山东省莒县中考数学模拟测试试题(一)
- 格式:doc
- 大小:462.00 KB
- 文档页数:7
山东省日照市莒县中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】如图所示的几何体是由五个小正方体组合而成的,它的主视图是()【答案】A【解析】试题解析:从正面看得到从左往右3列正方形的个数依次为1,1,2,故选A考点:简单几何体的三视图.【题文】化简(-a2)3的结果是()A.-a5 B.a5 C.-a6 D.a6【答案】C.【解析】试题解析:(-a2)3=(-1)3(a2)3=-a6.故选C.考点:积的乘方与幂的乘方.【题文】某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,劳动时间(小时)3456人数112评卷人得分1以下说法正确的是()A.中位数是5,平均数是3.6B.众数是5,平均数是4.6C.中位数是4,平均数是3.6D.众数是2,平均数是4.6【答案】B.【解析】试题解析:这组数据中5出现的次数最多,则众数为5,∵共有5个人,∴第3个人的劳动时间为中位数,∴中位数为:5,平均数为=4.6;故选B.考点:1.众数;2.中位数;3.平均数.【题文】不等式组的解集在数轴上表示为()【答案】B.【解析】试题解析:由①得,x<0;由②得,x≤1,故此不等式组的解集为:x<0,在数轴上表示为:故选B.考点:在数轴上表示不等式组的解集【题文】将直线y=-2x+3向上平移2个单位长度,得到一次函数的解析式为()A.y=-2x+1 B.y=-2x+5 C.y=4x+3 D.y=-2x+2 【答案】B.【解析】试题解析:由“上加下减”的原则可知,把直线y=-2x+3向上平移2个单位长度后所得直线的解析式为:y=-2x+3+2,即y=-2x+5.故选B.考点:一次函数的图象与几何变换.【题文】如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(2,0),则点C的坐标为()A(2,2) B.(1,2) C.(,2) D.(2,1)【答案】A.【解析】试题解析:∵∠OAB=∠OCD=90°,CO=CD,Rt△OAB与Rt△OCD是位似图形,点B的坐标为(2,0),∴BO=2,则AO=AB=,∴A(1,1),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(2,2).故选A.考点:位似变换.【题文】某县为大力推进义务教育均衡发展,加强学校“信息化”建设,计划用三年时间对全县学校的信息化设施和设备进行全面改造和更新.2016年县政府已投资2.5亿元人民币,若每年投资的增长率相同,预设2018年投资3.6亿元人民币,那么每年投资的增长率为()A.20%、-220% B.40% C.-220% D.20% 【答案】D.【解析】试题解析:设每年投资的增长率为x,根据题意,得:2.5(1+x)2=3.6,解得:x1=0.2=20%,x2=-2.2(舍去),故每年投资的增长率为为20%.故选D.考点:一元二次方程的实际应用.【题文】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.-4 B.4 C.-2 D.2 【答案】A.【解析】试题解析:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(-2n,2m),∴k=-2n2m=-4mn=-4.故选A.考点:反比例函数图象上点的坐标特征.【题文】已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()【答案】C.【解析】试题解析:A、设圆的半径是x,圆切AC于E,切BC于D,切AB于F,如图(1)同样得到正方形OECD,AE=AF ,BD=BF,则a-x+b-x=c,求出x=,故本选项错误;B、设圆切AB于F,圆的半径是y,连接OF,如图(2),则△BCA∽△OFA,∴,∴,解得:y=,故本选项错误;C、连接OE、OD,∵AC、BC分别切圆O于E、D,∴∠OEC=∠ODC=∠C=90°,∵OE=OD,∴四边形OECD是正方形,∴OE=EC=CD=OD,设圆O的半径是r,∵OE∥BC,∴∠AOE=∠B,∵∠AEO=∠ODB,∴△ODB∽△AEO,∴,,解得:r=,故本选项正确;从上至下三个切点依次为D,E,F;并设圆的半径为x;容易知道BD=BF,所以AD=BD-BA=BF-BA=a+x-c;又∵b-x=AE=AD=a+x-c;所以x=,故本选项错误.故选C.考点:1.正方形的性质和判定,2.切线的性质,3.全等三角形的性质和判定,4.