分式复习1分式求值的方法
- 格式:doc
- 大小:52.50 KB
- 文档页数:2
分式一.分式的概念及性质1.分式分概念:一般地,用A,B表示两个整式A B÷就可以表示成AB的形式.如果B中含有字母,式子AB就叫做分式.(1)分式有意义的条件:分式的分母不为零.(2)分式的值为零的条件:分式的分子为零且分母不为零.(3)分式值为正的条件分式的分子分母符号相同(两种情况).(4)分式值为负的条件:分式的分子分母符号不同(两种情况).2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.二.分式的综合运算1.分式的乘除法(1)分式的乘除法:b d bda c ac⋅=,b d bc bca c a d ad÷=⋅=.(a、b、c、d既可以表示数,也可以表示单项式/多项式等)(2)分式的约分和通分:关键是先分解因式.分式的约分:利用分式的基本性质,约去分式的分子与分母的公因式,分式的值不变.最简分式:分子与分母没有公因式.分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,把几个异分母的分式化成同分母的分式,不改变分式的值.最简公分母:“各个分母”和“所有因式”的最高次幂的积.(3)分式的乘方法则:分式乘方要把分子、分母分别乘方.2.分式的加减法:(1)同分母的分式相加减,分母不变,分子相加减,a b a bc c c±±=.(2)异分母的分式相加减,先通分,变为同分母分式,再加减,b d bc ad bc ada c ac ac ac±±=±=.3.分式的综合运算法则:先乘方,再乘除,最后加减,遇到括号先算括号里面的.知识精讲三.分式的化简与求值分式的化简求值分为有条件和无条件两类.有条件化简求值指导思想:瞄准目标,抓住条件,依据条件推导目标,根据目标变换条件.方法点拨1.分式的化简与求值常用方法和技巧:(1)分步或者分组通分;(2)拆项相消或拆分变形;(3)整体代入;(4)取倒数或者利用倒数关系;(5)换元;(6)先约分后通分2.通分技巧:分步通分,分组通分,先约分后再通分,换元后通分等.一.考点:分式的性质、分式的混合运算及化简求值二.重难点:分式的混合运算及化简求值三.易错点:1.分式的分母中含有根号时,根号下的代数式一定是负的.题模一:分式的基本知识例1.1.1要使3x -+121x -有意义,则x 应满足( )A .12≤x ≤3B .x ≤3且x ≠12C .12<x <3D .12<x ≤3 【答案】D 【解析】根据题意得:30210x x -≥⎧⎨->⎩,解得:12<x≤3.故选D .例1.1.2若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【答案】1a >【解析】分式值为正的条件:分式的分子分母符号相同,因分子为1,所以分母2-2x x a +也一定为正时满足条件,将式子2-2x x a +变形为2-21-1x x a ++()(),因2210x x -+≥,即当10a ->时,分式的值恒为正例1.1.3当x ____时,分式1412x x 有意义;当x ____时,分式1111x 无意义;当x ____时,分式2224x x x x 的值为0【答案】2x ≠且6x ≠;2x =或1x =;0x =或1x =【解析】该题考查的是分式的性质. 分式有意义要求分母不为0,无意义要求分母为0,分式值为0要求分母不为0且分子为0,三点剖析题模精讲分式1412xx 有意义,则410220x x ⎧-≠⎪-⎨⎪-≠⎩,即4122x x ⎧≠⎪-⎨⎪≠⎩,即242x x -≠⎧⎨≠⎩,解得62x x ≠⎧⎨≠⎩; 分式1111x 无意义,则1101x -=-或10x -=,即111x =-或1x =,解得2x =或1x =; 分式()()()()()()22+22114222x x x x x x x x x x x x -+--==--+-的值为0,则()1020x x x ⎧-=⎪⎨-≠⎪⎩,解得0x =或1x =. 例1.1.4x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【答案】(1)6x =-(2)1x =-或6x =【解析】(1)分式值为0则60x -=且2560x x --≠,得6x =-;(2)要使分式无意义,则分母2560x x --=,得1x =-或6x =题模二:分式的运算及化简求值例1.2.1化简2244xy yx x --+的结果是( )A .2x x +B .2x x -C .2y x + D .2y x - 【答案】D 【解析】2244xy y x x --+=2?(2)(2)y x x --=2yx -,故选D .例1.2.2解答下列各题: (1)解方程:;(2)先化简,再求值:,其中a 满足a 2+2a ﹣7=0【解答】解:(1)∵,∴(x ﹣2)2=(x +2)2+16,∴x 2﹣4x +4=x 2+4x +4+16,∴﹣4x =4x +16,∴x =﹣2, 经检验,x =﹣2是方程的增根,故原分式方程无解. (2)原式=[﹣]•=•=,∵a 2+2a ﹣7=0,∴a 2+2a =7,∴原式= 例1.2.3先化简,再求值:(),其中x=2.【答案】【解析】原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.例1.2.4已知实数a 满足a 2+2a-15=0,求11a +-221a a +-÷2(1)(2)21a a a a ++-+的值. 【答案】18【解析】11a +-221a a +-÷2(1)(2)21a a a a ++-+=11a +-2(1)(1)a a a ++-•2(1)(1)(2)a a a -++=11a +-21(1)a a -+=22(1)a +, ∵a 2+2a -15=0,∵(a+1)2=16,∵原式=216=18. 例1.2.5化简计算(式中a ,b ,c 两两不相等)222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+.【答案】0【解析】()()()()()()()()()()()()1111110a b a c b c b a c a c b a b a c b c b a c a c b a c a b b a b c c b c a-+--+--+-++=+++++=------------随练1.1使代数式213x x--有意义的x 的取值范围是____. 【答案】x≥12且x≠3 【解析】根据题意得,2x -1≥0且3-x≠0,解得x≥12且x≠3. 故答案为:x≥12且x≠3.随练1.2如果分式2127a a +-的值是正数,那么a 的取值范围是________.【答案】72a >【解析】该题考察的是分式的性质.∵因为21a +恒0>,又∵分式2127a a +-的值是正随堂练习数,∴270a ->,解得:72a > ,故答案是72a >. 随练1.3先化简,再求值:÷(﹣),其中a=.【答案】6﹣4【解析】原式=÷[﹣]=÷=•=(a ﹣2)2,∵a=,∵原式=(﹣2)2=6﹣4随练 1.4x 取 值时,112122x +++有意义;当x 的值为 ,分式223-1244x x x ++的值为0.【答案】592,,;24x x x ≠-≠-≠-2【解析】分式有意义则分母不为零,所以20x +≠且1202x +≠+,且120122x +≠++,所以592,,;24x x x ≠-≠-≠-分式值为零,则分子为零,且分母不为零,即()22312340x x -=-=且()224420x x x ++=+≠,故2x =.