分式化简求值几大常用技巧
- 格式:doc
- 大小:320.50 KB
- 文档页数:6
分式运算综合题1、先化简,再求值:(1-x x -11+x )÷112-x ,其中x=22、先化简,再求值:21+-a a ·12422+--a a a ÷112-a ,其中a 满足a 2-a=12。
3、计算:223y x y x -+-222y x y x -++2232y x yx --。
4、化简:12+x x -1422-+x x ÷1222+-+x x x ,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值。
5、已知M=222y x xy -,N=2222y x y x -+,P=224x y xy-,用“+”或“-”连接M ,N ,P 有多种不同的形式,如M+N-P 。
请你任选一种进行计算,并化简求值,其中x :y=5:2。
6、已知abc ≠0且a+b+c=0,求a(b 1+c 1)+b(c 1+a 1)+c(a 1+b1)的值。
7、已知两个式子:A=442-x ,B=21+x +x-21,其中x ≠±2,则A 与B 的关系是( )A.相等B.互为倒数C.互为相反数D.A 大于B8、已知1<x <2,则式子|2|2--x x -1|1|--x x +xx ||化简的结果是( )A.-1B.1C.2D.39、已知a2+3ab+b2=0(a ≠0,b ≠0),则式子a b +ba= 。
10、已知a 1+b 21=3,则式子b a ab b ab a 634452--+-= 。
11、已知3-x m -2+x n =)2)(3(17+-+x x x ,求m 2+n 2的值。
12、已知a,b 为实数,且ab=1,设M=1+a a +1+b b ,N=11+a +11+b ,试确定M ,N 的大小关系。
13、先化简,再求值:(x-13+x x )÷1222++-x x x ,其中x 满足x 2+x-2=0.14、已知A=(x-3)÷4)96)(2(22-+-+x x x x -1,(1)化简A; 2x-1<x,(2)若x 满足不等式组 且x 为整数,求A 的值。
分式化简求值的若干方法与技巧
分式化简是指将一个分式写成一个最简形式的过程。
下面列举一些分式化简的方法与技巧:
1. 因式分解法:如果分子和分母都可以被一个公因子因式分解,可以先进行因式分解,然后约去公因子。
2. 公约法:将分子和分母的公因子约去,使分子和分母无公因子。
3. 分子与分母分别除以最大公约数法:先求出分子和分母的最大公约数,然后将分子和分母都除以最大公约数,使得分子和分母互质。
4. 乘法逆元法:如果分子和分母互为乘法逆元,即分子和分母互为倒数关系,可以将分式化简为整数。
5. 积化和差法:对于有相同分子或分母的分式,可以将其化为积或差的形式,然后进行约分或运算。
6. 公倍数法:如果分式的分子和分母都是整数,可以找到一个公倍数使得分子和分母变为整数,然后约去公倍数。
7. 有理化法:对于含有根号的分式,可以通过有理化的方法将其转化为整数或分数。
8. 倒数法:对于一个分式,可以将其倒数的分子和分母对换位
置,然后约分。
以上是一些常见的分式化简的方法与技巧,根据具体的情况选择合适的方法进行求解。
分式化简求值⼏⼤常⽤技巧
题设条件式作等价变换,找到重要解题条件“3y?2x=3xy”和“2x?3y=?3xy”,然后作代换处理,从⽽快速求值。
切⼊点六:“分式中的常数值”
点拨:当题设条件式的值和所要求解的分式的常数相同时,应注意考虑是否可以作整体代⼊变形求解,
以便更快找到解题的突破⼝。
abc
例6:设abc=1,求++的值
ab+a+1bc+b+1ac+c+1
解:∵abc=1
abc
∴原式=++
ab+a+abcbc+b+1ac+c+1
1bc
=++
b+1+bcbc+b+1ac+c+1
1+bc1+b1
=+=+
bc+b+1ac+c+abcbc+b+1a+1+ab
1+babc1+bbc
=+=+
bc+b+1a+abc+abbc+b+11+bc+b
1+b+bc
==1
bc+b+1
评注:整体代⼊变形是分式求值的重要策略。
像本题紧扣“”,多次作整体代⼊处理,先繁后abc=1
简,逐项通分,最后顺利得到分式的值。
综上可见,找准切⼊点,灵活变形可以巧妙求解分式的值。
所以,当你遇到分式求值题找不到解题⽅向时,
不妨找准切⼊点,对原分式变⼀变,也许分式求值思路现。
6。
分式化简求值解题技巧分式化简求值解题技巧一、整体代入对于一些分式表达式,可以先将其中的变量整体代入,然后再求值。
比如:已知a+2b=2006,求3a²+12ab+12b² ÷ (2a+4b)的值。
可以先将a替换为2006-2b,然后化简得到:3a²+12ab+12b² ÷ (2a+4b) = 3(2006-2b)² + 12b(2006-2b) + 12b² ÷ (2(2006-2b)+4b)再进行进一步化简求解。
练一练:1.已知x+y=3,求(2x+3y) ÷ (x-y)的值。
2.已知112x-3xy+2y ÷ xy-x-2y = 5,求xy ÷ (x+2y)的值。
3.若a+b=3ab,求(1+2b²) ÷ (2a-b)的值。
二、构造代入有些分式表达式可以通过构造代入的方式来求解。