三角形的内切圆与内心【题文】在同一平面直角坐标系中,函数y=ax2+bx(a≠0)与y=bx+a(b≠0)的图象可能是()【答案l【题文】如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1,C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2、B1B2、C1C2、D1D2=A1B1,…,依次规律继续下去,则正方形AnBnCnDn的面积为()A. B.()na2 C.()n-1a2 D.()na2 【答案】D.【解析】试题解析:在Rt△A1BB1中,由勾股定理可知;A1B12=A1B2+B1B2=(a)2+(a)2=a2,即正方形A1B1C1D1的面积=a2;在Rt△A2B1B2中,由勾股定理可知:A2B22=A2B12+B2B12=(×a)2+(×a)2=()2a2;即正方形A2B2C2D2的面积=()2a2;…∴正方形AnBnCnDn的面积=()na2.故选D.考点:规律型:图形变化类.【题文】分解因式:m2n-2mn+n=.【答案】n(m-1)2【解析】试题解析:原式=n(m2-2m+1)=n(m-1)2.考点:提公因式法与公式法的综合运用.【题文】已知=,则=______.【答案】.【解析】试题解析l∴C点的坐标是(-3,3),∴当双曲线y=经过点(-1,1)时,k=-1;当双曲线y=经过点(-3,3)时,k=-9,因而-9≤k≤-1.考点:反比例函数.【题文】如图,在平面直角坐标系中,抛物线y=2经过平移得到抛物线y=-3x,其对称轴与两段抛物线所围成的阴影部分的面积为.【答案】.【解析】试题解析:如图,∵y=x2-3x=(x-3)2-,∴平移后抛物线的顶点坐标为(3,-),对称轴为直线x=3,当x=3时,y=×32=,∴平移后阴影部分的面积等于如图三角形的面积,×(+)×3=.考点:二次函数图象与几何变换.【题文】(1)计算:2sin45°-+(-2016)0(2)先化简,再求值:(+1)÷,其中a是不等式3a+7>1的负整数解.【答案】(1)+2;(2)-2.试题分析:(1)原式利用特殊角的三角函数值,二次根式性质,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式的负整数解确定出a的值,代入计算即可求出值.试题解析:(1)原式=2×-2+3+1=+2;(2)原式===a-1,不等式3a+7>1,得到a>-2,∵a为负整数,∴a=-1,则原式=-1-1=-2.考点:1.实数的运算;2.分式的化简;3.解一元一次不等式.【题文】为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.【答案】(1)500;90°;(2)380;(3)C、D两个厂家;(4).试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)==.考点:1.条形统计图;2.扇形统计图;3. 树状图法.【题文】如图,AB分别是⊙O的直径,AC是弦,DC是⊙O的切线,C为切点,AD⊥DC于点D.(1)已知∠ACD=a,求∠AOC的大小;(2)求证:AC2=AB·AD.【答案】(1)2α;(2)证明见解析.【解析】试题分析:(1)由CD是⊙O的切线得到∠OCD=90°,即∠ACD+∠ACO=90°,利用OC=OA得到∠ACO=∠CAO ,然后利用三角形的内角和即可证明题目的结论;(2)如图,连接BC.由AB是直径得到∠ACB=90°,然后利用已知条件可以证明在Rt△ACD∽Rt△ABC,接着利用相似三角形的性质即可解决问题.试题解析:(1)∵CD是⊙O的切线,∴∠OCD=90°,即∠ACD+∠ACO=90°,①∵OC=OA,∴∠ACO=∠CAO,∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,两边除以2得:∠AOC+∠ACO=90°,②由①,②,得:∠ACD-∠AOC=0,即∠AOC=2∠ACD=2α;(2)如图,连接BC.∵AB是直径,∴∠ACB=90°,在Rt△ACD与Rt△ABC中,∵∠AOC=2∠B,∴∠B=∠ACD,∴Rt△ACD∽Rt△ABC,∴,即AC2=AB·AD.考点:切线性质.【题文】如图,矩形纸片ABCD,AB=,对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN 交BC于点G.(1)求证:∠ABM=30°;(2)求证:△BMG是等边三角形;(3)若P为线段BM上一动点,求PN+PG的最小值.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)由对折,判断出BN垂直平分MG,通过计算即可;(2)由(1)∠ABM=∠NBM=GBN=30°,得出∠MBG=60°,即可;(3)先计算出BG=BM=2,再判断出点N与点A关于直线BM对称,得到PN+PG的最小值为AG,计算即可.