随练1.5当x 取何值时,分式2256x x x --+有意义?【答案】2x ≠±且3x ≠±【解析】间接考虑2560x x -+=,然后排除2560x x -+=的情形即可.()()256230x x x x -+=--=得20x -=或30x -=,2x =±或3x =±故要是分式有意义2x ≠±且3x ≠±即可. 随练1.6若1abc =,求111a b cab a bc b ca c ++++++++的值. 【答案】1 【解析】原式=11111111a ab abc a ab a ab ab a abc ab a abca abc ab ab a ab a a ab ab a ++++=++==++++++++++++++随练1.7已知a ,b ,c 为实数,16ab a b =+,18bc b c =+,110ca c a =+,求分式abcab bc ca++的值. 【答案】112【解析】由16ab a b =+,18bc b c =+,110ca c a =+知a ,b ,c 均不为零,故116a b +=,118b c+=,1110c a +=,解得14a =,12b =,16c =,故原式=1111112a b c=++随练1.8若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【答案】2,4【解析】若使分式1-1m 为整数,只需满足1m -为1的因数即可,即11m -=±,结果为0m =或2m =;分式11m m +-为整数,需要将式子整理为-12-1-1m m m +,即只要2-1m 为整数,11,2m -=±±,因此0,2,1,3m =-.随练1.9已知:y=22699x x x ++-÷233x x x+--x+3,试说明不论x 为任何有意义的值,y 值均不变. 【答案】见解析【解析】本题主要考查了分式的混合运算能力. 先把分子分母分解因式再化简约分即可.证明:y=22699x x x ++-÷233x x x+--x+3=2(3)(3)(3)x x x ++-×(3)3x x x -+-x+3=x -x+3=3. 故不论x 为任何有意义的值,y 值均不变.随练1.10已知0abc ≠,0a b c ++=,则代数式222a b c bc ca ab++的值为__________.【答案】3【解析】由0a b c ++=得()a b c =-+,()b a c =-+,()c a b =-+代入原代数式可得原式()()()22263b c a c a b b c a c b abccaabc b c a a b+++=++=++++++= 作业1若a 使分式241312a a a-++没有意义,那么a 的值是( )A .0B .13-或0 C .2±或0 D .15-或0【答案】D【解析】要使分式无意义,则分母为零即可,故13102a a ++=或20a =,所以15a =-或0a =,故答案为D 选项. 作业2要使分式11x x-有意义,则x 的取值范围是_________. 【答案】0x ≠且1x ≠±【解析】对于多重分式,必须要满足每一重的分母都不为0,首先0x ≠,得0x ≠;其次10x x-≠,课后作业得1x ≠±;故x 的取值范围是0x ≠且1x ≠±作业3化简:()()()222222x yz y zx z xyx y z x yz y z x y zx z x y z xy +-++++--+++---.【答案】0【解析】因为()()()2x y z x yz x y x z +--=+-,()()()2y z x y zy x y y z +++=++()()()2z x y z xy y z z x ---=+-,所以原式=()()()()()()()()()2220x yz y z y zx z x z xy x y x y y z z x -+++--+++=++-.作业4化简:÷﹣的结果为( )A .B .C .D .a【答案】C 【解析】原式=×﹣=﹣=,作业5已知()22221111x x A B Cx x x x x +-=++--,其中A 、B 、C 为常数,求A B C ++的值.【答案】13【解析】原式右边=()()()()()()()22222211211111Ax x B x Cx A C x B A x B x x x x x x x x -+-+++--+-==---,得2A C +=,1B A -=,11B -=-,解得10A =,11B =,8C =-,从而13A B C ++=作业6先化简,再求值:222x x x+-2212x x x -++÷211x x -+,其中x 为0<x 的整数.【答案】14【解析】原式=2(2)x x x +-2(1)2x x -+•1(1)(1)x x x ++-=2(2)x x x +-12x x -+=(2)x x x +=12x +,∵x 为0<x 的整数,∵x=1(舍去)或x=2,则x=2时,原式=14. 作业7阅读下面材料,并解答问题.材料:将分式42231x x x 拆分成一个整式与一个分式(分子为整数)的和的形式.由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a-1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a a b ,∴a=2,b=1∴42231x x x =222(1)(2)11x x x =222(1)(2)1x x x +211x =x 2+2+211x这样,分式42231x x x 被拆分成了一个整式x 2+2与一个分式211x 的和.解答:(1)将分式422681x x x 拆分成一个整式与一个分式(分子为整数)的和的形式. (2)当x ∈(-1,1),试说明422681x x x 的最小值为8.【答案】(1)x 2+7+211x (2)见解析【解析】(1)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a )+b则-x 4-6x 2+8=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a -1)x 2+(a+b )∵对应任意x ,上述等式均成立,∵168a ab ,∵a=7,b=1,∵422681x x x =222(1)(7)11x x x =222(1)(7)1x x x +211x =x 2+7+211x这样,分式422681x x x 被拆分成了一个整式x 2+7与一个分式211x 的和.(2)由422681x x x =x 2+7+211x 知, 对于x 2+7+211x ,当x=0时,这两个式子的和有最小值,最小值为8,即422681x x x 的最小值为8.作业8设x ,y ,z 为互不相等的三个非零实数,且111x y z y z x+=+=+,求xyz 的值. 【答案】1± 【解析】由已知111x y z y z x +=+=+,11x y y z +=+,11y zx y z y zy--=-=得y z zy x y -=-,同理可得,z x zx y z -=-,x y xy z x-=-,所以1y z z x x y zy zx xy x y y z z x ---⋅⋅=⋅⋅=---,即()21xyz =,故1xyz =±。