比如:已知x-5 ÷ (x-2) = 2001,求(x-2)³ - (x-1)² + 1的值。
可以构造一个分式,使得它的分母为(x-2),分子为(x-2)³-(x-1)²+1,然后将其化简,得到:x-2)³-(x-1)²+1 ÷ (x-2) = (x-5) + 4(x-2) + 9再进行进一步化简求解。
练一练:4.若ab=1,求a ÷ (b+c) + b ÷ (c+a) + c ÷ (a+b)的值。
5.已知xy+yz+zx ÷ xyz = 2,求(x+y)² ÷ z²的值。
三、参数辅助,多元归一有些分式表达式可以通过引入参数或多元归一的方式来求解。
比如:已知a+b+c=1,求a(1-b) ÷ (b+c) + b(1-c) ÷ (c+a) + c(1-a) ÷(a+b)的值。
分式的简化和运算的解题技巧总结分式在数学中有着重要的应用,是一种有理数的表示形式,可以帮助我们更方便地处理数学问题。
本文将总结分式的简化和运算的解题技巧,以帮助读者更好地掌握这一知识点。
1. 分式的简化分式的简化是指将分子和分母的公因式约去,使得分数的大小关系不变,同时使得表达更简洁。
简化分式的主要步骤如下:a. 将分子和分母进行因式分解;b. 找出分子和分母的公因式,并约去;c. 化简后的分子作为新的分子,分母作为新的分母。
例如,简化分式$\frac{12x^4y^3}{18x^2y^5}$的步骤如下:a. 分子因式分解为$2^2 \cdot 3 \cdot x^4 \cdot y^3$,分母因式分解为$2 \cdot 3^2 \cdot x^2 \cdot y^5$;b. 找出分子和分母的公因式为$2 \cdot 3 \cdot x^2 \cdot y^3$,约去公因式得到$\frac{2x^2}{3y^2}$。
2. 分式的乘法和除法分式的乘法和除法是两种常见的运算方法,需要注意的是在进行运算之前,需要将分式化简到最简形式,以便进行后续计算。
分式的乘法规则:a. 将两个分式的分子相乘,得到新的分子;b. 将两个分式的分母相乘,得到新的分母;c. 新的分子作为新的分子,新的分母作为新的分母。
例如,计算分式$\frac{3}{4} \cdot \frac{5}{6}$的步骤如下:a. 将分子相乘得到$3 \cdot 5 = 15$;b. 将分母相乘得到$4 \cdot 6 = 24$;c. 得到的新的分子为15,新的分母为24,所以$\frac{3}{4} \cdot\frac{5}{6} = \frac{15}{24}$。
分式的除法规则:a. 将第一个分式的分子与第二个分式的分母相乘,得到新的分子;b. 将第一个分式的分母与第二个分式的分子相乘,得到新的分母;c. 新的分子作为新的分子,新的分母作为新的分母。
数学篇初中数学中“分式的化简”是非常重要的知识点,其运算的综合性和技巧性较强.如果化简运算方法选取不当,不仅会使解题过程变得复杂,而且错误率高.下面介绍三种分式化简的常用技巧:通分约分、因式分解、提取公因式.同学们需注意的是,有时候要综合运用这三种技巧,才能实现快速解题的目标.首先,巧借“通分约分”化简分式.此技巧适合包含多个简单分式的题型,分式之间往往通过“+”“-”这两个符号连接.此时,可以尝试“通分”同化分母,再根据具体情况结合部分相同项进行“约分”,从而达到简化分式的目的.其次,妙用“因式分解”化简分式.有的时候,分式化简的式子往往比较复杂,直接求解比较困难.利用“因式分解”可以寻找部分共同项,然后利用乘除法抵消部分或全部共同项,以达到化简分式的目的.在抵消“共同项”时,一定要注意整个式子的“+”“-”符号,以防出错.此方法适合局部可以因式分解的复杂分式,通过局部的因式分解,可以简化分式形式.第三,灵活“提取公因式”化简分式.在化简分式的过程中,首先看多项式的各项是否有公因式,若有公因式,则把它提取出来.及时灵活地提取公因式,可以大大简化计算过程.需要注意的是,提取的公因式应尽量单独放在最前面,而且保持独立性,以便为后续的“约分”或“消项”做准备.例1化简(1x +1-1x -1)÷2x 2-1.分析:先计算(1x +1-1x -1),采用“通分”处理可得-2(x +1)(x -1),再结合后面的2x 2-1计算最终结果.解:(1x +1-1x -1)÷2x 2-1=-2(x +1)(x -1)÷2x 2-1=-2x 2-1÷2x 2-1=-1.评注:该题比较简单,采用“通分”可以整合(1x +1-1x -1),再利用“约分”去掉共同项1x 2-1即可得出最后结果.变式:化简(x +1x -x x -1)÷1(x -1)2.分析:该题同例1,利用“通分”处理(x +1x -x x -1),得到-1x (x -1),结合后面的1(x -1)2,利用“约分”抵消1(x -1)项,最后算出结果即可.解:(x +1x -x x -1)÷1(x -1)2=[(x +1)(x -1)-x 2x (x -1)]÷1(x -1)2=-1x (x -1)÷1(x -1)2=-1x (x -1)∙(x -1)2=1-x x .评注:先计算括号里的内容,利用“通分”处理(x +1x -x x -1)得到-1x (x -1),整个式子就变得简单了.“通分约分”可以简化部分分式.