试题解析:(1)∵对折AD与BC重合,∴点E是AB的中点,∴点N是MG的中点,∵∠BNM=∠A=90°,∴BN垂直平分MG,∴BM=BG,∴∠GBN=∠MBN,由翻折的性质,∠ABM=∠NBM,∴∠ABM=∠NBM=∠GBN=×90°=30°,∴∠MBG=60°;(2)由(1)知,∠ABM=∠NBM=GBN=30°,∴∠MBG=60°,∵BM=BG,∴△BMG为等边三角形,(3)如图,连接PN,PA,PG,∵AB=,∠ABM=30°,∴BM=2,∴BG=BM=2,∴由折叠的性质知,点N与点A关于直线BM对称,∴PN=PA,∴PN+PG的最小值为AG,∵AG=,∴PN+PG的最小值为.考点:四边形综合题【题文】阅读材料:我们知道|x|=,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=0,分别求得x=-1,x=2(称-1,2分别为|x+1|与|x-2|的零点值),在实数范围内,零点值x=-1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)当x<-1时,原式=-(x+1)-(x-2)=-2x+1;(2)当-1≤x<2时,原式=x+1-(x-2)=3;(3)当x≥2时,原式=x+1+x-2=2x-1.综上所述,原式=学以致用:(Ⅰ)分别求出|x+3|和|x-1|的零点值;(Ⅱ)化简代数式|x+3|+|x-1|;拓展应用:(Ⅲ)求函数y=|x+3|+|x-1|(-3≤x≤3)的最大值和最小值.【答案】(1)零点值分别为-3和1;(2);(3)最大值是8和最小值是4.【解析】试题分析:(Ⅰ)阅读材料,根据零点值的求法,即绝对值里面的代数式等于0,即可解答;(Ⅱ)根据阅读材料中,化简带绝对值的代数式的方法,根据x的取值范围,分为三种情况,根据绝对值的性质解答即可;(Ⅲ)分x<-3、-3≤x≤1、x>1分别化简,结合x的取值范围确定代数式值的范围,从而求出函数的最值.试题解析:(Ⅰ)令x+3=0和x-1=0,分别求得x=-3,x=1,所以|x+3|和|x-1|的零点值分别为-3和1;(Ⅱ)在实范围内,零点值x=-3和x=1可将全体实数分成不重复且不遗漏的如下3种情况:(1)当x<-3时,原式=-(x+3)-(x-1)=-2x-2;(2)当-3≤x<1时,原式=(x+3)-(x-1)=4;(3)当x≥1时,原式=x+3+x-1=2x+2.综上所述,原式=;(Ⅲ)由(Ⅱ)可化简函数为y=.该函数的大致图形如图所示:所以函数y=|x+3|+|x-1|(-3≤x≤3)的最大值是8和最小值是4.考点:一次函数综合题.【题文】如图,直线y=-2x+2与抛物线y=ax2+bx(a<0)相交于点A,B.双曲线y=过A、B两点,已知点B的坐标为(2,-2),点A在第二象限内,且tan∠Aoy=.(1)求双曲线和抛物线的解析式;(2)计算△AOB的面积;(3)在抛物线上是否存在点P,使△AOP的面积等于△AOB的面积?若存在,请你写出点P的坐标;若不存在,请你说明理由.【答案】(1)双曲线解析式为y=-,抛物线解析式为y=x2-3x,(2)3,(3)P(-3,18).【解析】试题分析:(1)先用待定系数法求出双曲线解析式,再用待定系数法求出抛物线解析式;(2)先求出△AOB的面积,在求出△BOC的面积即可;(3)先求出直线PB解析式为y=-4x+6,和抛物线解析式为y=x2-3x,联立方程组求解即可.试题解析:(1)∵双曲线经过点B,∴k=-4,∴双曲线解析式为y=-,∵tan∠AOy=,设A(-m,4m),∵点A 过双曲线,∴m=1或m=-1(舍),∴A(-1,4);∵抛物线过点A,B,∴,∴,∴抛物线解析式为y=x2-3x,(2)设直线y=-2x+2交于x轴于C,令y=0,∴x=1,∴OC=1,∴S△AOB=S△AOC+S△BOC=×1×4+×1×2=3,(3)存在点P(-3,18),理由:假设存在点P,使△AOP的面积等于△AOB的面积;∴点P到直线OA的距离等于点B到直线OA的距离,∴PB∥AO,∵直线AO解析式为y=-4x,∴设直线PB的解析式为y=-4x+f,∵直线PB过点B,∴-2=-4×2+f,∴f=6,∴直线PB解析式为y=-4x+6,∴,∴或(舍),P(-3,18).考点:二次函数综合题.。
