出函数y=ax|x﹣2|的图象性质:;(写出一条即可)(4)请结合画出的函数图象,解决问题:若方程ax|x﹣2|=t有三个不同的解,请直接写出t的取值范围.22.如图,在平面直角坐标系xOy中,一次函数y=k1x+6与x轴、y轴分别交于点A、B两点,与正比例函数y=k2x交于点D(2,2)(1)求一次函数和正比例函数的表达式;(2)若点P为直线y=k2x上的一个动点(点P不与点D重合),点Q在一次函数y=k1x+6的图象上,PQ∥y轴,当PQ=OA时,求点p的坐标.23.据统计,某市2018年某种品牌汽车的年产量为64万辆,到2020年,该品牌汽车的年产量达到100万辆.若该品牌汽车年产量的年平均增长率从2018年开始五年内保持不变.(1)求年平均增长率;(2)求该品牌汽车2021年的年产量为多少万辆?24.为响应国家节能减排、垃圾分类政策,自2019年1月1日起,《重庆市生活垃圾分类管理办法》正式实施,该条例的实施,旨在加强生活垃圾分类管理,提高生活垃圾减量化、资源化、无害化处置水平及推进生态文明建设实外学生处认为,初三学生虽然学业任务重,但垃圾分类意识依然要高度重视并扎实推进,为此,学校对初2020级甲,乙两班各60名学生进行知识测试,测试完成后分别抽取了12份成绩,整理分析过程如下,请补充完整.【收集数据】甲班12名学生测试成绩统计如下:45,59,60,38,57,53,52,58,60,50,43,49乙班12名学生测试成绩不低于40,但低于50分的成绩如下:46,47,43,42,47【整理数据】按如下分数段整理、描述这两组样本数据;组别/频数35≤x<4040≤x<4545≤x<5050≤x<5555≤x≤60甲11235乙22314【分析数据】两组样本数据的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差甲52x52.552.54乙48.747y67.51(1)根据以上信息,可以求出:x=,y=,并请补全频数分布直方图;(2)若规定得分在40分及以上为合格,请估计参加知识测试的学生中合格的学生共有多少人?(3)你认为哪个班的学生知识测试的整体水平较好,请说明理由.25.快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?26.(1)解方程:2x2﹣x﹣1=0(2)已知关于x的方程无解,方程x2+kx+6=0的一个根是m.①求m和k的值;②求方程x2+kx+6=0的另一个根.27.请根据函数相关知识,对函数y=的图象与性质进行探究,并解决相关问题:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值;x…﹣2﹣101245678…y…m0﹣132…则m的值为;(3)如图所示,在平面直角坐标系xOy中,画出了函数y=图象的一部分,请补全此函数的图象;(4)观察图象,写出该函数的一条性质:;(5)若函数y=的图象上有三个点A(x1,y1),B(x2,y2),C(x3,y3),且x1<x2<3<x3,则y1,y2,y3之间的大小关系为.(用“<“连接).28.已知一次函数y=(1﹣2m)x+m+1及坐标平面内一点P(2,0);(1)若一次函数图象经过点P(2,0),求m的值;(2)若一次函数的图象经过第一、二、三象限;①求m的取值范围;②若点M(a﹣1,y1),N(a,y2),在该一次函数的图象上,则y1y2(填“>”、”=”、”<”).参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:点P(﹣3,2)在第二象限,故选:B.2.解:A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故此选项不符合题意;B、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故此选项不符合题意;C、不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故此选项符合题意;D、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故此选项不符合题意;故选:C.3.解:∵点A(﹣1,﹣1),B(5,1),C(7,7),D(1,5).∴AB2=(5+1)2+(1+1)2=40,BC2=(7﹣5)2+(7﹣1)2=40,CD2=(7﹣1)2+(7﹣5)2=40,DA2=(1+1)2+(5+1)2=40,∴AB=BC=CD=DA,∴四边形ABCD是菱形,∴一次函数y=mx﹣5m+1一定经过点(5,1),即B点,当y=mx﹣5m+1与AD相交时,一次函数经过AD的中点(0,2),∴m=﹣;当y=mx﹣5m+1与CD相交时,∴一次函数经过CD的中点(4,6),∴m=﹣5;故选:D.4.解:5x2=4x,5x2﹣4x=0,x(5x﹣4)=0,∴x1=0,x2=,故选:C.5.解:∵x2﹣9x+19=0,∴x2﹣9x=﹣19,∴x2﹣9x+=﹣19+,即(x﹣)2=,故选:A.6.解:把(2,1)代入y=kx+b得2k+b=1,b=﹣2k+1,因为直线y=kx+b经过第一、二、三象限,所以k>0,b>0,即﹣2k+1>0,所以k的范围为0<k<,因为m=2k﹣b=2k﹣(﹣2k+1)=4k﹣1,所以m的范围为﹣1<m<1.故选:B.7.解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∴2=a+a,解得a=1,∴y=x+1,∴直线交y轴的正半轴于点(0,1),且过点(1,2),故选:A.8.解:由直方图可知,共有2+8+5+4+1=20个数据,其中位数为(100+200)=150元,故A错误;样本众数是100元,故B正确;捐款的平均数为(50×2+100×8+200×5+300×4+500×1)=180(元),故C正确;估计所有员工中,捐款金额为200元的有×2000=500(人),故D正确;故选:A.二.填空题(共8小题,满分16分,每小题2分)9.解:由题意,∴x≥1且x≠3,故答案为∴x≥1且x≠310.解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3,1﹣n=2,解得:m=2,n=﹣1则(m+n)2020=(2﹣1)2020=1.故答案为:1.11.解:由统计表可知,甲和乙的平均数、中位数和众数都相等,由折线统计图可知,乙的波动小,成绩比较稳定,故答案为:乙.12.解:把A(a,1)代入y=得:1=a,解得a=3,∴A(3,1),∴根据图象信息可得关于x的方程kx﹣b=x的解为3,∴关于x的方程(k﹣)x=b的解为x=3.故答案为3.13.解:把x=1代入方程ax2+bx﹣1=0得a+b﹣1=0,所以a+b=1,所以2021﹣a﹣b=2021﹣(a+b)=2021﹣1=2020.故答案为:2020.14.解:符合题意的函数解析式可以是y=,y=﹣x+5,y=﹣x2+7等,(本题答案不唯一)故答案为:y=,y=﹣x+5,y=﹣x2+7等.15.解:(1)当k=0时,2x﹣1=0,解得:x=;(2)当k≠0时,此方程是一元二次方程,∵关于x方程kx2+2x﹣1=0有实根,∴△=22﹣4k×(﹣1)≥0,解得k≥﹣1,由(1)和(2)得,k的取值范围是k≥﹣1.故答案为:k≥﹣1.16.解:延长A1B交x轴于D,A2B1交x轴于E,如图,∵△OAB、△BA1B1、△B1A2B2均为等边三角形,∴OA=OB,A1B=BB1,A2B1=B2B1,∵直线OB的解析式为y=x,∴∠BOD=30°,由直线a:y=x+1可知OA=1,∴OB=1,∴OD=,BD=,把x=代入y=x+1得y=,∴A1D=,∴A1B=2,∴BB1=A1B=2,∴OB1=3,∴OE=,B1E=,把x=代入y=x+1得y=,∴A2E=,∴A2B1=4,同理得到A3B2=23,…,按照此规律得到第2020个等边三角形的边长为22019,故答案为22019.三.解答题(共12小题,满分60分)17.解:根据题意得1•x2﹣1•x﹣3=0,即x2﹣x﹣3=0,∵△=(﹣1)2﹣4×(﹣3)=13,∴x==,∴x1=,x2=.18.解:2x2﹣3x﹣5=0,∴(2x﹣5)(x+1)=0,∴2x﹣5=0,或x+1=0,∴x1=,x2=﹣1.19.解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣0.5.20..解:(1)根据题意,b2﹣4ac=(﹣2)2﹣4(m﹣2)≥0,且m﹣2≠0,∴m≤3,m≠2;(2)∵m≤3且m≠2,∴可取m=1,当m=1时,原方程化为﹣x2﹣2x+1=0,∴x=,解得x1=﹣1﹣,x2=﹣1+.21.解:(1)把(3,3)代入y=ax|x﹣2|得,3=3a,解得a=1,∴函数为y=x|x﹣2|,把x=1代入y=x|x﹣2|,得m=1×1=1.把x=2代入y=x|x﹣2|,得n=2×0=0.故答案为1,1,0;(2)如图:(3)由图象可知:当x<1时,y随x的增大而增大;故答案为:当x<1时,y随x的增大而增大;(4)由图形可知,若方程ax|x﹣2|=t有三个不同的解,t的取值范围是0<t<1.22.解:(1)把(2,2)分别代入y=k1x+6与y=k2x得,k1=﹣2,k2=1,∴一次函数和正比例函数的表达式分别为:y=﹣2x+6,y=x;(2)由y=﹣2x+6,当y=0时,得x=3,∴A(3,0),∴OA=3,∵点P(m,n),∴Q(m,﹣2m+6),当PQ=OA时,PQ=m﹣(﹣2m+6)=×3,或PQ=﹣2m+6﹣m=×3,解得:m=或m=,∴P(,),(,).23.解:(1)设年平均增长率为x,依题意,得:64(1+x)2=100,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:年平均增长率为25%.(2)100×(1+25%)=125(万辆).答:该品牌汽车2021年的年产量为125万辆.24.解:(1)甲班12名学生测试成绩为:45,59,60,38,57,53,52,58,60,50,43,49,其中60出现了两次,次数最多,所以众数x=60;将乙班12名学生测试成绩按从小到大的顺序排列,第6、7个数字都落在第三组,而第三组三个学生的成绩为46,47,47,即第6、7个数字都是47,所以中位数y=(47+47)÷2=47.频数分布直方图补充如下:故答案为60,47;(2)120×=110(人).即估计参加知识测试的学生中合格的学生共有110人;(3)甲班的学生知识测试的整体水平较好,∵甲班平均数>乙班平均数,甲班中位数>乙班中位数,甲班的方差<乙班的方差,∴甲班的学生知识测试的整体水平较好.25.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.26.解:(1)(2x+1)(x﹣1)=02x+1=0或x﹣1=0所以x1=﹣,x2=1;(2)解:①去分母得m﹣1﹣x=0,解得x=m﹣1,而分式方程无解,则x﹣1=0,所以m﹣1=﹣1=0,解得m=2,把x=2代入方程x2+kx+6=0得4+2k+6=0,解得k=﹣5;②设方程的另外一个根是t,则2t=6,解得t=3,所以方程x2+kx+6=0的另一个根为3.27.解:(1)由题意得:x﹣3≠0,解得x≠3,故答案为x≠3;(2)x=﹣1时,y====m,故答案为;(3)描点连线画出如下函数图象:(4)从图象看,x>3时,y随x的增大而减小,故答案为:x>3时,y随x的增大而减小(答案不唯一);(5)从图象看,x>3时,y>1,故y3最大,而函数y随x的增大而增大,故y1>y2,故y3>y1>y2,故答案为y2<y1<y3.28.解:(1)∵一次函数y=(1﹣2m)x+m+1图象经过点P(2,0),∴0=(1﹣2m)×2+m+1,解得,m=1,即m的值是1;(2)①∵一次函数y=(1﹣2m)x+m+1的图象经过第一、二、三象限,∴,解得,﹣1<m<;②∵一次函数y=(1﹣2m)x+m+1的图象经过第一、二、三象限,∴1﹣2m>0,∴该函数y随x的增大而增大,∵点M(a﹣1,y1),N(a,y2)在该一次函数的图象上,a﹣1<a,∴y1<y2,故答案为:<.。