例2化简(xy -x 2)÷x -yxy.分析:解答这道题,可以先把题目中(xy -x 2)因式分解为x (y -x ),这样,与后面的x -yxy 有共同项(x -y ),再通过“约分”抵消,得到结果.解:(xy -x 2)÷x -y xy =x (y -x )÷x -yxy =x (y -x )×xyx -y=-x 2y .谈谈分式化简的几个小技巧新疆阿勒泰地区福海县初级中学李红艳解法荟萃32数学篇评注:通过“因式分解”(xy -x 2),找到共同项(x -y ),再利用乘除法全部或部分“约去”共同项,从而简化分式,得出结果.变式:化简2x -64-4x +x2÷(x +3)∙x 2+x -63-x .分析:可以先“因式分解”寻找共同项,尝试消项.2x -64-4x +x2因式分解为2(x -3)(x -2)2,x 2+x -63-x因式分解为(x +3)(x -2)3-x ,最后综合求解即可.解:2x -64-4x +x2÷(x +3)∙x 2+x -63-x =2(x -3)(x -2)2÷(x +3)∙(x +3)(x -2)3-x =2(x -3)(x -2)2∙1x +3∙(x +3)(x -2)3-x =-2x -2.评注:此题式子比较复杂,但是利用“因式分解”可以找出很多共同项,综合所有项后,发现很多可以抵消的项,从而大大简化了原式.但在抵消“共同项”或“近似共同项”时,一定要注意“+”“-”号,避免出错.例3化简(y +1y 2-4y +3-y -2y 2-6y +9)÷y -5y -1.分析:题目式子比较复杂,先对扩号内部式子的分母进行“因式分解”,得到y +1(y -1)(y -3)-y -2(y -3)2,此时观察发现可以“提取公因式”1y -3,得到1y -3(y +1y -1-y -2y -3).然后再运用“通分”处理(y +1y -1-y -2y -3)得y -5(y -1)(y -3),最后综合计算1y -3∙y -5(y -1)(y -3)÷y -5y -1,得出结果1(y -3)2.=[y +1(y -1)(y -3)-y -2(y -3)2]÷y -5y -1=1y -3(y +1y -1-y -2y -3)∙y -1y -5=1y -3∙(y +1)(y -3)-(y -2)(y -1)(y -1)(y -3)∙y -1y -5=1y -3∙y -5(y -1)(y -3)∙y -1y -5=1(y -3)2.评注:此题两个分式的分母经过因式分解以后有公因式可提取,分解因式并提取公因式后为1y -3(y +1y -1-y -2y -3),然后再计算最后答案.变式:化简(x -2x 2+2x -x -1x 2+4x +4)÷x -4x +2.分析:对(x -2x 2+2x -x -1x 2+4x +4)分母进行因式分解可得(x -2x (x +2)-x -1(x +2)2),然后提取公因式1x +2可得1x +2∙(x -2x -x -1x +2).再通分(x -2x -x -1x +2)可得x -4x (x +2).最后求1x +2∙x -4x (x +2)÷x -4x +2得1x (x +2).解:(x -2x 2+2x -x -1x 2+4x +4)÷x -4x +2=éëêùûúx -2x (x +2)-x -1(x +2)2÷x -4x +2=1x +2∙(x -2x -x -1x +2)÷x -4x +2=1x +2∙x -4x (x +2)÷x -4x +2=1x +2∙x -4x (x +2)∙x +2x -4=1x (x +2).评注:此题的解题关键是综合“因式分解”与“通分约分”,在处理过程中应及时、灵活提取公因式,从而化简分式.分式化简问题虽然复杂难解,但是有规律可循,有技巧可取.只要同学们仔细观察,善于综合运用“通分约分”“因式分解”“提取解法荟萃。
分式求值的常用技巧分式是一种特殊类型的数学表达式,它包含有一个或多个数(称为分子)除以另一个数(称为分母)。
分式可以代表有理数和算术运算,例如加法、减法、乘法和除法。
在解决分式求值问题时,有一些常用的技巧可以帮助我们简化计算和得出结果。
1.化简分式首先,我们可以通过化简分式来简化计算过程。
化简分式的目的是找到分子和分母的最大公约数,并将分子和分母都除以它,使分式更简单。
例如,考虑分式12/24,我们可以找到最大公约数为12,并将分子和分母都除以12,得到1/2、这样,原分式就被化简为最简分式。
2.找到分子和分母的公因式在一些分式中,分子和分母可能有一个或多个公因式。
我们可以通过找到它们来简化计算。
例如,考虑分式16/24,我们可以发现分子和分母都可以被2整除。
我们可以将16除以2得到8,24除以2得到12,从而得到化简后的分式8/12、然后,我们可以继续找到8和12的最大公约数,并将它们化简为最简分式。
3.交换分子和分母的位置有时候,分式的分子和分母的位置可以互换。
我们可以利用这个性质来简化计算。
例如,考虑分式1/4,我们可以将分子和分母互换,得到4/1、然后,我们可以将4除以1得到4,从而得到最简分式44.将分式转化为小数形式有时候,将分式转化为小数形式可以更便于计算。
我们可以通过将分子除以分母来得到分数的小数形式。
例如,考虑分式3/5,我们可以将3除以5得到0.6、这样,我们就得到了分式的小数形式。