山东省日照市莒县中考数学一模试卷(解析版)一、选择题(本题共12个小题,1-8题每小题3分,9-12题每小题3分,共40分)1.的倒数是()A.﹣3 B.C.3 D.2.下列计算正确的是()A. += B.x6÷x3=x2C.=2 D.a2(﹣a2)=a43.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣54.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥5.不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.6.一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是()A.B.C.D.7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.8.小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x米/分,根据题意,下面列出的方程正确的是()A. B.C.D.9.(4分)关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≤﹣且k≠0 C.k≥﹣D.k≥﹣且k≠0①若|a|=|b|,则a2=b2;②若ma2>na2,则m>n;③垂直于弦的直径平分弦;④对角线互相垂直的四边形是菱形.A.1个 B.2个 C.3个 D.4个11.(4分)如图,⊙O过点B、C,圆心O在等腰直角三角形ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.6 B.13 C. D.212.(4分)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(本题共4小题,每小题4分,共16分)13.(4分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(4,﹣2),则k的值为.14.(4分)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则BD=.15.(4分)如图,已知点A、B、C、D均在以BC为直径的圆上,AD∥BC,AC 平分∠BCD,∠ADC=120°,四边形ABCD的周长为10,则图中阴影部分的面积为.16.(4分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(填序号)三、解答题(本题共6小题,共64分)请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17.(10分)某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.(1)求抽取了多少份作品;(2)此次抽取的作品中等级为B的作品有,并补全条形统计图;(3)若该校共征集到800份作品,请估计等级为A的作品约有多少份.18.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)19.(10分)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?20.(10分)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB=,求DE的长.21.(12分)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②当DE平分∠CDB时,求证:AF=OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.22.(12分)已知:在平面直角坐标系中,抛物线交x轴于A、B 两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.(1)求抛物线的解析式及顶点D的坐标.(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.山东省日照市莒县中考数学一模试卷参考答案与试题解析一、选择题(本题共12个小题,1-8题每小题3分,9-12题每小题3分,共40分)1.的倒数是()A.﹣3 B.C.3 D.【考点】倒数.【分析】根据乘积是1的两数互为倒数,即可得出答案.【解答】解:根据题意得:﹣×(﹣3)=1,可得﹣的倒数为﹣3.故选A.【点评】本题考查了倒数的性质:乘积是1的两数互为倒数,可得出答案,属于基础题.2.下列计算正确的是()A. += B.x6÷x3=x2C.=2 D.a2(﹣a2)=a4【考点】实数的运算;同底数幂的除法;单项式乘单项式.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B、原式=x3,错误;C、原式=2,正确;D、原式=﹣a4,错误,故选C【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.3.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥【考点】函数自变量的取值范围.【分析】根据函数表达式是二次根式时,被开方数非负,可得答案.