一、选择题1.如图,在ABC 中,D 是BC 边上的中点,连结AD ,把ABD △沿AD 翻折,得到AB D ',连接CB ',若2BD CB '==,3AD =,则AB C '的面积为( )A .332B .23C .3D .22.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 3.2是同类二次根式的是( )A 48B 20C 54D 504.若2a 3<<22(2a)(a 3)--( )A .52a -B .12a -C .2a 1-D .2a 5- 5.如x 为实数,在“31)□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A 31B 31C .33D .13-6.若0<x<1,则2211()4()4x x x x -++-等于( )A .2xB .- 2xC .-2xD .2x7.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形. 8.如图,在Rt ABC 中,90C =∠,30A ∠=,D 是 AC 边的中点,DE AC ⊥于点D ,交AB 于点E ,若3AC =DE 的长是( )A .8B .6C .4D .2 9.矩形不一定具有的性质是( ) A .对角线互相平分 B .是轴对称图形 C .对角线相等 D .对角线互相垂直参考答案10.如图所示,在Rt ABC 中,90,3,5C AC BC ∠=︒==,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则线段CD 的长是( )A .85B .165C .175D .24511.在ABC 中,A ∠、B 、C ∠的对应边分别是a 、b 、c ,下列条件中不能说明ABC 是直角三角形的是( )A .222b a c =-B .C A B ∠=∠+∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =12.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .2二、填空题13.已知:如图,把长方形纸片ABCD 沿EF 折叠,使D C 、分别落在D C ''、的位置,若65EFB ︒∠=,则AED '∠的度数为_________.14.如图,边长分别为4和2的两个正方形ABCD 和CEFG 并排放在一起,连结EG 并延长交BD 于点N ,交AD 于点M .则线段MN 的长是__________.15.已知51x =-,求229x x ++=______. 16.计算:()()202020203232+⨯-=___________17.比较大小:76-___65-18.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,25AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.19.如图,在△ABC 中,∠ACB =90°,AD 平分∠BAC ,AB =10,AD =5,AC =4,则△ABD 的面积为 ____________.20.如图,在长方形ABCD 中,4AB =,8BC =,点E 是BC 边上一点,且AE EC =,点P 是AD 边上一动点,连接PE 、PC .给出下列结论:①3BE =;②当5AP =时,//AE CP ;③当256AP =时,AE 平分BEP ∠; ④若PBE EPC ∠=∠,则BPC PEC ∠=∠.其中正确的是______.三、解答题21.如图,平行四边形ABCD 中,,AP BP 分别平分DAB ∠和CBA ∠,交于DC 边上点P , 2.5AD =.(1)求线段AB 的长.(2)若3BP =,求ABP △的面积.22.如图,平行四边形ABCD 中,BD 是它的一条对角线,过A 、C 两点作,AE BD CF BD ⊥⊥,垂足分别为E 、F ,延长AE 、CF 分别交CD 、AB 于M 、N .(1)求证:四边形CMAN 是平行四边形; (2)已知4,3DE FN ==.求BN 的长.23.在数轴上点A 为原点,点B 表示的数为b ,点C 表示的数c ,且已知b 、c 满足b 1+7c -=0,(1)直接写出b 、c 的值:b=______,c=_______;(2)若BC 的中点为D ,则点D 表示的数为________;(3)若B 、C 两点同时以每秒1个单位长度的速度向左移动,则运动几秒时,恰好有AB=AC ?24.先化简,再求值:21()111x x x x -÷---,其中x 3+1.25.有一块四边形草地ABCD (如图),测得10AB AD ==m ,26CD =m ,24BC =m ,60A ∠=︒.(1)求ABC ∠的度数;(2)求四边形草地ABCD 的面积.26.在如图的正方形网格中,每个小正方形的边长都是1,请在图中画出2个形状不同的等腰三角形,使它的腰长为5,且顶点都在格点上,则满足条件的形状不同的等腰三角形共 个.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】证明AD ∥CB′,推出S △ACB′=S △CDB′即可解决问题.【详解】∵D 是BC 的中点,∴BD DC =,由翻折的性质可知ADB ADB '∠=∠,DB DB '=,∴2BD CB '==,∴2CD DB CB ''===,∴CDB '是等边三角形,∴60CDB DCB ''∠=∠=︒,120BDB '∠=︒,∴120ADB ADB '∠=∠=︒,∴60ADC CDB '∠=∠=︒,∴ADC DCB '∠=∠,∴//AD CB ',∴22ACB CDB S S ''===△△ 故选:C .【点睛】本题考查了折叠的性质,等边三角形的判定和性质,三角形的面积等知识,解题的关键是学会用转化的思想思考问题. 2.B解析:B【分析】根据全等三角形的判定和性质以及平行四边形的判定定理分别判断即可.【详解】解:A 、∵AE CF =,∴AO=CO ,由于四边形ABCD 是平行四边形,则BO=DO ,∴四边形DEBF 是平行四边形;B 、不能证明四边形DEBF 是平行四边形;C 、∵四边形ABCD 是平行四边形,∴AD=BC ,∠DAE=∠BCF ,又∠ADE=∠CBF ,∴△DAE ≌△BCF (ASA ),∴AE=CF ,同A 可证四边形DEBF 是平行四边形;D 、同C 可证:△ABE ≌△CDF (ASA ),∴AE=CF ,同A 可证四边形DEBF 是平行四边形;故选:B .【点睛】本题考查了平行四边形的判定定理,对角线互相平分的四边形是平行四边形,熟练掌握平行四边形的判定定理是解题的关键.3.D解析:D【分析】将各个二次根式化成最简二次根式后,选被开方数为2的根式即可.【详解】A 不符合题意;B 不符合题意;,因此选项C 不符合题意;是同类二次根式,因此选项D 符合题意;【点睛】本题考查同类二次根式的意义,将二次根式化成最简二次根式后,被开方数相同的二次根式是同类二次根式.4.D解析:D【分析】先根据23<<a 给二次根式开方,得到()a 23a ---,再计算结果就容易了.【详解】解:∵23<<a ,∴=|2||3|a a ---()a 23a =---a 23a =--+2a 5=-.故选:D【点睛】本题考查了化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.5.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键. 6.D解析:D利用完全平方公式以及二次根式的性质,结合0<x<1,进行化简,即可得到答案.【详解】∵0<x<1,∴1+xx >0,1-xx<0,∴=11 |+||-| x xx x-=1+xx+1-xx=2x,故选D【点睛】||a=,是解题的关键.7.A解析:A【分析】根据正方形的判定逐项作出判断即可求解.【详解】解:A. 有一个角是直角的平行四边形是正方形,判断错误,应该是矩形,符合题意;B. 对角线相等的菱形是正方形,判断正确,不合题意;C. 对角线互相垂直的矩形是正方形,判断正确,不合题意;D. 一组邻边相等的矩形是正方形,判断正确,不合题意.故选:A【点睛】本题考查了正方形的判定,熟练掌握正方形的判定方法是解题关键.8.C解析:C【分析】根据直角三角形的性质得到AB=2BC,利用勾股定理求出BC,再根据三角形中位线定理求出DE.【详解】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC,设BC=x,则AB=2x,∴(2224x x=+,解得:x=8或-8(舍),∴BC=8,∵D 是 AC 边的中点,DE AC ⊥,∴DE=12BC=4, 故选C .【点睛】本题考查了含30°角的直角三角形的性质,三角形的中位线的性质,熟练掌握直角三角形的性质是解题的关键.9.D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A 、B 、C 正确,故选:D .【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.10.A解析:A【分析】连接AD ,由三角形全等以及三线合一可知PQ 垂直平分线段AB ,推出AD DB =,设AD DB x ==,在Rt ACD △中,90C ∠=︒ ,根据222AD AC CD =+构建方程即可解决问题.【详解】如图,连接AD ,由已知条件可知PQ 垂直平分线段AB ,∴AD DB =,设AD DB x ==,5CD x =-,在Rt ACD △中,90C ∠=︒ ,∴222AD AC CD =+,∴2223(5)x x =+-, 解得:751x =, ∴178555CD BC DB =-=-=, 故选:A .【点睛】本题考查了基本作图,圆的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.11.C解析:C【分析】根据直角三角形的定义和勾股定理逆定理逐项判断即可.【详解】A .222b a c =-,即222b c a +=,根据勾股定理逆定理可知ABC 是直角三角形,故A 不符合题意.B .根据三角形内角和180A BC ∠+∠+∠=︒与C A B ∠=∠+∠,得出2180C ∠=︒,即90C ∠=︒,所以ABC 是直角三角形,故B 不符合题意.C .