5.使用乘法和除法的性质在进行分式求值时,我们可以利用乘法和除法的性质来简化计算。
例如,考虑分式(2/3)*(4/5),我们可以将分子和分母相乘得到8/15、同样的,如果我们考虑分式(2/3)/(4/5),我们可以将分子乘以分母的倒数得到(2/3)*(5/4),然后进行乘法操作得到10/12,最后化简为5/66.使用加法和减法的性质在进行分式求值时,我们还可以利用加法和减法的性质来简化计算。
例如,考虑分式(2/3)+(4/5),我们可以找到两个分数的公共分母,然后将分子相加得到一个新的分数作为结果。
分式化简解题技巧分式化简解题技巧在数学中,我们经常会遇到需要将分式进行化简的情况。
分式化简解题是一项基础而重要的技能,本文将介绍几种常用的分式化简解题技巧,帮助您轻松解决分式化简问题。
1. 约分•当分式包含了公因子时,我们可以利用约分技巧简化分式。
将分子和分母的公因子约去,得到一个更简化的分式。
•运用因式分解和最大公约数等知识,可以轻松找到公因子并进行约分。
2. 通分•通分是将两个分式的分母化为相同的多项式的过程。
通分后,我们可以进行更方便的运算和化简。
•通分的关键是找到两个分式的最小公倍数,并将分子和分母分别乘以合适的倍数进行乘法运算。
3. 倒数•若一个分式的分母和分子互换位置,得到的新分式称为原分式的倒数。
倒数的特点是分子与分母互换。
•在分式化简解题中,可以利用倒数的性质,将一个复杂的分式化简为其倒数的倒数,从而简化运算过程。
4. 分子分母提取公因式•当分子和分母都是多项式,并且具有相同的因子时,可以将公因式提取出来,从而简化分式。
•对分子和分母进行因式分解,并将公因子约去,得到一个更简化的分式。
5. 分子分母的展开与合并•在一些特殊情况下,我们可以将分子和分母进行展开,然后合并相同的项,得到一个更简化的分式。
•运用分配律和合并同类项等运算法则,可以将复杂的分式化简为简单的形式。
6. 综合运用多种技巧•同时运用以上几种技巧,根据具体情况灵活应用,可以更高效地解决各种分式化简问题。
•综合运用不同的技巧,可以将分式化简问题转化为更简单的形式,从而更容易解决。
以上是几种常用的分式化简解题技巧。
掌握这些技巧,相信您已经能够在分式化简解题中游刃有余。
不同的题目可能需要不同的技巧,多加练习和思考,相信您将能够灵活应用这些技巧,解决更复杂的分式化简问题。
分式化简的解题思路及方法分式化简是代数学习中常见的问题,正确化简分式可以简化计算过程,提高求解效率。
本文将介绍分式化简的解题思路及方法,帮助读者更好地掌握这一技能。
下面是本店铺为大家精心编写的5篇《分式化简的解题思路及方法》,供大家借鉴与参考,希望对大家有所帮助。
《分式化简的解题思路及方法》篇1一、分式化简的解题思路分式化简的解题思路主要包括以下几个方面:1. 熟悉分式的基本形式:分式通常写成 $frac{a}{b}$ 的形式,其中 $a$ 和 $b$ 都是代数式。
要化简分式,需要先将其转化为这种基本形式。
2. 确定公因式:在分式中,如果有公共的因子,可以先提出来,这样可以简化分式的形式。
3. 利用分式性质:分式具有一些特殊的性质,如分子分母同乘以一个数或一个代数式,分式的值不变。
利用这些性质,可以对分式进行化简。
4. 运用运算法则:分式的化简也需要运用代数运算法则,如合并同类项、分配律、结合律等。
二、分式化简的方法分式化简的方法主要有以下几种:1. 提取公因式法:这种方法是指在分式中提取公共的因子,将分式化简为最简形式。
例如,将 $frac{2x+4y}{x+2y}$ 化简为$frac{2(x+2y)}{x+2y}$,再进一步化简为 $2$。
2. 拆分分式法:这种方法是指将分式拆分成两个或多个分式,以便更好地提取公因式或运用运算法则。
例如,将$frac{x+y}{x-y}$ 拆分成 $frac{x+y}{x-y} cdot frac{x+y}{x+y} = frac{x^2+2xy+y^2}{x^2-y^2}$。
3. 合并同类项法:这种方法是指将分式中的同类项合并在一起,从而简化分式的形式。
例如,将 $frac{3x+2y}{x+y}$ 化简为$frac{3x+2y}{x+y} cdot frac{x+y}{x+y} =frac{3x^2+2xy+2xy+2y^2}{x^2+2xy+y^2} =frac{3x^2+4xy+2y^2}{x^2+2xy+y^2}$。
分式化简求值分式化简求值是数学中一个非常重要的概念,它涉及到分数的加减法、乘除法以及约分等运算。
在解决一些数学问题时,我们需要先将分式进行化简,然后再求其值。
下面将就分式化简求值的原理、方法、注意事项以及例题进行详细阐述。
一、分式化简的原理分式化简的原理很简单,就是通过约分、通分等手段,将分式转化为一个标准形式,便于我们进行后续的运算或比较。
其中,约分是通过分子、分母的公约数来简化分式,通分则是将分母不同的几个分式化为相同的分母,从而便于比较。
二、分式化简的方法1. 约分 约分是将分式化为最简形式的一种方法,其基本思路是找到分子和分母的最大公约数,将其约去。
例如,将6a 12a 12a6a 约分成a 2a 2aa 。
2. 通分 通分是将几个分式化为相同分母的一种方法,其基本思路是找到几个分式的最简公分母,将其乘上适当的倍数。