【解答】解:在函数y=中,自变量x的取值范围是x≤,故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.5.不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据一个袋子中装有3个红球和2个黄球,随机从袋子里同时摸出2个球,可以列表得出,注意重复去掉.【解答】解:∵一个袋子中装有3个红球和2个黄球,随机从袋子里同时摸出2个球,∴其中2个球的颜色相同的概率是:=.故选:D.红1红2红3黄1黄2红1﹣红1红2红1红3红1黄1红1黄2红2红2红1﹣红2红3红2黄1红2黄2红3红3红1红3红2﹣红3黄1红3黄2黄1黄1红1黄1红2黄1红3﹣黄1黄2黄2黄2红1黄2红2黄2红3黄2黄1﹣【点评】此题主要考查了列表法求概率,列出图表注意重复的(例如红1红1)去掉是解决问题的关键.7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x米/分,根据题意,下面列出的方程正确的是()A. B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据时间=路程÷速度,以及关键语“骑自行车比步行上学早到30分钟”可得出的等量关系是:小玲上学走的路程÷步行的速度﹣小玲上学走的路程÷骑车的速度=30.【解答】解:设小玲步行的平均速度为x米/分,则骑自行车的速度为4x米/分,依题意,得.故选A.【点评】考查了由实际问题抽象出分式方程,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.9.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≤﹣且k≠0 C.k≥﹣D.k≥﹣且k≠0【考点】根的判别式.【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.【解答】解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,∴△=b2﹣4ac≥0,即:9+4k≥0,解得:k≥﹣,∵关于x的一元二次方程kx2+3x﹣1=0中k≠0,则k的取值范围是k≥﹣且k≠0.故选D.【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.①若|a|=|b|,则a2=b2;②若ma2>na2,则m>n;③垂直于弦的直径平分弦;④对角线互相垂直的四边形是菱形.A.1个 B.2个 C.3个 D.4个故选B.11.如图,⊙O过点B、C,圆心O在等腰直角三角形ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.6 B.13 C. D.2【考点】垂径定理;勾股定理;等腰直角三角形.【分析】过O作OD⊥BC,由垂径定理可知BD=CD=BC,根据△ABC是等腰直角三角形可知∠ABC=45°,故△ABD也是等腰直角三角形,BD=AD,再由OA=1可求出OD的长,在Rt△OBD中利用勾股定理即可求出OB的长.【解答】解:过O作OD⊥BC,∵BC是⊙O的一条弦,且BC=6,∴BD=CD=BC=×6=3,∴OD垂直平分BC,又AB=AC,∴点A在BC的垂直平分线上,即A,O、D三点共线,∵△ABC是等腰直角三角形,∴∠ABC=45°,∴△ABD也是等腰直角三角形,∴AD=BD=3,∵OA=1,∴OD=AD﹣OA=3﹣1=2,在Rt△OBD中,OB===故选C.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c <x,继而可求得答案.【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B【点评】主要考查图象与二次函数系数之间的关系.关键是注意掌握数形结合思想的应用.二、填空题(本题共4小题,每小题4分,共16分)13.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(4,﹣2),则k的值为﹣8.【考点】反比例函数图象上点的坐标特征.【分析】根据矩形的性质和已知点A的坐标,求出点C的坐标,代入反比例函数y=,求出k,得到答案.【解答】解:点A的坐标为(4,﹣2),根据矩形的性质,点C的坐标为(﹣4,2),把(﹣4,2)代入y=,得k=﹣8.故答案为:﹣8.【点评】本题考查的是反比例函数图象上的点的坐标特征,根据矩形的性质,求出点C的坐标是解题的关键,注意:函数图象上的点的坐标满足函数解析式.14.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则BD=.【考点】平行四边形的性质;相似三角形的判定与性质.