设3A x ∠=,则4B x ∠=,5C x ∠=,根据三角形内角和180A B C ∠+∠+∠=︒,即345180x x x ++=︒,解得15x =︒,即45A ∠=︒、60B ∠=︒、75C ∠=︒.所以ABC 不是直角三角形,故C 符合题意.D .设5a x =,则12b x =,13c x =,由222(5)(12)(13)x x x +=可知222+=a b c ,根据勾股定理逆定理可知ABC 是直角三角形,故D 不符合题意.故选:C .【点睛】本题考查直角三角形的判定,利用勾股定理逆定理判断是否为直角三角形是解题的关键. 12.B解析:B【分析】连接DB ,DF ,根据三角形三边关系可得DF+BF >DB ,得到当F 在线段DB 上时,点D 到点F 的距离最短,根据勾股定理计算即可.【详解】解:连接DB ,DF ,在△FDB 中,DF+BF >DB ,由折叠的性质可知,FB=CB=4,∴当F 在线段DB 上时,点D 到点F 的距离最短,在Rt △DCB 中,228BD DC BC +=,此时DF=8-4=4,故选:B .【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 二、填空题13.【分析】由长方形纸片可得再求解由折叠的性质求解结合平角的定义可得答案【详解】解:长方形纸片由折叠可得:故答案为:【点睛】本题考查的是矩形与折叠平行线的性质简单题解题的关键是理解折叠的性质解析:50︒【分析】由长方形纸片ABCD ,65EFB ∠=︒可得//,AD BC 再求解,DEF ∠ 由折叠的性质求解,D EF '∠ 结合平角的定义可得答案.【详解】 解: 长方形纸片ABCD ,65EFB ∠=︒,//,AD BC ∴65DEF EFB ∴∠=∠=︒,由折叠可得:65D EF DEF '∠=∠=︒,180180656550.AED D EF DEF ''∴∠=︒-∠-∠=︒-︒-︒=︒故答案为:50.︒【点睛】本题考查的是矩形与折叠,平行线的性质,简单题,解题的关键是理解折叠的性质. 14.【分析】根据题意易证明和是等腰直角三角形再根据勾股定理即可求出MN 【详解】∵四边形ABCD 和CEFG 为正方形∴∴和是等腰直角三角形∴∴在中故答案为:【点睛】本题考查正方形和平行线的性质等腰直角三角形【分析】根据题意易证明MND 和MDG 是等腰直角三角形,2DM DC GC =-=.再根据勾股定理即可求出MN .【详解】∵四边形ABCD 和CEFG 为正方形,//AD BE .∴45DMG BEM MDN DGM ∠=∠=∠=∠=︒,∴MND 和MDG 是等腰直角三角形,∴422DG DM DC GC ==-=-=.∴在Rt MND △中,222MN MD ===【点睛】本题考查正方形和平行线的性质,等腰直角三角形的判定和性质以及勾股定理.根据题意证明MND 是等腰直角三角形在结合勾股定理求解是解答本题的关键. 15.13【分析】先变形为然后代入求值即可【详解】解:当时原式==13故答案是:13【点睛】本题考查了利用完全平方公式进行求值及二次根式的性质熟悉公式是解题关键解析:13【分析】先变形为222918x x x ++=++(),然后代入求值即可.【详解】解:2222921818x x x x x ++=+++=++(),当1x =时,原式2118++=13.故答案是:13.【点睛】本题考查了利用完全平方公式进行求值及二次根式的性质,熟悉公式是解题关键. 16.1【分析】根据积的乘方逆运算求解即可【详解】解:===1故答案为:1【点睛】此题主要考查了积的乘方熟练掌握积的乘方运算法则是解答此题的关键解析:1【分析】根据积的乘方逆运算求解即可.【详解】解:))2020202022⨯=)2020[22] =2020(1)-=1故答案为:1【点睛】此题主要考查了积的乘方,熟练掌握积的乘方运算法则是解答此题的关键. 17.<【分析】直接利用二次根式的性质分别变形进而比较得出答案【详解】解:==∵>∴∴<故答案为:<【点睛】此题主要考查了二次根式的分母有理化正确化简二次根式是解题关键解析:<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.【详解】===== ∵+∴< ∴故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键. 18.【分析】根据中点的含义先求解作点C 关于AB 对称点则连接交AB 于P 连接此时的值最小由对称性可知于是得到再证明然后根据勾股定理即可得到结论【详解】解:为的中点作点C 关于AB 对称点交于则连接交AB 于P 连接解析:【分析】根据中点的含义先求解,BD 作点C 关于AB 对称点C ',则OC OC '=,连接DC ',交AB 于P ,连接BC ',此时PD PC PD PC DC ''+=+=的值最小,由对称性可知45C BA CBA '∠=∠=︒,,AB CC '⊥于是得到90C BC '∠=︒,再证明4BC BC '==,然后根据勾股定理即可得到结论.【详解】解:4AC BC D ==,为BC 的中点,90ACB ∠=︒,2CD BD ∴==, 45CBA ∠=︒,作点C 关于AB 对称点C ',CC '交AB 于O ,则OC OC '=,连接DC ',交AB 于P ,连接BC '.此时PD PC PD PC DC ''+=+=的值最小.由对称性可知45C BA CBA '∠=∠=︒,,AB CC '⊥ ∴90C BC '∠=︒,∴BC BC '⊥,点C 关于AB 对称点C ',∴AB 垂直平分CC ',∴4BC BC '==,根据勾股定理可得22422 5.DC '+= 故答案为:5【点睛】此题考查了轴对称-线路最短的问题,等腰直角三角形的性质与判定,勾股定理的应用,确定动点P 何位置时,使PC+PD 的值最小是解题的关键.19.15【分析】过D 作DE ⊥AB 垂足为E 根据角平分线定理可得DE=CD=3然后根据三角形的面积公式计算即可【详解】解:如图:过D 作DE ⊥AB 垂足为E ∵∠C=90°∴在Rt △ACD 中∵∠C=90°DE ⊥A解析:15【分析】过D 作DE ⊥AB 垂足为E ,根据角平分线定理可得DE=CD=3,然后根据三角形的面积公式计算即可.【详解】解:如图:过D 作DE ⊥AB 垂足为E ,∵∠C=90°,∴在Rt △ACD 中,2222543CD AD AC =-=-=, ∵∠C=90°,DE ⊥AB ,AD 平分∠BAC , ∴DE=CD=3,∴△ABD 的面积为111031522AB DE ⨯⨯=⨯⨯=.故答案为:15.【点睛】本题主要考查了角平分线的性质定理,勾股定理,正确作出辅助线是解答本题的关键.20.①②③④【分析】设BE=x则=8-x利用勾股定理列出方程即可判断①;利用SAS证出△AEP≌△CPE即可证出∠AEP=∠CPE从而判断②;过点E 作EH⊥AD于H利用勾股定理求出PE从而得出PA=PE解析:①②③④【分析】设BE=x,则AE EC==8-x,利用勾股定理列出方程即可判断①;利用SAS证出△AEP≌△CPE,即可证出∠AEP=∠CPE,从而判断②;过点E作EH⊥AD于H,利用勾股定理求出PE,从而得出PA=PE,利用等边对等角可得∠PAE=∠PEA,再根据平行线的性质可得∠AEB=∠PAE,从而判断③;根据三角形的内角和定理即可判断④.【详解】解:设BE=x,则AE EC==8-x,在Rt△ABE中,AB2+BE2=AE2∴42+x2=(8-x)2解得:x=3即BE=3,故①正确;∴BE=EC=5若5AP=∴AP=CE,∵四边形ABCD为长方形∴AD∥BC∴∠APE=∠CEP∵PE=EP∴△AEP≌△CPE∴∠AEP=∠CPE∴//AE CP,故②正确;当256AP=时,过点E作EH⊥AD于H,∴AH=BE=3,HE=AB=4∴PH=AP-AH=76∴22PH HE+25 6∴PA=PE∴∠PAE=∠PEA∵AD∥BC∴∠AEB=∠PAE,∴∠AEB=∠PEA∴EA平分BEP∠,故③正确;∵∠BPC=180°-∠PCB-∠PBE∠PEC=180°-∠PCB-∠EPC∵PBE EPC∠=∠∴BPC PEC∠=∠,故④正确;综上:正确的有①②③④故答案为:①②③④.【点睛】此题考查的是勾股定理、全等三角形的判定及性质、等腰三角形的性质、平行线的判定及性质和三角形内角和定理的应用,掌握勾股定理、全等三角形的判定及性质、平行线的判定及性质和三角形内角和定理是解题关键.三、解答题21.(1)5;(2)6【分析】(1)证出AD=DP=2.5,BC=PC=2.5,得出DC=5=AB,即可求出答案;(2)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出AP,从而求得△ABP的面积.【详解】解:(1)∵AP平分∠DAB,∴∠DAP=∠PAB,∵四边形ABCD是平行四边形,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=2.5,同理:PC=CB=2.5,即AB=DC=DP+PC=5;(2)∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=1(∠DAB+∠CBA)=90°,2在△APB中,∠APB=180°-(∠PAB+∠PBA)=90°;在Rt△APB中,AB=5,BP=3,∴,∴△APB的面积=4×3÷2=6.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.22.(1)见解析;(2)5【分析】(1)只要证明CM∥AN,AM∥CN即可.(2)先证明△DEM≌△BFN得BN=DM,再在Rt△DEM中,利用勾股定理即可解决问题.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,MDE NBF DEM NFB DM BN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MDE ≌△NBF (AAS ),∴ME =NF =3,在Rt △DME 中,∵∠DEM =90°,DE =4,ME =3,∴DM =222234DE ME +=+=5,∴BN =DM =5.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是记住平行四边形的判定方法和性质,正确寻找全等三角形解决问题,属于中考常考题型.23.(1)-1;7;(2)3;(3)运动3秒时,恰好有AB=AC . 【分析】 (1)根据非负数的和为零,可知绝对值和根号下的式子同时为零,可得答案; (2)根据中点坐标公式,可得答案;(3)设第x 秒时,AB=AC ,可得关于x 的方程,解方程,可得答案.【详解】解:(1)b 1+7c -=0,∴b+1=0,c−7=0,∴b=−1,c=7,故答案为:−1,7.(2)由中点坐标公式,得1732-+=, ∴D 点表示的数为3,故答案为:3.(3)设第x 秒时,AB=AC ,由题意,得x+1=7−x ,解得x=3,∴第3秒时,恰好有AB=AC .【点睛】本题主要考查实数与数轴,难度一般,熟练掌握绝对值和二次根式的非负性以及数轴的基础知识是解题的关键.24.2x +;3+3. 