例如,将2a 3b 3b2a 和4b 5c 5c4b 通分为10ab 15bc 15bc10ab 和6bc 15bc 15bc6bc 。
3. 分解因式 分解因式是将一个多项式化为几个整式的积的形式,从而便于我们进行分式的运算。
例如,将x 2−4x2−4分解因式为(x +2)(x −2)(x+2)(x−2)。
4. 分子、分母的变形 有时候,我们需要通过改变分子或分母的形式来简化分式。
例如,将x+y x−y x−yx+y 变形为x+y x−y =x 2−y 2x−y =x +y x−yx+y=x−yx2−y2=x+y 。
三、分式化简的注意事项1.分式化简时要注意不能改变原式的值,即化简后的结果应该是最简形式。
2. 在进行通分时,要选择好公分母,尽量避免出现复杂的多项式或根式。
3.在进行约分时,要注意分子、分母的公约数是否互质,如果互质则可以直接约去,否则需要通过其他方法进行化简。
4.在进行分子、分母的变形时,要注意变形后的形式是否比原式更加简洁,如果更加复杂则不建议使用。
四、例题解析【例1】化简下列分式: (1)6x9y 9y6x; (2)8b23a3a8b2; (3)x2−y2x−yx−yx2−y2;(4)x 2−4x−2x−2x2−4。
分式运算的几种技巧分式运算是数学中常见的一种运算形式,也是解决实际问题中经常使用的一种方法。
在进行分式运算时,我们可以运用一些技巧来简化运算,提高计算效率。
下面将介绍几种常用的分式运算技巧。
1.化简分式化简分式是指将分式的分子和分母进行因式分解,然后约去分子和分母中的公因式。
这样可以使分式的形式变得更简单,计算也更方便。
例如,对于分式$\dfrac{4x^2}{8x^3}$,我们可以将分子和分母都除以$4x^2$,得到$\dfrac{1}{2x}$。
2.扩展分式扩展分式是指将分数表达式进行相乘或相除,以得到更大的分子或分母。
这种方法在化简有理函数、做分式方程的分母有理化等问题中经常使用。
例如,对于分数$\dfrac{1}{2}$,如果要得到一个分子为3的分式,我们可以将$\dfrac{1}{2}$扩展为$\dfrac{3}{6}$。
3.分解分式分解分式是指将分式分解为其它分式的和或差。
这种方法在化简复杂的分式、分数的加减运算等问题中非常有用。
例如,对于分式$\dfrac{3x+6}{2x+4}$,我们可以将其分解为$\dfrac{3(x+2)}{2(x+2)}$,然后约去分子和分母中的公因式,得到$\dfrac{3}{2}$。
4.分数的合并与拆分分数的合并与拆分是指将多个分数合并成一个分数,或者将一个分数拆分成多个分数。
这种方法在分数的加减运算中经常使用。
例如,对于两个分数$\dfrac{2}{3}$和$\dfrac{5}{6}$,如果要将它们合并成一个分数,我们可以找到它们的最小公倍数为6,然后将分子相加得到$\dfrac{2}{3}+\dfrac{5}{6}=\dfrac{4}{6}+\dfrac{5}{6}=\dfrac{9}{6}$。
如果要将一个分数拆分成多个分数,我们可以找到它们的最大公约数,然后将分子和分母同时除以最大公约数。
5.分式的通分通分是指将两个或多个分母不同的分式的分母进行相乘,使它们的分母相同。
专题训练(六) 分式化简求值的四种技巧► 类型一 整体代入,求分式的值1.如果a -b =12,那么代数式(a -b 2a )·a a +b的值是( ) A .-2 B .2 C .-12 D.122.已知a +b =3,ab =1,则a b +b a 的值等于________.3. 已知x y =3,求x 2-y 2xy ÷2(x -y )2xy -y 2的值. 4.已知a 2+3a -2=0,求代数式⎝ ⎛⎭⎪⎫3a 2-9+1a +3÷a 2a -3的值. ► 类型二 根据分式的基本性质巧变形,求分式的值5.2019·南充已知1x -1y =3,则代数式2x +3xy -2y x -xy -y的值是( ) A .-72 B .-112 C.92 D.346.已知a -1a =1,则a 2+1a 2的值等于( )A.13B.12 C .2 D .37.已知x 2+5xy +y 2=0(x ≠0,y ≠0),则代数式y x +x y 的值等于________.8.已知a +1a =5,求a 2a 4+a 2+1的值.9. 已知1x -1y =3,求5x +xy -5y x -xy -y的值. ► 类型三 巧设参数求分式的值10.已知m n =53,则m m +n +n m -n -n 2m 2-n 2=( ) A.2316 B.3513 C.2516 D .-131211. 已知x 4=y 5=z 6,则2x -3y +4z3z =________________________________________________________________________.12.已知实数x ,y 满足x ∶y =1∶2,求3x -y x +y的值. 13.