1.先化简,再求值.,其中满足.2.已知,,则的值=________.222142442x x x x x x x x ---⎛⎫-÷ ⎪++++⎝⎭x 2210x x +-=1327m =1162n⎛⎫= ⎪⎝⎭n m知识点一(分式的有关性质和运算)【知识梳理】一、分式的有关概念及性质1.分式:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子叫做分式.其中A 叫做分子,B 叫做分母.2.分式的基本性质 (M 为不等于0的整式).3.最简分式:分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.二、分式的运算1.约分:利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.A Ba b a b c c c±±=(2)乘法运算 ,其中是整式,. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 ,其中是整式,. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方。
4.零指数.5.负整数指数6.分式的混合运算顺序 先算乘方,再算乘除,最后加减,有括号先算括号里面的.【例题精讲】类型一、分式及其基本性质1.当为任意实数时,下列分式一定有意义的是( C )A.B. C. D.2.不改变分式的值,把下列各式分子与分母中各项的系数都化为最简整数.(1); (2); (3). a c ac b d bd⋅=a b c d 、、、0bd ≠a c a d ad b d b c bc÷=⋅=a b c d 、、、0bcd ≠x 14231134a b a b +-0.30.20.05x y x y +-222230.41010.64x y x y +-类型二、分式运算3.计算:. 解:原式. 类型三、分式条件求值的常用技巧4.已知,求的值.5.设,且,,求的值.【课堂练习】1.计算…. 2411241111x x x x+++-+++224448224448111111x x x x x x =++=+=-++-+-14x x+=2421x x x ++0abc ≠3270a b c +-=74150a b c +-=22222245623a b c a b c --++111(1)(1)(2)(2)(3)a a a a a a ++++++++1(2005)(2006)a a +++2.若0<x <1,且的值.3.已知,且,求的值.知识点二(分式方程)【知识梳理】一、分式方程22230x xy y --=x y ≠-2xxy x y --1.分式方程的概念:分母中含有未知数的方程叫做分式方程. 2.分式方程的解法:关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题:增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.二、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【例题精讲】类型一、分式方程的解法1.解方程.类型二、分式方程的应用2.某车间计划加工360个零件,由于技术上的改进,提高了工作效率,每天比原计划多加工20%,结果提前10天完成任务,求原计划每天能加工多少个零件?【课堂练习】1.若关于x 的方程﹣=有增根,求增根和k 的值.263525(3)(5)(3)(5)x x x x x =+-+++-2.某项工程限期完成,甲队独做正好按期完成,乙队独做则要误期3天.现两队合做2天后,余下的工程再由乙队独做,也正好在限期内完成,问该工程限期是多少天?1.ba b a b a b a b a b a -+⨯-+÷-+22)()(的结果是( B ) A .b a b a +- B .b a b a -+ C .2)(b a b a -+ D .12.若关于x 的分式方程1322m x x x ++=--有增根,则m 的值是( C ) A .m =﹣1 B .m =2C .m =3D .m =0或m =3 3.某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么下列方程正确的是( A )A .480480420x x -=+B .480480204x x -=+C .480480420x x -=-D .480480204x x-=- 4.甲、乙两人分别从两地同时出发,若相向而行,则经过ah 相遇;若同向而行,则经过bh 甲追上乙.那么甲的速度是乙的( C )A .a b b +倍B .b a b+倍 C .a b b a +-倍 D .b a b a -+倍 5.若2212x y xy -=,且xy >0,则分式yx y x -+23的值为______.1 6.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是________.2a c7.a 为何值时,关于x 的方程223242ax x x x +=--+会产生增根?8.某文化用品商店用2000元购进一批学生书包,上市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?分式:分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式才有意义. 分式方程的增根问题:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.1.(硚口区八上期末)武汉市某区的天然气管道升级工程,若由乙工程队单独完成所需天数是由甲工程队单独完成所需天数的两倍;若甲工程队单独做5天后,再由乙工程队单独做15天,恰好完成该工程的一半,共需施工费28万元,甲工程队每天的施工费用比乙工程队每天的施工费用多8.0万元,(1)单独完成此项工程,甲、乙两工程队各需多少天?(2)甲、乙两工程队每天的施工费各为多少万元?A B。
分式求值技巧
2023年中考复习
设参数k法
方法介绍
当题目给出的条件出现连比形式,或者连等式时,经常采用增设参数k的方法,用含参数k的代数式表示分式中的各字母.在化简求值过程中,参数k最终都能消去,即可求出结果.
例1:
解答:
例2:
解答:
设定主元法
方法介绍
当题目中给出2个字母,却只给出1个方程,或者给出3个字母,却只给出2个方程时,我们无法具体求出每个字母的值.因此,可以设定其中一个字母作为主元,用含主元的代数式来表示其他字母,从而可以在分式化简中,达到只含有主元的目的,最终消去主元求值.
例1:
解答:
例2:
解答:
整体同除法
方法介绍
对于有些题目,我们可以从需要求值的分式入手,将分子分母同除分式中次数最高的项,以达到让分式中出现与已知条件相关的代数式,从而可以将已知条件作为整体,代入求值.
例1:
解答:
例2:
解答:
用乘法公式
方法介绍
对于一些本身,或者通分后含平方和类型的分式,我们可以联系以前所学的乘法公式,利用配方等方法,对分式进行变形,从而更快求解.
例1:
解答:
例2:
解答:
特殊值法
方法介绍
这是最后没有办法的办法了,适用于选择填空题.对于一些无法求出具体数值的字母,我们可以根据已知条件,取字母的一组特殊值,然后代入求解.当然,如果你不确定结果是否正确,可以多代几组特殊值检验.