【分析】 先根据分式的混合运算法则化简原式,然后再将x 的值代入计算即可. 【详解】 解:原式=2(1)11x x x x ⎛⎫+⨯- ⎪--⎝⎭=2(1)1x x x +⨯-- =x +2.把x =3+1代入得,原式=3+3.【点睛】本题主要考查分式的混合运算,二次根式的加法,掌握分式的混合运算顺序和运算法则是解答本题的关键.25.(1)150°;(2)253+120(m 2)【分析】(1)连接BD ,可得∆ABD 是等边三角形,利用勾股定理的逆定理得∠DBC=90°,进而即可求解;(2)过点A 作AP ⊥BD 于点P ,可得AP=53,结合三角形的面积公式,即可求解.【详解】(1)连接BD ,∵10AB AD ==m ,∠A=60°∴∆ABD 是等边三角形,∴∠ABD=∠A=60°,BD=10AB AD ==m ,∵26CD =m ,24BC =m ,∴BD 2+BC 2=CD 2,∴∠DBC=90°,∴∠ABC=90°+60°=150°;(2)过点A 作AP ⊥BD 于点P ,则BP=DP=12BD=5m ,AP=2253AD DP -=, ∴四边形草地ABCD 的面积=S ∆ABD +S ∆CBD =12BD∙AP +12BC∙BD=12×10×53+12×10×24=253+120(m 2).【点睛】本题主要考查等边三角形的判定和性质以及勾股定理的逆定理,添加辅助线,构造直角三角形和等边三角形,是解题的关键.26.画图见解析,5【分析】根据等腰三角形的定义作图即可求解.【详解】解:如图,OAB 和OBC 是腰长为5的等腰三角形,作图如下: ,可画出满足条件的形状不同的等腰三角形有OAB 、OAE △、OAD △、OBC 、OBD 共5种.【点睛】本题考查等腰三角形的定义,掌握等腰三角形的定义是解题的关键.。
一、选择题 1.以下关于8的说法,错误的是( ) A .8是无理数 B .822=± C .283<< D .822÷= 2.下列计算正确的是( )A .532-=B .25177+=C .422=D .1422233x x x += 3.下列计算正确的是( )A .35﹣5=3B .515122+-+=25C .()()52523+-=D .15÷5=34.下列二次根式能与22合并的是( )A .12B .24C .18D .65.已知点()0,0A ,()0,4B ,()3,4C t +,()3,D t .记()N t 为ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则()N t 所有可能的值为( )A .6、7B .7、8C .6、7、8D .6、8、9 6.如图,点E 为矩形ABCD 的边BC 上的点,DF AE ⊥于点F ,且DF AB =,下列结论不正确的是( )A .DE 平分AEC ∠B .ADE ∆为等腰三角形C .AF AB =D .AE BE EF =+ 7.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .208.如图,在ABC 中,D 是BC 的中点,E 在AB 上,且:1:2AE BE =,连接AD ,CE 交于点F ,若60ABC S =△,则DBEF S =四边形( )A .15B .18C .20D .259.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .103B .256C .203D .15410.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地 送行二步与人齐,五尺人高曾记. 仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB 长度为1尺.将它往前水平推送10尺时,即A C '=10尺,则此时秋千的踏板离地距离A D '就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA 长为( )A .13.5尺B .14尺C .14.5尺D .15尺11.如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .23D .3 12.在△ABC 中,BC=a ,AB=c ,AC=b ,则不能作为判定△ABC 是直角三角形的条件是( ).A .∠A=∠B-∠CB .∠A :∠B :∠C=2:5:3C .a :b :c =7:24:25D .a :b :c =4:5:6 二、填空题13.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.14.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).15.如图,在钝角ABC 中,已知A ∠为钝角,边AB ,AC 的垂直平分线分别交BC 于点D ,E ,若222BD CE DE +=,则A ∠的度数为________.16.82_____.17.计算:()1031352931643-⎛⎫-+⨯++--= ⎪⎝⎭__________. 18.若220x y -+=,则x y +=________.19.如图,ABC 中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,2BD =,114AC =,则边BC 的长为_______.20.如图,在直角ABC 中,90B ∠=︒,AE 平分BAC ∠,交BC 边于点E ,若5BC =,13AC =,则AEC 的面积是________.三、解答题21.如图,在长方形ABCD 中,DC =6cm ,在DC 上存在一点E ,沿直线AE 把△ADE 折叠,使点D 恰好落在BC 边上的点F 处,若△ABF 的面积为24cm 2,那么折叠的△ADE 的面积为多少?22.如图,平行四边形ABCD 中,BD 是它的一条对角线,过A 、C 两点作,AE BD CF BD ⊥⊥,垂足分别为E 、F ,延长AE 、CF 分别交CD 、AB 于M 、N .(1)求证:四边形CMAN 是平行四边形;(2)已知4,3DE FN ==.求BN 的长.23.(1)计算201211(20181978)|23|42-⎛⎫⎛⎫-⨯----- ⎪ ⎪ ⎪⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 24.计算:(1)2127412333-+; (2)148312242÷-⨯+; (3)2031|5|(21)273-⎛⎫---+-+ ⎪⎝⎭; (4)2(623)(252)(252)--+-.25.如图,ABC 中,90,10cm,6cm C AB BC ∠=︒==,若动点P 从点C 开始,按C A B C →→→的路径运动,且速度为每秒1cm ,设出发的时间为t 秒.(1)出发2秒后,求ABP △的周长.(2)问t 为何值时,BCP 为等腰三角形?(3)另有一点Q ,从点C 开始,按C B A C →→→的路径运动,且速度为每秒2cm ,若P Q 、两点同时出发,当P Q 、中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ 把ABC 的周长分成相等的两部分?26.如图,在ABC 中,90ACB ∠=︒,5AB =,3BC =,点P 从点A 出发,以每秒2个单位长度的速度沿折线A C B A ---运动.设点P 的运动时间为t 秒()0t >. (1)求AC 的长及斜边AB 上的高.(2)当点P 在CB 上时,①CP 的长为______________(用含t 的代数式表示).②若点P 在BAC ∠的角平分线上,则t 的值为______________.(3)在整个运动过程中,直接写出BCP 是等腰三角形时t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】表示求8的算术平方根,而算术平方根是求一个非负数的正的平方根,据此可以得到结果.【详解】A A正确.B、8表示求8的算术平方根,而算术平方根是求一个非负数的正的平方根,=B错误.C、4823<∴<.故C正确.D2÷===.故D正确.故选B.【点睛】本题考查了算术平方根的定义、二次根式的除法及无理数的有关概念,正确的理解算术平方根是解决此题的关键.2.D解析:D【分析】根据二次根式加法以及二次根式的性质逐项排查即可.【详解】解:A A选项错误;B77=+,故B选项错误;C、2=22=1,故C选项错误;D=D选项正确.故答案为D.【点睛】本题主要考查了二次根式加法以及二次根式的性质,掌握二次根式的加法运算法则是解答本题的关键.3.C解析:C【分析】根据二次根式的加减法对A、B进行判断;根据平方差公式对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A、原式=A选项的计算错误;B B选项的计算错误;C、原式=5﹣2=3,所以C选项的计算正确;D D选项的计算错误.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,是解题的关键.4.C解析:C【分析】根据同类二次根式的定义可得答案.【详解】A=,不能与B=合并,故本选项不符合题意;C=合并,故本选项符合题意;D,不能与合并,故本选项不符合题意.故选:C.【点睛】本题主要考查了同类二次根式的定义,即二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.5.C解析:C【分析】分别求出t=1,t=1.5,t=2,t=0时的整数点,根据答案即可求出答案.【详解】解:当t=0时,A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,A(0,0),B(0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=1.5时,A (0,0),B (0,4),C (3,5.5),D (3,1.5),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点; 当t=2时,A (0,0),B (0,4),C (3,6),D (3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),共8个点;故选项A 错误,选项B 错误;选项D 错误,选项C 正确;故选:C .【点睛】本题考查了平行四边形的性质.主要考查学生的理解能力和归纳能力.6.C解析:C【分析】根据矩形的性质及HL 定理证明Rt △DEF ≌Rt △DEC ,然后利用全等三角形的性质进行推理判断【详解】解:在矩形ABCD 中,∠C=90°,AB=CD∵DF AE ⊥于点F ,且DF AB =∴∠DFE=∠C=90°,DF=CD在Rt △DEF 和Rt △DEC 中DF DC DE DE =⎧⎨=⎩∴Rt △DEF ≌Rt △DEC∴∠FDE=∠CDE ,即DE 平分AEC ∠,故A 选项不符合题意;∵Rt △DEF ≌Rt △DEC∴∠FED=∠CED又∵矩形ABCD 中,AD ∥BC∴∠ADE=∠CED∴∠FED=∠ADE∴AD=AE ,即ADE ∆为等腰三角形,故B 选项不符合题意∵Rt △DEF ≌Rt △DEC∴EF=EC在矩形ABCD 中,AD=BC ,又∵AD=AE∴AE=AD=BC=BE+EC=BE+EF ,故D 选项不符合题意由于AB=CD=DF ,但在Rt △ADF 中,无法证得AF=DF ,故无法证得AB=AF ,故C 选项符合题意故选:C .