【分析】利用平行四边形的性质得出△BEF∽△DCF,进而求出DF的长,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△BEF∽△DCF,∵AE:BE=4:3,且BF=2,∴=,则=,解得:DF=,故BD=BF+DF=2+=.故答案为:.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质,得出△BEF∽△DCF是解题关键.15.如图,已知点A、B、C、D均在以BC为直径的圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】连接OA、OD,则阴影部分的面积等于梯形的面积减去三角形的面积.根据题目中的条件不难发现等边三角形AOD、AOB、COD,从而求解.【解答】解:设圆心为O,连接OA、OD.∵AD∥BC,AC平分∠BCD,∠ADC=120°,∴∠BCD=60°,∵AC平分∠BCD,∴∠ACD=30°,∴∠AOD=2∠ACD=60°,∠OAC=∠ACO=30°.∴∠BAC=90°,∴BC是直径,又∵OA=OD=OB=OC,则△AOD、△AOB、△COD都是等边三角形.∴AB=AD=CD.又∵四边形ABCD的周长为10cm,∴OB=OC=AB=AD=DC=2(cm).∴阴影部分的面积=S梯形﹣S△ABC=(2+4)×﹣×4×=3﹣2=.故答案为.【点评】此题综合考查了梯形的面积,三角形的面积以及等边三角形的判定和性质.作出辅助线构建等边三角形是解题的关键.16.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是①④(填序号)【考点】相似三角形的判定与性质;含30度角的直角三角形;翻折变换(折叠问题).【分析】由条件可得∠APE=30°,则∠PEF=∠BEF=60°,可得EF=2BE,PF=PE,EF=2BE=4EQ,从而可判断出正确的结论.【解答】解:由折叠可得PE=BE,PF=BF,∠PEF=∠BEF,∠EFB=∠EFP,∵AE=AB,∴BE=PE=2AE,∴∠APE=30°,∴∠PEF=∠BEF=60°,∴∠EFB=∠EFP=30°,∴EF=2BE,PF=PE,∴①正确,②不正确;又∵EF⊥BP,∴EF=2BE=4EQ,∴③不正确;又∵PF=BF,∠BFP=2∠EFP=60°,∴△PBF为等边三角形,∴④正确;所以正确的为①④,故答案为:①④.【点评】本题主要考查矩形的性质和轴对称的性质、等边三角形的判定、直角三角形的性质等知识,综合性较强,掌握直角三角形中30°角所对的直角边是斜边的一半是解题的关键.三、解答题(本题共6小题,共64分)请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17.(10分)(2014•吉林)某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.(1)求抽取了多少份作品;(2)此次抽取的作品中等级为B的作品有48,并补全条形统计图;(3)若该校共征集到800份作品,请估计等级为A的作品约有多少份.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据C的人数除以占的百分比,得到抽取作品的总份数;(2)由总份数减去其他份数,求出B的份数,补全条形统计图即可;(3)求出A占的百分比,乘以800即可得到结果.【解答】解:(1)根据题意得:30÷25%=120(份),则抽取了120份作品;(2)等级B的人数为120﹣(36+30+6)=48(份),补全统计图,如图所示:故答案为:48;(3)根据题意得:800×=240(份),则估计等级为A的作品约有240份.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.18.(10分)(2010•兰州)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)【考点】解直角三角形的应用.【分析】(1)过A作BC的垂线AD.在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt△ACD中,求出AC的长.(2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长.然后判断PC的值是否大于2米即可.【解答】解:(1)如图,作AD⊥BC于点D.Rt△ABD中,AD=ABsin45°=4×=2.在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=4≈5.6.即新传送带AC的长度约为5.6米;(2)结论:货物MNQP应挪走.解:在Rt△ABD中,BD=ABcos45°=4×=2.在Rt△ACD中,CD=ACcos30°=2.∴CB=CD﹣BD=2﹣2=2(﹣)≈2.1.