例1:
解答:
例2:
解答:。
《分式》复习教案教学内容本节课主要内容是对本单元进行回顾.教学目标1.知识与技能会进行分式的基本运算(加、减、乘、除、乘方),熟练掌握分式方程的解法,能应用“建模”思想解决实际问题.2.过程与方法经历回顾分式概念、计算、应用的过程,提高观察、类比归纳、猜想等能力,.领会其算理.3.情感、态度与价值观培养学生的自主、合作、交流的意识,和严谨的学习态度,让学生体会知识的内在价值.重难点、关键1.重点:通过理解分式的基本性质,掌握分式的运算、应用.2.难点:分式的通分以及分式方程的“建模”.3.关键:把握分式的基本性质,领会算理.教学准备教师准备:投影仪,制作与本节课有关的投影片,图片等.学生准备:做一份本单元知识小结.学法解析1.认知起点:在学习了不等式基本性质、约分、通分、混合运算,•以及分式方程、应用内容后进行反思.2.知识线索:3.学习方式:采用知识体系梳理,•合作交流的学习方式达到巩固提高本单元知识的目的.教学过程一、回顾交流,巩固反馈【组织交流】教师活动:打开投影机,先将学生分成四人小组,交流各自准备的单元小结,然后开展小组汇报.学生活动:小组合作交流,交流内容是(1)单元知识结构图;(2)课本P41“回顾与思考”的5个问题;(3)自己的单元小结.活动形式:先小组合作交流,再小组汇报,师生互动.媒体使用:学生汇报中,可借用投影仪,辅助讲解.教师归纳:本章主要内容是分式的概念;分式的基本性质;分式混合运算和可化为一元一次方程的分式方程及其应用,这些内容在今后进一步学习方程、函数等知识时占有重要地位和作用.(投影显示本单元知识体系,见课本P41)1.分式的基本性质是分式恒等变形的依据,•正确理解和熟练掌握这一性质是学好分式的关键,因此学习中要注意以下三点:(1)基本性质中的字母表示整数,(,A A M A A M B B M B B M⨯÷==⨯÷,M ≠0) (2)要特别强调M ≠0,且是一个整式,由于字母的取值可以是任意的,所以M•就有等于零的可能性,因此,应用基本性质时,重点要考查M 的值是否为零.2.约分,约分的目的是化简,关键是找分子和分母的最高公因式,•即系数的最大公约数、相同因式的最低次幂.3.通分,通分关键是确定n 个分式的公分母,•通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫最简公分母.4.分式的乘除法本质就是(1)因式分解,(2)约分.5.分式的加减法本质就是(1)通分,(2)分解因式,(3)约分.6.解分式方程的本质就是将分式方程化成整式方程,但要注意验根.【设计意图】让学生掌握课堂的主动权,以自主、合作、交流的手法调动学生的主观能动性.二、寓思与练,讨论交流【显示投影片1】演练题1:当x 取什么数时,下列分式有意义?(1)22461;(2);(3)512x x x x m-++. 思路点拨:(1)令5x+1=0,相应求出x 的值,然后x 不取这个值时分式必有意义.(•x ≠-15);(2)由于无论x 取何值x 2+2的值均大于零,因此,x 取任何实数,此分式都有意义;(3)因为任何数的平方均为非负数,则m 2≥0,所以m ≠0即可.演练题2:当x 取什么数,下列分式的值为零?(1)23||2;(2)47(2)(5)x x x x x +-++-. 思路点拨:令分子等于零,由此求出x 的值,此时应考虑分母是否等于零,•若等于零,则分式无意义,应舍去.(1)x=-32;(2)x=2. 【活动方略】教师活动:操作投影仪,引导学生训练,并请学生上台板演.学生活动:独立完成演练题1,2,以练促思.三、随堂练习,巩固深化1.x 为何值时,2||5x x -的值为零;(x ±5) 2.x 为何值时,259x x +-没有意义;(x=9) 3.x 为何值时,6721a a -+的值等于1.(a=2) 4.课本P42复习题16第6题.四、X 例学习,提高认知例1 计算.2244222815(1);(2)()(66).583()[:(1),(2)]6x y a b xy x y x y ab xy x y ax xy x y b -÷-++答案思路点拨:按法则进行分式乘除法运算,应注意,如果运算结果不是最简分式,一定要约分,对于分式的乘除混合运算,按乘除的顺序依次进行;当分子、分母是多项式时,一般先分解因式,并在运算过程中约分,使运算简化.例2 计算.222222222(1);11112(2)()().4444224xy y x x y y x x y b a ab b a ab b a b a b a b -+--+-÷+-+++-+- 思路点拨:(1)•分式的加减运算就是把异分母的加减化成同分母的分式的加减,因此,在通分过程中找出最简公分母是关键.(2)对于分式的混合运算,•应注意运算顺序.【活动方略】教师活动:通过分析例1、例2的算理,增强学生的运算能力,提高运算的准确性. 学生活动:参与例1、例2的分析,同老师一道领会算理,掌握正确的学习方法.五、随堂练习,巩固深化1.计算. 22225(1)221(2)1111(3)1();()121x xx x x x a a a a a a a a +----+-+--÷-+--+ 2.先化简,再求值:()(2)(1)x y x y y y x y x x -÷+-÷+,其中x=115,.[]253y = 六、联系实际,实践应用【显示投影片2】例3 解分式方程:1-6351x x x+=-+ [x=2] 思路点拨:解分式方程基本思路是方程两边都乘以各分母的最简公分母,使方程化为整式方程,但解后必须验根.例4 某水泵厂在一定天数内生产4 000台水泵,工人为了支援祖国现代化建设,每天比原计划增加25%,可提前10天完成任务,问原计划每天生产多少台?(80台)思路点拨:工程问题常用的关系式是时间=总工作量日产量,设原计划每天生产x台,•列式4000400014x x x-+=10.【活动方略】教师活动:操作投影仪,启发引导学生弄清题意,正确解答.学生活动:利用例3、例4,复习分式方程解法,以及应用题“建模”方法,并归纳小结.七、继续演练,反复认识【显示投影片3】1.解方程:8177xx x----=8(无解)2.一列火车从车站开出,预计行程450千米,当它开出3小时后,因出现特殊情况多停一些,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,•求这列火车原来的速度.[提示:设火车原速为x千米/小时,列车450314531.22xx x-+=,x=75]3.课本P43“复习题16”第11,12题.八、布置作业,专题突破1.课本P42“复习题16”第1,2(3)(4)(6),3(2)(4)(6),4,5,8,9,10题.2.选用课时作业设计.九、课后反思课时作业设计【驻足“双基”】1.x______时,分式755x x +-有意义. 2.分式2134,,11m m m +-的最简公分母是________. 3.计算:(a+b )·2222a b a b a b---=______. 4.当x=______时,分式752x x-与的值相等. 5.当m=______时,方程233y m y y =---会产生增根. 6.若分式29(3)(4)a a a -+-的值为零,则a 的值是( ). A .±3 B .-3 C .3 D .以上结论都不对7.能使分式233x x x+---2值为零的x 的值是( ). A .x=4 B .x=-4 C .x=-4或x=4 D .以上结论都不对8.计算.(1)2(1)1132(2)(1)(1)(1)1166x x x x x x x x x x x +---÷-+-++-- 9.化简求值:133(2),(2)(1)24x x x x x x +÷-+=+-+其中. 10.解方程:1122x x x----=-3 【提升“学力”】 11.a 为何值时,关于x 的方程12325x a x a +-=-+的解等于零? 12.某个体商贩一次同时卖出两件上衣,每件都以135元出售,其中一件盈利25%,另一件亏本25%,讨论在这次买卖中,该商贩能否赚到钱?13.某某到某某铁路长300千米,为适应两省、市经济发展的要求,客车的行车速度每小时比原来增加了40千米,这样使得由某某至某某的时间缩短了1.5小时,•求列车原来的速度及现在的速度.请参照上面的应用题,编一道类似的应用题(不需要求解)这道应用题应满足:(1)不改变分式方程的形式; (2)改变实际背景和数据.答案:1.x ≠5 2.m (m+1)(m-1) 3.a+b 4.-5 5.-3 6.C 7.A8.(1)2211,(2)9.1610.2()11.13(3)5x x a x x --==--增根 (提示:先把a 看作已知数,•按照解分式方程的步骤求出x ,然后令x=0,得到关于a 的方程,求出a 值.(8-a )x=1-5a ,当a ≠8时,x=15151,0,150,885a a a a a a --=-=∴=--解唯一令则.) 12.赚不到 13.设列车原来的速度为x 千米/时,则30030040x x -+=1.5.。