【点睛】本题考查矩形的性质及三角形全等的判定和性质,掌握相关性质定理正确推理论证是解题关键.7.C解析:C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+ ()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.8.D解析:D【分析】过D 作DG ∥AB ,交CE 于G ,连接DE ,根据三角形中位线的定理可得CG =EG ,通过△DGF ≅△AEF ,可得AF=DF ,再利用三角形的面积可求解.【详解】过D 作DG ∥AB ,交CE 于G ,连接DE ,∵D 为BC 的中点,∴DG 为△BCE 的中位线,∴BE =2GD ,CG =EG ,∵:1:2AE BE =,∴AE=GD ,∵DG ∥AB ,∴∠AEF=∠DGF ,∠EAF=∠GDF ,∴△DGF ≅△AEF ,∴AF=DF ,∵60ABC S =△,∴S △ABD =30,S △AED =10,∴S △AEF =5,∴S 四边形DCEF =S △ABD −S △AEF =30−5=25,故选:D .【点睛】本题主要考查三角形的面积,全等三角形的判定与性质,三角形的中位线,添加辅助线,构造全等三角形,是解题的关键.9.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°, ∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.10.C解析:C【分析】设绳索有x 尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【详解】解:设绳索有x 尺长,则102+(x+1-5)2=x 2,解得:x=14.5.故绳索长14.5尺.故选:C .【点睛】 本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.11.C解析:C【分析】根据线段垂直平分线性质得出AD=BD ,再用勾股定理即可求出AC . 【详解】 解:∵点D 是线段AB 的垂直平分线与BC 的交点,BD=4,∴AD=BD=4,∴22224223ACAD CD ; 故选:C .【点睛】本题考查了线段垂直平分线的性质,勾股定理的应用,掌握线段垂直平分线的性质是解题关键.12.D解析:D【分析】根据三角形的内角和定理,勾股定理的逆定理依次判断.【详解】A 、∵∠A=∠B-∠C ,∴∠A+∠C =∠B ,得到∠B=90︒,即△ABC 是直角三角形; B 、设∠A=2x ,∠B=5x ,∠C=3x ,故235180x x x ++=︒,解得x=18︒,∴∠B=5x=90︒,即△ABC 是直角三角形;C 、设a=7x ,则b=24x ,c=25x ,∵222(7)(24)(25)x x x +=,∴222+=a b c ,∴△ABC 是直角三角形;D 、设a=4x ,b=5x ,c=6x ,∵222(4)(5)(6)x x x +≠,∴222a b c +≠,∴△ABC 不是直角三角形;故选:D .【点睛】此题考查三角形的内角和定理,勾股定理的逆定理,掌握直角三角形根据边或角判定的方法是解题的关键.二、填空题13.【分析】首先利用勾股定理计算出BD 的长再根据折叠可得AD=A′D=5进而得到A′B 的长再设AE=x 则A′E=xBE=12-x 再在Rt △A′EB 中利用勾股定理得出关于x 的方程解出x 的值可得答案【详解】 解析:103【分析】首先利用勾股定理计算出BD 的长,再根据折叠可得AD=A′D=5,进而得到A′B 的长,再设AE=x ,则A′E=x ,BE=12-x ,再在Rt △A′EB 中利用勾股定理得出关于x 的方程,解出x 的值,可得答案.【详解】解:∵AB=12,BC=5,∴AD=5,∴=13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x,则A′E=x,BE=12-x,在Rt△A′EB中:(12-x)2=x2+82,解得:x=103.故答案为:103.【点睛】本题考查了矩形的性质、勾股定理、折叠的性质等知识点,能根据题意得出关于x的方程是解此题的关键.14.18-【分析】过A作AE⊥y轴于EAD⊥x轴于D构造正方形AEOD再证△AEB≌△ADC(SAS)得BE=CD由EB=EO-BO=9-可求CD=9-求出OC=OD+CD=9+9-=18-即可【详解】解析:18-a.【分析】过A作AE⊥y轴于E,AD⊥x轴于D,构造正方形AEOD,再证△AEB≌△ADC(SAS),得BE=CD,由EB=EO-BO=9-a,可求CD=9-a,求出OC=OD+CD=9+9-a=18-a即可.【详解】过A作AE⊥y轴于E,AD⊥x轴于D,∵点()9,9A,AE=AD=OE=OD=9,∠ADO=90º,四边形AEOD为正方形,∵AB AC⊥,∠EAD=90°,∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠BAE=∠CAD,∵AB AC=,AE=AD,∴△AEB≌△ADC(SAS),∴BE=CD,∵EB=EO-BO=9-a,∴CD=9-a,OC=OD+CD=9+9-a=18-a,故答案为:18-a.【点睛】本题考查正方形的判定与性质,三角形全等判定与性质,掌握正方形的判定方法与性质,三角形全等判定的方法与性质是解题关键.15.【分析】如图中连接ADAE 首先证明∠DAE=90°易知∠DBA=∠DAB ∠EAC=∠C 根据三角形内角和定理可得推出由此即可解决问题【详解】解:如图连接∵的垂直平分线分别交于点∴∴∵∴∴∴∴∴∴故答案 解析:135【分析】如图中,连接AD 、AE .首先证明∠DAE=90°,易知∠DBA=∠DAB ,∠EAC=∠C ,根据三角形内角和定理可得2290180B C ∠+∠+=,推出45B C ∠+∠=,由此即可解决问题.【详解】解:如图,连接DA ,EA .∵AB ,AC 的垂直平分线分别交BC 于点D ,E ,∴AD BD =,CE AE =,∴DAB B ∠=∠,EAC C ∠=∠.∵222BD CE DE +=,∴222AD AE DE +=,∴90DAE ∠=,∴2290180B C ∠+∠+=,∴45B C ∠+∠=,∴45DAB EAC ∠+∠=,∴135BAC DAB DAE EAC ∠=∠+∠+∠=.故答案为:135.【点睛】本题考查了线段垂直平分线的性质和三角形内角和定理,根据线段垂直平分线作出辅助线,根据三角形内角和定理解决问题是关键.16.【分析】先分母有理化然后化简后合并即可【详解】解:=2﹣=故答案为:【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可在二次根式的混合运算中如能结合题目特点灵.【分析】先分母有理化,然后化简后合并即可.【详解】=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.5【分析】根据零指数幂负整指数幂绝对值二次根式化简的运算法则化简然后根据实数的运算法则计算即可【详解】==5答案为:5【点睛】本题考查实数的综合运算能力是各地中考题中常见的计算题型解决此类题目的关键 解析:5【分析】根据零指数幂、负整指数幂、绝对值、二次根式化简的运算法则化简,然后根据实数的运算法则计算即可.【详解】(1015293-⎛⎫++ ⎪⎝⎭52314=-++-,=544--=5,答案为:5.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.2【分析】先根据非负数的性质得出关于xy 的方程求出xy 的值代入x+y 进行计算即可【详解】解得故答案为:2【点睛】本题考查的是非负数的性质解题的关键是掌握非负数的性质即几个非负数的和为0时这几个非负数解析:2【分析】先根据非负数的性质得出关于x、y的方程,求出x、y的值,代入x+y进行计算即可.【详解】2-+=,x y20y=,∴-=,0x20x=,解得2+=+=.x y202故答案为:2.【点睛】本题考查的是非负数的性质.解题的关键是掌握非负数的性质,即几个非负数的和为0时,这几个非负数都为0.19.【分析】延长BD到F使得DF=BD根据等腰三角形的性质与判定勾股定理即可求出答案【详解】解:延长BD到F使得DF=BD∵CD⊥BF∴△BCF是等腰三角形∴BC=CF过点C作CH∥AB交BF于点H∴∠【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.【详解】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵CH∥AB,∴∠ABE=∠CHE,∠BAE=∠ECH,∴EH=CE,∵EA=EB,∴AC=BH,∵BD=DF=2,AC=11,4∴DH=BH-BD=AC-BD=3,4∴HF=HC=DF-DH=2-34=54,在Rt△CDH中,∴由勾股定理可知:CD=22CH DH-=1,在Rt△BCD中,∴BC=22BD CD+=5,故答案为:5.【点睛】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.20.【分析】如图(见解析)先利用勾股定理可得再根据角平分线的性质可得然后根据直角三角形全等的判定定理与性质可得从而可得设在中利用勾股定理可求出x的值最后利用三角形的面积公式即可得【详解】如图过点E作于点解析:78 5【分析】如图(见解析),先利用勾股定理可得12AB=,再根据角平分线的性质可得BE DE=,然后根据直角三角形全等的判定定理与性质可得12AD AB==,从而可得1CD=,设DE BE x==,在Rt CDE△中,利用勾股定理可求出x的值,最后利用三角形的面积公式即可得.【详解】如图,过点E作ED AC⊥于点D,在Rt ABC 中,90,5,13B BC AC ∠=︒==,2212AB AC BC ∴=-=,AE ∵平分BAC ∠,且,90ED AC B ⊥∠=︒,BE DE ∴=,在Rt ABE △和Rt ADE △中,BE DE AE AE =⎧⎨=⎩, ()Rt ABE Rt ADE HL ∴≅,12AD AB ∴==,1CD AC AD ∴=-=,设DE BE x ==,则5CE BC BE x =-=-,在Rt CDE △中,222CD DE CE +=,即2221(5)x x +=-, 解得125x =, 即125DE =, 则AEC 的面积是111278132255AC DE ⋅=⨯⨯=, 故答案为:785. 【点睛】 本题考查了角平分线的性质、直角三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握角平分线的性质是解题关键.三、解答题21.503cm 2 【分析】 由面积法可求BF 的长,由勾股定理可求AF 的长,即可求CF 的长,由勾股定理可求DE 的长,即可求解.