已知a b =c d =e f =57,且2b -d +5f ≠0,求2a -c +5e 2b -d +5f的值. ► 类型四 巧用分式的意义除陷阱求分式的值14.2019·遵义化简分式(a 2-3a a 2-6a +9+23-a )÷a -2a 2-9,并在2,3,4,5这四个数中取一个合适的数作为a 的值代入求值.15.2019·达州化简代数式:(3x x -1-x x +1)÷x x 2-1,再从不等式组⎩⎪⎨⎪⎧x -2(x -1)≥1,6x +10>3x +1的解集中取一个合适的整数值代入,求出代数式的值.详解详析1.[答案] D2.[答案] 73.解:由x y =3,得x =3y .x 2-y 2xy ÷2(x -y )2xy -y 2=(x -y )(x +y )xy ·y (x -y )2(x -y )2=x +y 2x. 把x =3y 代入x +y 2x ,得x +y 2x =3y +y 2×3y =4y 6y =23. 4.解:⎝ ⎛⎭⎪⎫3a 2-9+1a +3÷a 2a -3=3+a -3(a +3)(a -3)·a -3a 2=1a 2+3a . 将a 2+3a -2=0变形,得a 2+3a =2,∴原式=1a 2+3a=12. 5.[答案] D6.[答案] D“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
1、考点名称:分式的化简求值5年考试次数:327考点内容:(1) 先把分式化简后,再把分式中未知数对应的值代入求出分式的值.(2) 在化简的过程中要注意运算顺序和分式的化简.(3) 化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.规律方法:分式化简求值时需注意的问题:1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.2、考点名称:解分式方程5年考试次数:247考点内容:(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解. 所以解分式方程时,一定要检验.3、考点名称:分式方程的应用5年考试次数:151考点内容:1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力. 4、考点名称:待定系数法求一次函数解析式5年考试次数:76考点内容:待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.5、考点名称:三角形内角和定理5年考试次数:106考点内容:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角6、考点名称:全等三角形的判定5年考试次数:136考点内容:(1)判定定理1:SSS--三条边分别对应相等的两个三角形全等.(2)判定定理2:SAS--两边及其夹角分别对应相等的两个三角形全等.(3)判定定理3:ASA--两角及其夹边分别对应相等的两个三角形全等.(4)判定定理4:AAS--两角及其中一个角的对边对应相等的两个三角形全等.(5)判定定理5:HL--斜边与直角边对应相等的两个直角三角形全等.方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.7、考点名称:等腰三角形的判定5年考试次数:44考点内容:判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.简称:等边对等角说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.8、考点名称:勾股定理5年考试次数:760考点内容:(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:、及(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.9、考点名称:三角形中位线定理5年考试次数:229考点内容:(1)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半.(2)几何语言: 如图,∵点D、E分别是AB、AC的中点∴DE∥BC,DE=BC.10、考点名称:平行四边形的判定5年考试次数:102考点内容:(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.。
分式运算的常用技巧与方法分式运算是数学中常见的运算形式,掌握一些常用的技巧和方法可以帮助我们更快、更准确地进行计算。
以下是一些分式运算的常用技巧和方法:一、化简与约分:化简和约分是分式运算的基本操作,可以简化分式,使其更容易处理。
化简分式的方法有:1.因式分解:将分子和分母同除以其最大公因数,化简为最简形式的分式。
2.合并同类项:对于分子或分母中含有多项的情况,将同类项相加或相减,化简为简单的形式。
3.分解为部分分式:一些分式可以通过分解为部分分式的形式进行化简,如等式两端分别乘以一个分子时。
二、通分:当两个分式的分母不同时,我们需要将分母化为相同的公分母,这个过程称为通分。
通分的方法有:1.找到两个分母的最小公倍数,在分子和分母同时乘上适当的倍数,使得两个分母相等。
2.当两个分式的分母为一次因式的幂指时,可以将较高次幂的分母分解为较低次幂的分母,再进行通分。