专题复习:求代数式的值教学目标:(1)掌握求代数式的值的技巧,克服分式化简过程中的易错点,熟练准确地进行分式的化简;(2)熟练掌握一元一次方程、二元一次方程组、一元二次方程、分式方程、一元一次不等式及不等式组的解法、以及整体代入思想,准确地求出代数式的值。
教学重点:熟练准确地进行分式的化简,会利用条件准确求出代数式的值教学难点:克服分式化简过程中的易错点,准确地化简分式。
一、课题引入(2分钟)教师课件展示:学习目标:(1)掌握求代数式的值的技巧,克服分式化简过程中的易错点,熟练准确地进行分式的化简;(2)熟练掌握一元一次方程、二元一次方程组、一元二次方程、分式方程、一元一次不等式及不等式组的解法、以及整体代入思想,准确地求出代数式的值。
二、知识梳理:(4-5分钟)(教师请学生观察课件展示的题目,学生总结所涉及的知识和方法,教师板书)教师课件展示整理的知识与方法求代数式的值所涉及到的知识与方法有:(1)化简部分:其中有添括号、去括号的方法,因式分解,整式的运算法则;分式的通分、约分,分式的运算法则等。
(2)求值部分:涉及到解一元一次方程,分式方程,二元一次方程组,一元二次方程的解法,一元一次不等式及不等式组的解法与其整数解,整体代入法等 (0的正根。
2x ,其中x是方程x 44x x 4x x )x 2x 2x 1x (4)(2b a 4b a 足2b),其中a、b满a 2b a 5b (2ab a 9b 6ab a (3);3x 2x 1,x满足方程2x x 4)2x 12-2-(2)(x 1的最小整数解;3,其中x是不等式x 12x x 2x x )1x 2-x -x 1-x (1)到哪些知识与方法:下列求代数式的值会用222222222=--++-÷--+-⎩⎨⎧=-=+---÷-+-+=+-÷+->-++-÷+;三、典例分析:(8-10分钟)教师用投影仪展示学生的错误解答(2-3名)。
中考数学一轮复习专题解析—分式的运算复习目标1.了解分式的概念2.会利用分式的基本性质进行约分和通分。
3.会进行分式的加、减、乘、除、乘方运算4.能够根据具体问题数量关系列出简单的分式方程5.会解简单的可化为一元一次方程的分式方程;考点梳理一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.【归纳总结】分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B ≠0时,分式有意义;当分式有意义时,B ≠0.②当B =0时,分式无意义;当分式无意义时,B =0.③当B ≠0且A =0时,分式的值为零.例1、若把x ,y 的值同时缩小x 为原来的13倍,则下列分式的值保持不变的是()A .xy x y+B .22y x ++C .()22x y x +D .222x y x -【答案】C 【解析】A.1111333==11333x y xyxy x y x y x y⨯⨯+++,选项说法错误,不符合题意;B.61263=3616233y y x x y x +++=+++,选项说法错误,不符合题意;C.22222222111()()()33311()()33x y x y x y x x x ⎛⎫++ ⎪+⎝⎭==,选项说法正确,符合题意;D.22222213112261())(33()3xx xy x y x y x ⨯==---⨯,选项说法错误,不符合题意故选C二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.例2、计算22111m mm m----的结果是()A.1m+B.1m-C.2m-D.2m--【答案】B【解析】解:()222121211 1111mm m m m mm m m m---+-===-----;故选B.【归纳总结】约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.【特别提醒】通分注意事项(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.【特别提醒】1.解分式方程注意事项(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.2.列分式方程解应用题的基本步骤(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.例3、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周6000件提高到8400件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.6000x=840080x+B.6000x+80=8400xC.8400x=6000x﹣80D.6000x=840080x-【答案】A【解析】解:设原来平均每人每周投递快件x件,则更换交通工具后平均每人每周投递快件(x+80)件,依题意得:6000x=840080x+,故选:A.综合训练1.(2022·全国九年级课时练习)若代数式13x x -+有意义,则x 的取值范围是()A .3x ≠B .1x ≠C .3x ≥-D .3x ≠-【答案】D【分析】根据分式有意义的条件分析即可.【详解】 数式13x x -+有意义,30x ∴+≠,解得3x ≠-.故选D .2.(2022·老河口市教学研究室九年级月考)化简2b a ba a a ⎛⎫+-÷ ⎪⎝⎭的结果是()A .-a bB .a b +C .1a b-D .1a b+【答案】A【分析】直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.【详解】解:2b a ba a a ⎛⎫+-÷⎪⎝⎭=22a b aa a b-⨯+=()()a b a b aaa b+-⨯+=-a b .故选:A .3.(2022·厦门市第九中学九年级二模)港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程55千米.通车前需走水陆两路共约170千米,通车后,约减少时间3小时,平均速度是原来的2.5倍,如果设原来通车前的平均时速为x 千米/小时,则可列方程为()A .1705532.5x x-=B .5517032.5x x-=C .17055 2.53x x ⨯-=D .1705532.5x x-=【答案】D【分析】设原来通车前的平均时速为x 千米/小时,所以通车后,的平均时速为2.5x 千米/小时,根据它们行驶的时间差为3小时列出分式方程.【详解】解:设原来通车前的平均时速为x 千米/小时,所以通车后,的平均时速为2.5x 千米/小时,依题意得:1705532.5x x-=故选D .4.(2022·哈尔滨市第十七中学校)分式方程1x x +12x +-=1的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【答案】A【分析】观察可得最简公分母是x (x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解即可.【详解】解:112x x x ++-=1,去分母,方程两边同时乘以x (x ﹣2)得:(x +1)(x ﹣2)+x =x (x ﹣2),x 2﹣x ﹣2+x =x 2﹣2x ,x =1,经检验,x =1是原分式方程的解.故选:A .5.(2022·四川九年级期中)关于x 的方程244x ax x -=++有增根,则a 的值为()A .-4B .-6C .0D .3【答案】B【分析】将分式方程转化为整式方程,根据方程有增根求得4x =-,代入整式方程即可.【详解】解:244x ax x -=++两边同时乘4x +得:2x a -=①∵244x ax x -=++有增根∴4x =-代入方程①得:6a =-故答案为B .6.(2022·全国)已知实数a ,b 满足1a b ⋅=,那么221111a b +++的值为()A .14B .12C .1D .2【答案】C【分析】把所求分式通分,再把已知条件代入求解.【详解】解:∵•1a b =,∴()2221a b ab ==,∴22222222112111a b a b a b b a +++=+++++2222211a b b a ++=+++1=.故选:C .7.(2022·日照市田家炳实验中学九年级一模)已知关于x 的方程2222x mm x x+=--无解,则m 的值是___.【答案】12或1【分析】分方程有增根,增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值和方程没有增根两种情况进行讨论.