【详解】解:∵四边形ABCD 是长方形,∴AB =CD =6cm ,BC =AD ,∵S△ABF=12AB×BF=24cm2,∴BF=8cm,在Rt△ABF中,AF=10(cm),∵沿直线AE把△ADE折叠,使点D恰好落在BC边上的点F处,∴AD=AF=10cm,DE=EF,∴BC=10cm,∴FC=BC﹣BF=2cm,在Rt△EFC中,EF2=EC2+CF2,∴DE2=(6﹣DE)2+4,∴DE=103(cm),∴S△ADE=12×AD×DE=1101023⨯⨯=503(cm2),答:折叠的△ADE的面积为503cm2.【点睛】此题考查矩形的性质,折叠的性质,勾股定理,利用面积法求线段的长度,熟记矩形的性质是解题的关键.22.(1)见解析;(2)5【分析】(1)只要证明CM∥AN,AM∥CN即可.(2)先证明△DEM≌△BFN得BN=DM,再在Rt△DEM中,利用勾股定理即可解决问题.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,MDE NBF DEM NFB DM BN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MDE ≌△NBF (AAS ),∴ME =NF =3,在Rt △DME 中,∵∠DEM =90°,DE =4,ME =3,∴DM =222234DE ME +=+=5,∴BN =DM =5.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是记住平行四边形的判定方法和性质,正确寻找全等三角形解决问题,属于中考常考题型.23.(1)132)12x -,12- 【分析】 (1)由二次根式的性质、负整数指数幂、零指数幂、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)先去括号,把分式进行化简,然后结合分式有意义的条件,取到合适的值,再代入计算,即可得到答案.【详解】 解:(1)原式(31412342312313⎛=⨯--=--+= ⎝⎭; (2)原式12(2)(3)3111111(2)(3)2x x x x x x x x x x x x -----⎛⎫=-÷=⋅= ⎪-------⎝⎭; ∵10x -≠,20x -≠,30x -≠,∴1,2,3x ≠,x 只能取0,当0x =时,原式11122==--. 【点睛】 本题考查了分式的混合运算,分式的化简求值,二次根式的性质、负整数指数幂、零指数幂、绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行化简.24.(1)-;(2)43)16;(4)-.【分析】(1)先化简二次根式,再进行二次根式的加减运算即可.(2)先化简二次根式,再进行二次根式的乘除运算,最后进行二次根式的加减运算即可. (3)先利用绝对值,零指数幂,负整数指数幂、立方根计算出各项,再进行加减运算即可.(4)先利用完全平方式和平方差公式展开,再化简二次根式,最后进行二次根式加减乘除混合运算即可.【详解】(12433=⨯⨯==-(22=4=4=+(3)201|5|1)3-⎛⎫--+- ⎪⎝⎭5193=-++16=(4)2-22222=--+612202=--+4=-⨯=-【点睛】本题考查实数的混合运算,掌握去绝对值,零指数幂、负整数指数幂和求立方根的计算,二次根式的混合运算是解答本题的关键.25.(1)(16+;(2)6s t =或13s 或12s 或10.8s ;(3)t 为4或12秒【分析】(1)由已知条件得出发2秒后2cm CP =,则6AP cm =,再利用勾股定理求出PB 的长,即可求得ABP △的周长;(2)①当P 点在AC 上,易知PC BC =,6t s =,②P 点在AB 上时,分三种情况分别为:BP CB =,此时根据BP 的长度求出点P 运动的距离,进而求出运动的时间;CP BC =,此时过C 作斜边AB 的高,根据面积法求得高,根据勾股定理求得BH 的长,通过三角形全等证明BH PH =,进而通过运动距离求出运动时间;BP CP =,此时可以通过角度相等证明PA PC =,进而证明PA PB =,进而通过运动距离求出运动时间;(3)当P 点在AC 上,Q 在AB 上时:8AP t =-,162AQ t =-,因为直线PQ 把ABC 的周长分成相等的两部分,则可得816212t t -+-=,即可解得;当P 点在AB 上,Q 在AC 上时:8AP t =-,216AQ t =-,因为直线PQ 把ABC 的周长分成相等的两部分,则可得,821612t t -+-=,即可解得.【详解】解:(1)如图1中,90,10cm,6cm C AB BC ︒∠===,∴由勾股定理得8cm AC ,动点P 从点C 开始,按C A B C →→→的路径运动,且速度为每秒1cm ,∴出发2秒后,则2cm CP =,那么6AP cm =,90C ︒∠=,∴由勾股定理得210cm PB =∴ABP △的周长为:610210(16210)cm AP PB AB ++=++=+;图1(2)若P 在边AC 上时,6cm BC CP ==,此时用的时间为6s,BCP 为等腰三角形;若P 在AB 边上时,有两种情况:①若使6cm BP CB ==,此时4cm,AP P =运动的路程为12cm ,所以用的时间为12s ,故12s t =时BCP 为等腰三角形;②若6cm CP BC ==,如图,过C 作斜边AB 的高,根据等面积法求得高为4.8cm ,在Rt BCH 中,根据勾股定理可得 3.6BH cm =,在Rt BCH 和Rt CPH 中,CP BC CH CH =⎧⎨=⎩, ∴Rt BCH ≌Rt CPH ,∴BH PH =,∴7.2cm BP =,所以P 运动的路程为187.210.8cm -=,∴t 的时间为10.8s,BCP 为等腰三角形;③若BP CP =时,则PCB PBC ∠=∠,90ACP BCP ︒∠+∠=,90PBC CAP ︒∠+∠=,∴ACP CAP ∠=∠,PA PC =,∴5cm PA PB ==,∴P 的路程为13cm ,所以时间为13s 时,BCP 为等腰三角形.∴6s t =或13s 或12s 或10.8s 时BCP 为等腰三角形;(3)当P 点在AC 上,Q 在AB 上,则8,162AP t AQ t =-=-,∴直线PQ 把ABC 的周长分成相等的两部分,∴816212t t -+-=,∴4t =;当P 点在AB 上,Q 在AC 上,则8,216AP t AQ t =-=-, ∴直线PQ 把ABC 的周长分成相等的两部分, ∴821612t t -+-=,∴12t =,∴当t 为4或12秒时,直线PQ 把ABC 的周长分成相等的两部分.【点睛】本题考查了勾股定理、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程,把问题转化为方程解决,属于中考压轴题.26.(1)125;(2)①24t -;②83;(3)t 的值为0.5或4.75或5或5.3. 【分析】(1)直接利用勾股定理即可求得AC 的长,再利用等面积法即可求得斜边AB 上的高; (2)①CP 的长度等于运动的路程减去AC 的长度,②过点P '作P 'D ⊥AB ,证明Rt △AC P '≌Rt △AD P '得出AD=AC=4,分别表示各线段,在Rt △BD P '利用勾股定理即可求得t 的值;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,②当点P 在线段AB 上时,又分三种情况:BC=BP ;PC=BC ;PC=PB ,分别求得点P 运动的路程,再除以速度即可得出答案.【详解】解:(1)∵90C ∠=︒,5AB =,3BC =,∴在Rt ABC ∆中, 2222534AC AB BC =-=-=.∴AC 的长为4.设斜边AB 上的高为h .∵1122AB h AC BC ⨯⨯=⨯⨯, ∴1153422h ⨯⨯=⨯⨯, ∴125h =. ∴斜边AB 上的高为125. (2)已知点P 从点A 出发,以每秒2个单位长度的速度沿折线A-C-B-A 运动, ①当点P 在CB 上时,点P 运动的长度为:AC+CP=2t ,∵AC=4,∴CP=2t-AC=2t-4.故答案为:2t-4.②当点P '在∠BAC 的角平分线上时,过点P '作P 'D ⊥AB ,如图:∵A P '平分∠BAC ,P 'C ⊥AC ,P 'D ⊥AB ,∴P 'D=P 'C=2t-4,∵BC=3,∴B P '=3-(2t-4)=7-2t ,在Rt △AC P '和Rt △AD P '中,AP AP P D P C ''''=⎧⎨=⎩, ∴Rt △AC P '≌Rt △AD P '(HL ),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt △BD P '中,由勾股定理得:2221(24)(72)t t +-=-解得:83t =, 故答案为:83; (3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,∴此时CP=BC=3,∴AP=AC-CP=4-3=1,∴2t=1,∴t=0.5;②当点P 在线段AB 上时,若BC=BP ,则点P 运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC ,如图2,过点C 作CH ⊥AB 于点H ,则BP=2BH ,在△ABC 中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC ,∴5CH=4×3,∴125CH =, 在Rt △BCH 中,由勾股定理得:22123() 1.85BH =-=, ∴BP=3.6, ∴点P 运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB ,如图3所示,过点P 作PQ ⊥BC 于点Q ,则30.52BQ CQ BC==⨯=,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ∥AC,∴PQ为△ABC的中位线,∴PQ=0.5×AC=0.5×4=2,在Rt△BPQ中,由勾股定理得: 2.5BP==,点P运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t的值为0.5或4.75或5或5.3.【点睛】本题考查勾股定理,HL定理,等腰三角形的性质和判定.掌握等面积法和分类讨论思想是解题关键.。