三、分式的加减运算:分式的加减运算可以通过通分和合并同类项来进行。
具体的步骤如下:1.找到两个分式的最小公倍数作为通分的分母。
2.将两个分式的分子乘以一个适当的倍数,使得它们的分母相同。
乘上的倍数可以通过最小公倍数与原分母的比值得到。
3.合并同类项,将分子进行相加或相减。
四、分式的乘除运算:分式的乘除运算可以通过相乘或相除的方式进行。
具体的步骤如下:1.乘法:将两个分式的分子相乘,分母相乘,得到新的分子和分母后化简。
2.除法:将一个分式的分子乘以另一个分式的分母,分母乘以另一个分式的分子,得到新的分子和分母后化简。
五、分式的倒数和幂运算:分式的倒数就是将分子和分母互换的操作。
分式的幂运算可以通过将分子和分母同时进行幂运算来进行。
六、一些特殊的分式运算:除了以上常见的分式运算方法,还有一些特殊的分式运算,如:1.分式的比较大小:将两个分式的分子和分母相乘后进行比较。
2.分式的求值:将分式中的变量替换为具体的数值进行计算。
分式化简求值几大常用技巧在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种:1、 应用分式的基本性质例1 如果12x x+=,则2421x x x ++的值是多少? 解:由0x ≠,将待求分式的分子、分母同时除以2x ,得 原式=.22221111112131()1x x x x===-+++-.2、倒数法例2如果12x x+=,则2421x x x ++的值是多少?解:将待求分式取倒数,得42222221111()1213x x x x x x x++=++=+-=-= ∴原式=13. 3、平方法例3已知12x x +=,则221x x+的值是多少? 解:两边同时平方,得22221124,42 2.x x x x ++=∴+=-= 4、设参数法例4已知0235a b c ==≠,求分式2222323ab bc aca b c +-+-的值. 解:设235a b ck ===,则2,3,5a k b k c k ===.∴原式=222222323532566.(2)2(3)3(5)5353k k k k k k k k k k k ⨯+⨯⨯-⨯⨯==-+-- 例5已知,a b c b c a ==求a b c a b c +--+的值. 解:设a b ck b c a===,则,,.a bk b ck c ak ===∴3c ak bk k ck k k ck ==⋅=⋅⋅=, ∴31,1k k == ∴a b c == ∴原式=1.a b ca b c+-=-+5、整体代换法例6已知113,x y -=求2322x xy y x xy y+---的值. 解:将已知变形,得3,y x xy -=即3x y xy -=-∴原式=2()32(3)333.()23255x y xy xy xy xy x y xy xy xy xy -+⨯-+-===-----例: 例5. 已知a b +<0,且满足a a b ba b 2222++--=,求a b a b3313+-的值。
解:因为a a b ba b 2222++--= 所以()()a b a b +-+-=220 所以()()a b a b +-++=210 所以a b +=2或a b +=-1 由a b +<0 故有a b +=-1所以a b a b a ba a b b a b33221313+-=+-+-()()=-⨯-+-=-+-113312222()a ab b aba ab b ab=+--=---=--()()a b a b a b a b a b a b a b 2233113311331=-1评注:本题应先对已知条件a a b ba b 2222++--=进行变换和因式分解,并由a b +<0确定出a b +=-1,然后对所给代数式利用立方和公式化简,从而问题迎刃而解。
6、消元代换法例7已知1,abc =则111a b cab a bc b ac c ++=++++++ .解:∵1,abc =∴1,c ab= ∴原式=111111a b ab ab a b ab b a ab ab++++⋅++⋅++1111a ab ab a ab a a ab =++++++++ 1 1.1ab a ab a ++==++ 7、拆项法例8若0,a b c ++=求111111()()()3a b c b c a c a b++++++的值.解:原式=111111()1()1()1a b c bcacab⎡⎤⎡⎤⎡⎤=++++++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦111111111()()()a b c a b c a b c a b c =++++++++111()()a b c a b c=++++ 0a b c ++=∵∴原式=0.8、配方法例9若11a b b c -=-=求2221a b c ab ac bc++---的值.解:由11a b b c -=-=得2a c -=. ∴2222a b c ab ac b ++---2221()()()2a b b c a c ⎡⎤=-+-+-⎣⎦ 11202=⨯= ∴原式=16.化简求值切入点介绍解题的切入点是解题的重要方向,是解题的有效钥匙。