【详解】解:①当方程有增根时方程两边都乘2x -,得22(2)x m m x -=-,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,②当方程没有增根时方程两边都乘2x -,得22(2)x m m x -=-,解得221mx m =-,当分母为0时,此时方程也无解,∴此时210m -=,解得12m =,∴综上所述,当12m =或1时,方程无解.故答案为:12或1.8.(2022·山东滨州市·九年级其他模拟)已知关于x 的分式方程3522x mx x=+--的解为非负数,则m 的取值范围为______.【答案】10m ≥-且6≠-m 【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.【详解】解:3522x m x x=+--去分母,得:35(2)x m x =-+-,移项、合并,得:210x m=+系数化为1得:102mx +=∵分式方程的解为非负数,∴1002m +≥且1022m +≠,解得:10m ≥-且6≠-m ,故答案为:10m ≥-且6≠-m .9.(2022·云南九年级期末)先化简,再求值:212(1)11x x x ++÷+-,其中2x =.【答案】x -1,1【分析】根据分式的混合运算法则化简原式然后代值计算即可.【详解】解:原式=2111()12x x x x ++-⨯++=2(1)(1)12x x x x x ++-⨯++=1x -,∵2x =,∴原式=211-=.10.(2022·河南三门峡市·)下面是小锐同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++()()()()23321233x x x x x +-+=-++…第一步()321323x x x x -+=-++…第二步()()()23212323x x x x -+=-++…第三步()()262123x x x --+=+…第四步()262123x x x --+=+…第五步526x =-+…第六步(1)填空:①以上化简步骤中,第______步是进行分式的通分,通分的依据是______;②第______步开始出现错误,这一步错误的原因是__________.(2)请从出现错误的步骤开始继续进行该分式的化简;(3)除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需注意的事项给其他同学提一条建议.【答案】(1)①三,分式的基本性质;②五,括号前面是“-”,去掉括号后,括号里面的第二项没有变号;(2)见解析;(3)最后结果应化为最简分式或整式【分析】(1)①分式的通分是把异分母的分式化为同分母的分式,通分的依据是分式的基本性质,据此即可进行判断;②根据分式的运算法则可知:第五步开始出现错误,然后根据去括号法则解答即可;(2)根据分式的混合运算法则解答;(3)可从分式化简的最后结果或通分时应注意的事项等进行说明.【详解】解:(1)①在以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质(或分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变);②第五步开始出现错误,这一步错误的原因是:括号前面是“-”,去掉括号后,括号里面的第二项没有变号;(2)原式()262172326x x x x ---==-++;(3)答案不唯一.如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆等.。
最新华师版八年级数学下册第16章分式专题复习测试题及答案全套专训1 分式求值的方法名师点金:分式的求值既突出了式子的化简计算,又考查了数学方法的运用,在计算中若能根据特点,灵活选用方法,往往会收到意想不到的效果.常见的分式求值方法有:直接代入法求值、活用公式求值、整体代入法求值、巧变形法求值、设参数求值等.直接代入法求值1.(中考·鄂州改编)先化简,再求值:⎝ ⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.活用公式求值2.已知x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x的值.设参数求值6.已知x 2=y 3=z 4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.专训2 全章热门考点整合应用名师点金:本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现.分式方程是中考的必考内容之一,一般着重考查解分式方程,并要求会用增根的意义解题,考题常以解答题的形式出现,有时也会出现在选择题和填空题中.其主要考点可概括为:三个概念、一个性质、一种运算、一个解法、一个应用、四种思想.三个概念概念1 分式1.下列说法中,正确的是( )A .分式的分子中一定含有字母B .分母中含有字母的式子是分式C .分数一定是分式D .当A =0,分式AB的值为0(A ,B 为整式)2.若式子1x 2-2x +m不论x 取任何数总有意义,则m 的取值范围是( )A .m≥1B .m>1C .m≤1D .m<1 概念2 分式方程3.关于x 的方程:①x 2-x -13=6;②x 900=500x -30;③x 3+1=32x ;④a 2x =1x ;⑤320x -400x =4; ⑥x a =35-x.分式方程有____________(填序号). 4.(中考·遂宁)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各是多少万千克?设原计划每亩平均产量为x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( )A .36x -36+91.5x =20 B .36x -361.5x=20C .36+91.5x -36x =20D .36x +36+91.5x =20 概念3 增根5.若关于x 的方程x -4x -5-3=a x -5有增根,则增根为( )A .x =6B .x =5C .x =4D .x =36.已知方程21+x -k 1-x =6x 2-1有增根x =1,求k 的值.7.若关于x 的分式方程2m +x x -3-1=2x无解,求m 的值.一个性质——分式的基本性质8.不改变下列分式的值,将分式的分子和分母中的各项的系数化为整数.(1)15x -12y 14x +23y ; (2)0.1x +0.3y 0.5x -0.02y .一种运算——分式的运算9.先化简,再求值:⎝ ⎛⎭⎪⎫2ab 2a +b 3÷⎝ ⎛⎭⎪⎫ab 3a 2-b 22·⎣⎢⎡⎦⎥⎤12(a -b )2,其中a =-12,b =23.一个解法——分式方程的解法10.(中考·嘉兴)小明解方程1x -x -2x =1的过程如下.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x ,得1-(x -2)=1.……① 去括号,得1-x -2=1.……② 合并同类项,得-x -1=1.……③ 移项,得-x =2.……④ 解得x =-2.……⑤∴原方程的解为x =-2.……⑥一个应用——分式方程的应用11.某超市用3 000元购进某种干果销售,由于销售状况良好,超市又调拨9 000元购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量比第一次的2倍还多300 kg.如果超市按9元/kg的价格出售,当大部分干果售出后,余下的600 kg按售价的八折售完.(1)该种干果第一次的进价是多少?(2)超市销售这种干果共盈利多少元?四种思想思想1数形结合思想12.如图,点A,B在数轴上,它们所表示的数分别是-4,2x+23x-5,且点A,B到原点的距离相等,求x的值.(第12题) 思想2整体思想13.已知实数a满足a2+4a-8=0,求1a+1-a+3a2-1·a2-2a+1a2+6a+9的值.思想3 消元思想14.已知2x -3y +z =0,3x -2y -6z =0,且z≠0,求x 2+y 2+z 22x 2+y 2-z 2的值.思想4 类比思想15.化简:⎝ ⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b .答案专训11.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,原式=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x+1x=5.∴⎝ ⎛⎭⎪⎫x +1x 2=25.∴x 2+1x 2=23.∴x 4+1x 4=⎝⎛⎭⎪⎫x 2+1x 22-2=232-2=527.