2017-2018学年(新课标)京改版八年级数学下册初二数学期中试卷一、 选择题(本题共30分,每小题3分)以下各题均有四个选项,其中只有一个是符合题意的. 1.下列四个汽车标志图中,中心对称图形是( )A .B .C .D . 2.菱形具有但矩形不具有的性质是( )A .四边都相等B .对边相等C .对角线互相平分D .对角相等3.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( ) A . 1.5,2,3a b c === B . 7,24,25a b c === C . 6,8,10a b c === D . 3,4,5a b c ===4.下列给出的条件中,不能判定四边形ABCD 是平行四边形的是( ) A .AB=CD ,AD=BC B . AB=CD ,∠B=∠D C .AD=BC ,AD ∥BC D . AB ∥CD ,∠A=∠C5. 如图,将△ABC 绕点A 逆时针旋转80°得到△AB ′C ′. 若∠BAC=50°,则∠CAB ′ 的度数为( )A. 40°B. 30°C. 50°D. 80°6.如图,在□ABCD 中,已知AD =8cm ,AB =6cm ,DE 平分∠ADC 交BC 边于点E , 则BE 等于( )A .2cm;B .4cm;C .3cm;D .8cm7.如图,在△ABC 中,AB =6,AC =10,点D 、E 、F 分别是AB 、BC 、AC 的中点,则四 边形ADEF 的周长为( )A .8B .10C .12D .168. 若点(-2,y 1)、(1,y 2)、(2,y 3) 都是反比例函数2y x的图象上的点, 则y 1、y 2、 y 3的大小关系是( )A. y 3<y 2<y 1B. y 3<y 1<y 2C. y 1<y 2<y 3D. y 1<y 3<y 29. 将矩形纸片ABCD 按如上图所示的方式折叠,恰好得到菱形AECF,若AB=3,则菱形 AECF 的面积为( )A .1B . 22C .23 D.4第6题图第5题图 第7题图A B CDEF10. 如图, 点O (0, 0), B (0, 1)是正方形OBB 1C 的两个顶点, 以它的对角线OB 1为一边作正方形OB 1B 2C 1, 以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2, 再以正方形OB 2B 3C 2的对角线OB 3为一边作正方形OB 3B 4C 3, ……, 依次进行下去, 则点B 6 的坐标是( )A . (42,0)-B . (0,8)-C . (8,0)-D . (82,0)-二、填空题(本题共18分,每空3分) 11. 若函数xm y 2+=图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围 是 .12.如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形, 123916144s s s ===,,,则4s = . 13.已知菱形ABCD 中,AC =6cm ,BD =8cm ,则菱形ABCD 的周长为 . 14.如图,把两块相同的含30︒角的三角尺如图放置,若66AD =cm ,则三角尺的最 长边长为___________.第10题图Oyx B B 1B 2B 3B 4C 33C 23C 13C 第9题图姓名 学号S 4S 3S 2S 115. 在平行四边形中,一组邻边的长分别为8cm 和6cm ,一个锐角为60°,则此平行四 边形的面积为 . 16.如图,A 、B 两点在双曲线y=x4上,分别经过A 、B 两点向轴作垂线段,已知 S 阴影=1,则21s s = .三、解答题(本题共52分,17题4分,18题5分, 19-24每小题6分, 25小题7分) 17. 如图,△ABC 顶点的坐标分别为A(11),B(41),C(34),将△ABC 绕点A 逆时针旋转90°后,得到△AB 1C 1,在所给的直角坐标系中画出旋转后的△AB 1C 1,并直接写出点B 1的坐标:B 1(____,____);C 1的坐标:C 1(____,____).第14题图第12题图第16题图123-1-2-3-1-2-3123xyOC 'ED CBA18.已知:如图,在平行四边形ABCD 中,E ,F 是对角线AC 上的两点,且AE =CF求证:四边形BEDF 是平行四边形.19.一次函数y kx b =+与反比例函数my x=的图象交于A (1,4),B (-2,n )两点, (1)求m 的值; (2)求k 和b 的值. (3)结合图象直接写出不等式0mkx b x-->的解集.20.矩形ABCD 中,AB =3,BC =5. E 为CD 边上一点,CBADEF将矩形沿直线BE 折叠,使点C 落在 AD 边上C ′处.求DE 的长.21. 在四边形ABCD 中,AB =CD ,P 、Q 分别是AD 、BC 的中点,M 、N 分别是对角线BD 、AC 的中点,求证:PQMN.22、如图,在四边形ABCD 中,AD ∥BC ,∠B=60°,∠ADC =105°,AD =6, 且AC ⊥AB ,求DC 的长.A DCB CBNMQDPA23. 如图,矩形纸片ABCD 由24个边长为1的正方形排列而成, M 是AD 的中点. (1)将矩形纸片ABCD 沿虚线MB 剪开,分成两块纸片进行拼图.要求:拼成直角三角形和平行四边形.请将所拼图形画在相应的网格中.拼成直角三角形 拼成平行四边形(2)能否将矩形纸片ABCD 剪拼成菱形(限剪两刀)?若能,请利用下面的网格设计剪拼图案(画出矩形的分割线即可)并写出相应的菱形的边长;若不能,请简要说明理由.MDBCMDBCDMBCA DACB24. 阅读下面材料:小炎遇到这样一个问题:如图1,点E 、F 分别在正方形ABCD 的边BC ,CD 上,∠EAF =45°,连结EF ,则EF =BE +DF ,试说明理由.F E DCBAGF EDCBA图1 图2小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.先后尝试了翻折、旋转、平移的方法,最后发现线段AB ,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A 逆时针旋转90°得到△ADG ,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:学号如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC=2,求DE的长.B ADEC图325. 如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP= °.(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明.(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求CQ的长.QPED CBA QPEDCBAQPEDCBA图1 图2图3初二数学期中试卷答案一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案DAABBADDCC二、填空题(本题共18分,每小题3分)11.2-<m ; 12. 169 13.20; 14.12; 15.324; 16. 6 .三、解答题(本题共52分,17题4分,18题5分, 19-24每小题6分, 25小题7分) 17. (本小题满分4分)画出旋转图形 ………………………………2分 写出点B 1的坐标:B 1(__1__, ___2_); ………………………………3分C 1的坐标:C 1(_4___,__1_); ………………………………4分18. (本小题满分5分)证明:连接BD,交AC 于点O ………………………………1分在□ABCD 中,AO=CO,BO=DO ………………………………3分 ∵AE=CF ∴EO=FO ………………………………4分 ∴四边形EBFD 是平行四边形 ………………………………5分 19(本小题满分6分) (1)∵ 反比例函数my x=的图象过点A (1,4),∴ m =4 ………………….……………………………1分 (2) ∵ 点B (-2,n )在反比例函数4y x=的图象上, ∴ n = -2 .∴ 点B 的坐标为(-2,-2). ………………………2分 ∵ 直线y kx b =+过点A (1,4),B (-2,-2), ∴ 4,2 2.k b k b +=⎧⎨-+=-⎩ 解得2,2.k b =⎧⎨=⎩…………………4分(3)2x <-或01x <<. (写对1个给1分) …………6分20. (本小题满分6分) 由折叠得:BC=BC ’=5在RT △ABC ’中 ∵AB=3 ∴AC ’=4 ………………………………1分 ∵AD=BC=5 ∴C ’D=1 …………………………… 3分 设 DE=x , 则CE=C ’E=3-X 在RT △DEC ’中22)3(1x x -=+ …………………………… 5分解得: x=34…………………………… 6分21. (本小题满分6分)∵ P 、Q 分别是AD 、BC 的中点,M 、N 分别是BD 、AC 的中点∴ PM PN MQ NQ 分别为△ABD ,△ACD ,△CBD,△ABC 的中位线. ………………………… 2分 ∴ PM=NQ=21AB PN=MQ=21DC ………………………… 4分又∵ AB=CD∴ PM=NQ=PN=MQ ………………………… 5分 ∴ 四边形PMQN 是菱形 ∴ PQMN . ………………………… 6分22.(本小题满分6分)先求出∠DAC=30°, ∠DCA=45° …… …2分过D 作DE ⊥AC 于E , ………3分在△ADE 中,解得DE=3 EC=3 ..... .5分 在△CDE 中,解得CD=23 …………6分ADCB CBNMQDPA23. (本小题满分6分) 解:方案1中菱形的边长为5;方案2中菱形的边长为210. 每一小问 2分 共6分。
& 鑫达捷致力于精品文档 精心制作仅供参考 &鑫达捷八年(下)数学期中试卷1、□ABCD 中,∠A :∠B =1:2,则∠C 的度数为( )A .30°B .45°C .60°D .120°2、下列各组数中, 能成为直角三角形的三条边长的是( ) A .8、15、17 B. 10、24、25 C. 9 、15、20 D. 9、 80、 813、直角三角形的两条直角边的长分别为5,12,则斜边上的高线的长为( )A. 8013cm B. 13cm C. 132 cm D. 1360cm4、以下关于一元二次方程的根的说法中,正确..的是( ). A .方程220x x +-=有一根为1- B .方程20x x +=有一根为1C .方程2340x x +-=有两个不相等的实数根D .方程240x +=有两个实数根,并且这两根互为相反数5、下列条件中,不能判断四边形ABCD 是平行四边形的是( ) A 、∠A=∠C ,∠B=∠D B 、AB ∥CD ,AB=CD C 、 AB=CD , AD ∥BC D 、AB ∥CD ,AD ∥BC6、下列说法错误的是( )(A )矩形的对角线互相平分 (B )矩形的对角线相等(C )有一个角是直角的四边形是矩形 (D )有一个角是直角的平行四边形叫做矩形 7、若平行四边形的一边长为5,则它的两条对角线长可以是( ) A . 12和2 B . 3和4 C . 4和6 D . 4和88、已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A.25 B.14 C.7 D.7或259、如图,平行四边形ABCD 的两条对角线相交于点O ,E 是AB 边的中点, 图中与△ADE 面积相等的三角形(不包括△....ADE ...)共有( ) A . 3个 B . 4个 C . 5 个 D . 6个10、如图,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在A 1处,已知OA =3,AB =1,则点A 1的坐标是( ) A . (33,) B . (33,) C . (233,) D . (2321,)1112,则菱形的边长为;13,那么四边形ABCD 是形;14、顺次连接四边形各边中点所得的四边形是 。