分式求值有哪些切入点呢?下面本文结合例题归纳六个求分式的值的常见切入点,供同学们借鉴:切入点一:“运算符号”点拨:对于两个分母互为相反数的分式相加减,只须把其中一个分式的分母的运算符号提出来,即可化成同分母分式进行相加减。
例1:求ab a b a b 24222-+-解:原式=b a a b a b ---24222=ba ab --2422=b a b a ---2422=)2()2)(2(b a b a b a --+-=)2(b a +-=b a --2评注:我们在求解异分母分式相加减时,先要仔细观察这两个分式的分母是否互为相反数。
若互为相反数,则可以通过改变运算符号来化成同分母分式,从而避免盲目通分带来的繁琐。
切入点二:“常用数学运算公式”点拨:在求分式的值时,有些数学运算公式直接应用难以奏效,这时,需要对这些数学公式进行变形应用。
例2:若0132=+-a a ,则331aa +的值为______ 解:依题意知,0≠a ,由0132=+-a a 得a a 312=+,对此方程两边同时除以a 得31=+aa ∴18)33(3]3)1)[(1()11)(1(1222233=-⨯=-++=+-+=+a a a a a a a a a a评注:在求分式的值时,要高度重视以下这些经过变形后的公式的应用:①))((22b a b a b a -+=- ②ab b a ab b a b a 2)(2)(2222+-=-+=+ ③)(3)(]3))[(())((322233b a ab b a ab b a b a b ab a b a b a +-+=-++=+-+=+ ④)(3)(]3))[(())((322233b a ab b a ab b a b a b ab a b a b a -+-=+--=++-=- ⑤])()[(4122b a b a ab --+=切入点三:“分式的分子或分母”点拨:对于分子或分母含有比较繁杂多项式的分式求值,往往需要对这些多项式进行分解因式变形处理,然后再代题设条件式进行求值。
例3:已知5,3-==+xy y x ,求2222223xy y x y xy x +++的值。
解:xy y x y x xy y x y x xyy x y xy x +=+++=+++)2())(2(2232222 ∵5,3-==+xy y x ∴原式=5353-=- 评注:分解因式的方法是打开分式求值大门的有效钥匙,也是实现分式约分化简的重要工具。
像本题先利用十字相乘法对分子分解因式,利用提公因式法对分母分解因式,然后约去相同的因式,再代题设条件式求值,从而化繁为简。
切入点四:“原分式中的分子和分母的位置”点拨:对于那些分母比分子含有更繁杂代数式的分式,倘若直接求值,则难以求解。
但是,我们可以先从其倒数形式入手,然后再对所求得的值取其倒数,则可以把问题简单化。
例4:已知3112=++x x x ,则1242++x x x 的值为______ 解:依题意知,0≠x ,由3112=++x x x 得,312=++x x x ,即311=++x x 从而得21=+x x ∴3121)1(1112222224=-=-+=++=++x x x x x x x 故311242=++x x x评注:取倒数思想是处理那些分母比分子含有更繁杂代数式的分式求值问题的重要法宝。
像本题利用取倒数思想巧变原分式中的分子和分母的位置,从而化难为易。
切入点五:“题设条件式”点拨:当题设条件式难以直接代入求值时,不妨对其进行等价变换,也许可以找到解题钥匙。
例5:已知323=-y x ,则xy xy xyy x 69732-+--的值为______ 解:由323=-yx 得xy x y 323=-,则xy y x 332-=- ∴4116473337)23(33269732-=-=+⨯--=+---=-+--xy xy xy xy xy xy xy x y xy y x x y xy xy y x评注:等价变换思想是沟通已知条件和未知结论的重要桥梁,是恒等变形的充分体现。
像本题通过对题设条件式作等价变换,找到重要解题条件“xy x y 323=-”和“xy y x 332-=-”,然后作代换处理,从而快速求值。
切入点六:“分式中的常数值”点拨:当题设条件式的值和所要求解的分式的常数相同时,应注意考虑是否可以作整体代入变形求解,以便更快找到解题的突破口。
例6:设1=abc ,求111++++++++c ac cb bc b a ab a 的值 解:∵1=abc∴原式=11++++++++c ac cb bc b abc a ab a =1111++++++++c ac c b bc b bc b =abc c ac c b bc b ++++++11=ab a b bc b ++++++1111 =ab abc a abc b bc b ++++++11=b bc bcb bc b ++++++111 =111=++++b bc bcb评注:整体代入变形是分式求值的重要策略。
像本题紧扣“1=abc ”,多次作整体代入处理,先繁后简,逐项通分,最后顺利得到分式的值。
综上可见,找准切入点,灵活变形可以巧妙求解分式的值。
所以,当你遇到分式求值题找不到解题方向时,不妨找准切入点,对原分式变一变,也许分式求值思路现。