点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答.3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以原式=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘(x +y +z),得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想.5.解:∵4x 2-4x +1=0, ∴(2x-1)2=0.∴2x=1. ∴原式=1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k)2-(3k)2+2(4k)2 2k·3k+3k·4k+2k·4k=27k226k2=2726.专训21.B2.B点拨:∵x2-2x+m=x2-2x+1+m-1=(x-1)2+m-1,∴当m-1>0,即m>1时,式子1x2-2x+m总有意义.3.②④⑤4.A 5.B6.解:方程两边同乘x2-1,得2(x-1)+k(x+1)=6.整理得(2+k)x+k-8=0.∵原分式方程有增根x=1,∴2+k+k-8=0.解得k=3.7.解:方程两边都乘x(x-3),得(2m+x)x-x(x-3)=2(x-3),即(2m+1)x=-6.①(1)当2m+1=0时,此方程无解,∴原分式方程也无解.此时m=-0.5;(2)当2m+1≠0时,要使关于x的分式方程2m+xx-3-1=2x无解,则x=0或x-3=0,即x=0或x=3.把x=0代入①,m的值不存在;把x=3代入①,得3(2m+1)=-6,解得m=-1.5.∴m的值是-0.5或-1.5.8.解:(1)原式=12x-30y15x+40y.(2)原式=5x +15y25x -y.9.解:原式=(2ab 2)3(a +b )3·(a 2-b 2)2(ab 3)2·14(a -b )2 =8a 3b 6(a +b )3·(a +b )2(a -b )2a 2b 6·14(a -b )2 =2aa +b. 当a =-12,b =23时,原式=2×⎝ ⎛⎭⎪⎫-12-12+23=-6.10.解:步骤①去分母时,没有在等号右边乘x ; 步骤②括号前面是“-”号,去括号时,没有变号; 步骤⑥前没有检验. 正确的解答过程如下:解:方程两边都乘x ,得1-(x -2)=x , 去括号,得1-x +2=x ,移项、合并同类项,得-2x =-3, 解得x =32.经检验x =32是原分式方程的解.11.解:(1)设该种干果第一次的进价是x 元/kg ,则第二次的进价是(1+20%)x 元/kg. 由题意,得9 000(1+20%)x =2×3 000x +300.解得x =5.经检验,x =5是原分式方程的解,且符合题意. 答:该种干果第一次的进价是5元/kg.(2)[3 0005+9 0005×(1+20%)-600]×9+600×9×80%-(3 000+9 000)=5 820(元).答:超市销售这种干果共盈利5 820元.12.解:由题意得2x +23x -5=4.去分母,得2x +2=4(3x -5).解得x =2.2.经检验,x =2.2是原方程的根.所以x 的值是2.2.点拨:本题运用了数形结合思想,通过观察数轴上A ,B 两点的位置情况并结合已知条件“点A ,B 到原点的距离相等”可知,A ,B 两点所表示的数互为相反数,于是可建立方程求出x 的值.13.解:原式=1a +1-a +3(a +1)(a -1)·(a -1)2(a +3)2=1a +1-a -1(a +1)(a +3)=4(a +1)(a +3)=4a 2+4a +3.由a 2+4a -8=0得a 2+4a =8,故原式=411.点拨:本题根据已知条件求出a 的值很困难,因此考虑将已知条件变形后整体代入化简后的式子.14.解:由2x -3y +z =0,3x -2y -6z =0,z≠0,得到⎩⎨⎧2x -3y =-z ,3x -2y =6z.解得⎩⎨⎧x =4z ,y =3z.所以原式=(4z )2+(3z )2+z22(4z )2+(3z )2-z 2=16z 2+9z 2+z 232z 2+9z 2-z 2=1320.点拨:本题先用含z 的式子分别表示出x 与y ,然后代入所求式子消去x ,y 这两个未知数,从而简化求值过程,体现了消元思想.15.解:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b =2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2aa +b.点拨:本题是类比思想的典范,分式的性质、运算顺序、运算律都可以类比分数的相关知识.专训2 分式的意义及性质的四种题型名师点金:1.从以下几个方面透彻理解分式的意义:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零;(4)分式值为正数⇔分子、分母同号;(5)分式值为负数⇔分子、分母异号.2.分式的基本性质是约分、通分的依据,而约分、通分为分式的化简求值奠定了基础.)分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( ) A .1个 B .2个 C .3个 D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个.分式有无意义的条件3.无论a 取何值,下列分式总有意义的是( )A .a +1a 2B .a -1a 2+1C .1a 2-1D .1a +1 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m总有意义,试求m 的取值范围.分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( ) A .x <-2 B .x <1C .x >-2且x≠1D .x >17.若分式3x -42-x的值为负数,则x 的取值范围是________. 8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.分式的基本性质及其应用9.下列各式正确的是( )A.ab=a2b2B.ab=aba+bC.ab=a+cb+cD.ab=abb210.要使式子1x-3=x+2x2-x-6从左到右变形成立,x应满足的条件是( )A.x>-2 B.x=-2 C.x<-2 D.x≠-211.已知x4=y6=z7≠0,求x+2y+3z6x-5y+4z的值.12.已知x+y+z=0,xyz≠0,求x|y+z|+y|z+x|+z|x+y|的值.专训2 分式运算的八种技巧名师点金分式的加减运算中起关键作用的就是通分.但对某些较复杂或具有特定结构的题目,使用一般方法有时计算量太大,容易出错,有时甚至算不出来,若能结合题目结构特征,灵活运用相关性质、方法、解题技巧,选择恰当的运算方法与技能,常常能达到化繁为简、事半功倍的效果.约分计算法1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.整体通分法2.计算:a -2+4a +2.顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m 3m -2n -1.裂项相消法⎝ ⎛⎭⎪⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abc ab +bc +ac的值.倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.答案专训11.C 点拨:4x -25,2m ,x 2π+1不是分式. 2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式.3.B 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1.7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1. 9.D 10.D11.解:设x 4=y 6=z 7=k(k≠0),则x =4k ,y =6k ,z =7k. 所以x +2y +3z 6x -5y +4z =4k +2×6k+3×7k 6×4k-5×6k+4×7k =37k 22k =3722. 12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z |-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z |-z|=1-1-1=-1. 综上所述,所求式子的值为1或-1.专训21.