美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!(新课标)京改版八年级数学下册期中模拟试题注意:1、本试卷共21页;2、考试时间: 90分钟;3、姓名、学号必须写在指定地方;4、本考试为闭卷考试。
一、选择题(本题共24分,每小题3分)1.点P (—4,5)关于 y 轴的对称点坐标是( ) A .(—4,—5) B.(4,5) C.(4,—5) D.(5,—4)2.下列不是一次函数的是( ) A .x x y +=1 B.)1(21-=x y C.1-=πxy D.2π+=x y3. 已知:如图,若□ABCD 的对角线AC 长为3,△ABC 的周长为10,□ABCD 的周长是( )A .17B .14C .13D . 7FE A BCD第4题图 DCBA第3题图美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!4.已知:如图,在平行四边形ABCD 中,4=AB ,7=AD ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF 的长为( )A .6B . 5C .4 D.35.关于x 的方程052=-+kx x 的根的情况为 ( ) A . 没有实数根 B . 有两个相等的实数根C . 有两个不相等的实数根D . 不能确定6.若2-=x 是关于x 的方程0122=---a ax x 的一个根,则a 的值是( )A . 3B . 1-C .3或1-D .1或3-美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!7.若一个多边形的内角和等于1080°,则这个多边形的边数是( ) A .6 B .7 C .8D .98. 已知:如图,已知点A 的坐标为(1,0),点B 在直线x y -=上运动,当线段AB 最短时,点B 的坐标为( ) A .(0,0) B .⎪⎭⎫⎝⎛-21,21 C .⎪⎪⎭⎫ ⎝⎛-22,22 D .⎪⎭⎫ ⎝⎛-21,21 二、填空题(20分,每小题4分) 9.方程x x =2的根是_______________. 10.函数xy -=1的定义域为_________________.11.关于x 的一元二次方程0122=+-x mx 有两个不等实根,则实数m 的取值范围是_____________________. 12.已知),(111y x P 、),(222y x P 是正比例函数kx y =(0≠k )图象上的点且当21x x <时,21y y <,则k 的取值范围是___________.13.在平面直角坐标系中,),3,0(),0,4(),0,1(C B A -若以第8题图美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!D C B A 、、、为顶点的四边形是平行四边形,则D 点坐标是_________________.三、解答题(本题共15分,每小题5分) 14.用配方法解方程:01422=--x x 15.解方程:0)2(4)2(2=-+-x x x16.已知:一次函数b x k y +=1,正比例函数x k y 2=的图像都经过点)1,2(-,且点)4,0(- 在一次函数图象上,分别求出这两个函数的解析式四、证明与计算题(本题共15分,每小题5分) 17.已知m是方程0522=-+x x 的一个根,求95223--+m m m 的值.18.求证:关于x 的一元二次方程0)2(2)1(2=-+++a x a x 一定有两个不相等的实数根.19.在平行四边形ABCD 中,点F E ,是对角线上两点,且BF DE =五、解答题(本题共10分,每题各5分)20.列方程解应用题市政府为了解决市民看病难贵的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?21.某地电话拨号入网有两种收费方式,用户可以任选其一:(A)计时制:0.05元/分.;(B)包月制:50元/月(限一部个人住宅电话上网)。
此外,每种上网方式都得加收通信费0.02元/分。
..(1)请你分别写出两种收费方式下用户每月应支付的费用y(元)与上网时间x(小时..)之间的函数关系式;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?为什么?六、方案设计(本题6分)22.某市要在一块平行四边形ABCD的空地上建造一个四边形花园,要求花园所占面积是ABCD面积的一美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!半,并且四边形花园的四个顶点作为出入口,要求这四个顶点分别在ABCD 的四条边上,请你设计两种方案:方案(1):如图(1)所示,两个出入口E 、F 已确定,请在图(1)上画出符合要求的四边形花园,并简要说明画法;方案(2):如图(2)所示,一个出入口M 已确定,请在图(2)上画出符合要求的梯形花园,并简要说明画法.七、解答题(本题共10分,每题5分)23.已知:如图,平行四边形ABCD在平面直角坐标美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!y xOD CBA 系中,AD=6.OA 、OB 的长是关于x 的方程01272=+-x x 的两个根,且OA>OB. (1)求B A ,坐标以及AB 的长(2)若E 是x 轴上的一点,且4=∆AOE S ,求经过D 、E 两点的直线的解析式24. 在平行四边形ABCD 中,过点C 作CE ⊥CD 交AD 于点E ,将线段EC 绕点E 逆时针旋转90°得到线段EF (如图1).在图1中画图探究:当1P 为射线CD 上任意一点(1P 不与C 点重合)时,连结1EP ,将线段1EP 绕点E 逆时针图1 图2(备用)美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!旋转90°得到线段1EG .判断直线1FG 与直线CD 的位置关系并加以证明;初二年级数学答案一、选择题(本题共24分,每小题3分) 1.点P (—4,5)关于 y 轴的对称点坐标是(B ) A .(—4,—5) B.(4,5) C.(4,—5) D.(5,—4)美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!2.下列不是一次函数的是(A )A .x xy +=1 B.)1(21-=x y C.1-=πxyD.2π+=x y3. 已知:如图,若□ABCD 的对角线AC 长为3,△ABC 的周长为10,□ABCD 的周长是(B )A .17B .14C .13D . 74.已知:如图,在平行四边形ABCD 中,4=AB ,7=AD ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF 的长为(D )A .6B . 5C .4 D.3FE A BCD第4题图DCBA第3题图美好的未来不是等待,而是孜孜不倦的攀登!为自己加油!5.关于x 的方程052=-+kx x 的根的情况为 (C ) A . 没有实数根 B . 有两个相等的实数根C . 有两个不相等的实数根D . 不能确定6.若2-=x 是关于x 的方程0122=---a ax x 的一个根,则a 的值是(C )A . 3B . 1-C .3或1-D .1或3-7.若一个多边形的内角和等于1080°,则这个多边形的边数是(C ) A .6 B .7 C .8D .98. 已知:如图,已知点A 的坐标为(1,0),点B 在直线x y -=上运动,当线段AB 最短时,点B 的坐标为(D )A .(0,0)B .⎪⎭⎫ ⎝⎛-21,21C .⎪⎪⎭⎫⎝⎛-22,22 D .⎪⎭⎫ ⎝⎛-21,21 第8题图二、填空题(20分,每小题4分) 9.方程x x =2的根是1021==x x ,. 10.函数xy -=1的定义域为1≤x11.关于x 的一元二次方程0122=+-x mx 有两个不等实根,则实数m 的取值范围是01≠<m m 且.12.已知),(111y x P 、),(222y x P 是正比例函数kx y =(0≠k )图象上的点且当21x x <时,21y y <,则k 的取值范围是0>k .13.在平面直角坐标系中, ),3,0(),0,4(),0,1(C B A -若以D C B A 、、、为顶点的四边形是平行四边形,则D 点坐标是()()()333535--,,,,,.三、解答题(本题共15分,每小题5分)14.用配方法解方程:01422=--x x 15.解方程:0)2(4)2(2=-+-x x x解:2122=-x x 解:()()02422=-+-x x x23122=+-x x ()()0252=--x x()2312=-x()()0252=--x x261±=-x()()0252=--x x26126121-=+=x x ,52221==x x , 16.已知:一次函数b x k y +=1,正比例函数x k y 2=的图像都经过点)1,2(-,且点)4,0(- 在一次函数图象上,分别求出这两个函数的解析式解:由题意:把点()12-,代人x k y 2=得 221k =-解得:212-=k由题意⎩⎨⎧-=-=+4121b b k 解得:⎪⎩⎪⎨⎧-==4231b k 所以所求一次函数的解析式为:423-=x y 所求正比例函数的解析式为x y 21-=四、证明与计算题(本题共15分,每小题5分) 17.已知m是方程0522=-+x x 的一个根,求95223--+m m m 的值.解: ∵ m 是方程2250x x +-=的一个根,∴ 2250m m +-=. ∴32259m m m +--= 2(25)9m m m +--= 9-.18.求证:关于x 的一元二次方程0)2(2)1(2=-+++a x a x 一定有两个不相等的实数根. 证明:)2(214)1(2-⨯⨯-+=∆a a168122+-++=a a a 1762+-=a a832>+-=)(a .∴ 方程一定有两个不相等的实数根. 19.在平行四边形ABCD 中,点F E ,是对角线上两点,且BF DE =,求证:四边形AECF证明:连结AC AC ∩BD=O 因为四边形ABCD 是平行四边形 所以AO=OC ,OD=OB因为DE=BF 所以 OD-DE=OB-OF 即 OE=OF又因为 AO=OC 所以四边形AECF 是平行四边形五、解答题(本题共10分,每题各5分)20.列方程解应用题市政府为了解决市民看病难贵的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?解:设这种药品平均每次降价的百分率是x.依题意,得2200(1)128x-=解得10.2x=,2 1.8x=(不合题意,舍去).答:这种药品平均每次降价的百分率是20%.21.某地电话拨号入网有两种收费方式,用户可以任选其一:(A)计时制:0.05元/分.;(B)包月制:50元/月(限一部个人住宅电话上网)。