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程.2.解:原式=a -21+4a +2=a 2-4a +2+4a +2=a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减.3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1= x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x (x +1)(x -1)=4n -6m (3m -2n +1)(3m -2n -1). 5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n(n+1)=1 n -1n+1进行裂项,然后相加减,这样可以抵消一些项.6.解:1a+1b=16,1b+1c=19,1a+1c=115,上面各式两边分别相加,得⎝⎛⎭⎪⎫1a+1b+1c×2=16+19+115,所以1a+1b+1c=31180.易知abc≠0,所以abcab+bc+ac=11c+1a+1b=18031.7.解:由xx2-3x+1=-1,知x≠0,所以x2-3x+1x=-1.所以x-3+1x=-1.即x+1x=2.所以x4-9x2+1x2=x2-9+1x2=⎝⎛⎭⎪⎫x+1x2-11=22-11=-7.所以x2x4-9x2+1=-17.8.解:以x,y为主元,将已知的两个等式化为⎩⎨⎧4x-3y=6z,x+2y=7z.解得x=3z,y=2z.因为xyz≠0,所以z≠0.所以原式=5×9z2+2×4z2-z22×9z2-3×4z2-10z2=-13.点拨:此题无法直接求出x,y,z的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.专训3 巧用分式方程的解求字母的值名师点金:巧用分式方程的解求字母的值主要体现在以下几方面:(1)利用方程解的定义求字母的值,解决这类问题的方法是将其解代入分式方程,即可求出待定字母的值;(2)利用分式方程有解、有增根、无解求字母的取值范围或值时,一般都是列出关于待定字母的不等式或方程,通过解不等式或方程得到字母的取值范围或值.利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=m x -3+2有解,求m 的取值范围.利用分式方程有增根求字母的值3.若分式方程x x -1-m 1-x=2有增根,则m =________. 4.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.利用分式方程无解求字母的值5.(中考·东营)若分式方程x -a x +1=a 无解,则a =________. 6.已知关于x 的方程x -4x -3-m -4=m 3-x无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1. (1)若方程的增根为x =2,求a 的值;(2)若方程有增根,求a 的值;(3)若方程无解,求a 的值.答案专训1.解:解分式方程32x =1x -1,得x =3. 经检验,x =3是该方程的解.将x =3代入2x +4=m x, 得27=m 3.解得m =67. ∴m 2-2m =⎝ ⎛⎭⎪⎫672-2×67=-4849. 2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解,∴x=4-m 不能为增根.∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解.3.-14.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3.当x =3时,m +2×(3-3)=3+3,解得m =6;当x=-3时,m+2×(-3-3)=-3+3,解得m=12.综上所述,原方程的增根是x=3或x=-3.当x=3时,m=6;当x=-3时,m=12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m的值.5.1或-16.解:原方程可化为(m+3)x=4m+8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m+3=0且4m+8≠0,此时m=-3;(2)若整式方程的根是原方程的增根,则4m+8m+3=3,解得m=1.经检验,m=1是方程4m+8m+3=3的解.综上所述,m的值为-3或1.7.解:(1)原方程去分母并整理,得(3-a)x=10.因为原方程的增根为x=2,所以(3-a)×2=10.解得a=-2.(2)因为原分式方程有增根,所以x(x-2)=0.解得x=0或x=2.因为x=0不可能是整式方程(3-a)x=10的解,所以原分式方程的增根为x=2.所以(3-a)×2=10.解得a=-2.(3)①当3-a=0,即a=3时,整式方程(3-a)x=10无解,则原分式方程也无解;②当3-a≠0时,要使原方程无解,则由(2)知,此时a=-2.综上所述,a的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解.。
分式复习 分式求值的方法
名师点金:分式的求值既突出了式子的化简计算,又考查了数学方法的运用,在计算中若能根据特点,灵活选用方法,往往会收到意想不到的效果.常见的分式求值方法有:直接代入法求值、先化简再求值、活用公式求值、整体代入法求值、巧变形法求值、设参数求值等.
直接代入法求值
1.【中考·咸宁】a ,b 互为倒数,代数式a 2+2ab +b 2a +b
÷⎝⎛⎭⎫1a +1b 的值为________.
先化简再求值
2.【中考·龙岩】先化简,再求值:x 2+2x +1x 2-1-x x -1
,其中x =2.
活用公式求值
3.已知x 2-5x +1=0,求x 4+1x 4的值.
4.已知x +y =12,xy =9,求x 2+3xy +y 2
x 2y +xy 2
的值.
整体代入法求值
5.已知x y +z +y z +x +z x +y =1,且x +y +z ≠0,求x 2y +z +y 2x +z +z 2
x +y
的值.
巧变形法求值
6.已知数x 满足4x 2-4x +1=0,求2x +12x
的值.
设参数求值
7.已知x 2=y 3=z 4≠0,求x 2-y 2+2z 2xy +yz +xz
的值.
答案
1.1 点拨:原式=(a +b )2a +b ÷a +b ab =(a +b )2a +b ·ab a +b
=ab ,由a ,b 互为倒数可得ab =1,所以原式=1,故答案为1.
2.解:原式=(x +1)2(x +1)(x -1)-x x -1=x +1x -1-x x -1=1x -1
.当x =2时,原式=1. 点拨:本题考查了分式的化简与求值.正确化简分式是解题的关键,熟练掌握整式的因式分解是化简的基础.将x 的值代入化简后的代数式进行求值.
3.解:由x 2-5x +1=0得x ≠0,∴x +1x
=5. ∴x 4
+1x 4=⎝⎛⎫x 2+1x 22-2=⎣⎡⎦⎤⎝⎛⎭⎫x +1x 2-22-2=527. 点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答.
4.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xy xy (x +y )
, 因为x +y =12,xy =9,
所以原式=122+99×12=1712
. 5.解:因为x +y +z ≠0,
所以给已知等式的两边同时乘(x +y +z),得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y
=x +y +z , 即x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2
x +y +z (x +y )x +y
=x +y +z. 所以x 2y +z +y 2z +x +z 2
x +y
+x +y +z =x +y +z. 所以x 2y +z +y 2z +x +z 2
x +y
=0. 点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想.
6.解:∵4x 2-4x +1=0,
∴(2x -1)2=0,∴2x =1.
∴原式=1+11
=2. 7.解:设x 2=y 3=z 4
=k ≠0,则x =2k ,y =3k ,z =4k. 所以x 2-y 2+2z 2
xy +yz +xz
=(2k )2-(3k )2+2·(4k )2
2k·3k +3k·4k +2k·4k
=27k 226k 2=2726.。