∵PC=PB﹣CB≈4﹣2.1=1.9<2,∴货物MNQP应挪走.【点评】应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.在两个直角三角形有公共直角边时,先求出公共边的长是解答此类题的基本思路.19.(10分)(2014•荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;【解答】解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.【点评】本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.20.(10分)(2011•安顺)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB=,求DE的长.【考点】切线的判定与性质;勾股定理;圆周角定理;解直角三角形.【分析】(1)连接CD,由BC为直径可知CD⊥AB,又BC=AC,由等腰三角形的底边“三线合一”证明结论;(2)连接OD,则OD为△ABC的中位线,OD∥AC,已知DE⊥AC,可证DE⊥OC,证明结论;(3)连接CD,在Rt△BCD中,已知BC=18,cosB=,求得BD=6,则AD=BD=6,在Rt△ADE中,已知AD=6,cosA=cosB=,可求AE,利用勾股定理求DE.【解答】(1)证明:连接CD,∵BC为⊙O的直径,∴CD⊥AB,又∵AC=BC,∴AD=BD,即点D是AB的中点.(2)解:DE是⊙O的切线.证明:连接OD,则DO是△ABC的中位线,∴DO∥AC,又∵DE⊥AC,∴DE⊥DO即DE是⊙O的切线;(3)解:∵AC=BC,∴∠B=∠A,∴cosB=cosA=,∵cosB=,BC=18,∴BD=6,∴AD=6,∵cosA=,∴AE=2,在Rt△AED中,DE=.【点评】本题考查了切线的判定与性质,勾股定理,圆周角定理,解直角三角形的运用,关键是作辅助线,将问题转化为直角三角形,等腰三角形解题.21.(12分)(2013•包头)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②当DE平分∠CDB时,求证:AF=OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG= BG.【考点】相似形综合题.【分析】(1)利用相似三角形的性质求得EF与DF的比值,依据△CEF和△CDF 同高,则面积的比就是EF与DF的比值,据此即可求解;(2)利用三角形的外角和定理证得∠ADF=∠AFD,可以证得AD=AF,在直角△AOD中,利用勾股定理可以证得;(3)连接OE,易证OE是△BCD的中位线,然后根据△FGC是等腰直角三角形,易证△EGF∽△ECD,利用相似三角形的对应边的比相等即可证得.【解答】(1)解:∵=,∴=.∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△CEF∽△ADF,∴=,∴==,∴==;(2)证明:∵DE平分∠CDB,∴∠ODF=∠CDF,又∵AC、BD是正方形ABCD的对角线.∴∠ADO=∠FCD=45°,∠AOD=90°,OA=OD,而∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,∴∠ADF=∠AFD,∴AD=AF,在直角△AOD中,根据勾股定理得:AD==OA,∴AF=OA.(3)证明:连接OE.∵点O是正方形ABCD的对角线AC、BD的交点.∴点O是BD的中点.又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE∥CD,OE=CD,∴△OFE∽△CFD.∴==,∴=.又∵FG⊥BC,CD⊥BC,∴FG∥CD,∴△EGF∽△ECD,∴==.在直角△FGC中,∵∠GCF=45°.∴CG=GF,又∵CD=BC,∴==,∴=.∴CG=BG.【点评】本题是勾股定理、三角形的中位线定理、以及相似三角形的判定与性质的综合应用,理解正方形的性质是关键.22.(12分)(2013•呼伦贝尔)已知:在平面直角坐标系中,抛物线交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.(1)求抛物线的解析式及顶点D的坐标.(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.【考点】二次函数综合题.【分析】(1)根据二次函数的对称轴列式求出b的值,即可得到抛物线解析式,然后整理成顶点式形式,再写出顶点坐标即可;(2)令y=0解关于x 的一元二次方程求出点A 、B 的坐标,过点D 作DE ⊥y 轴于E ,然后根据△PAD 的面积为S=S 梯形AOCE ﹣S △AOP ﹣S △PDE ,列式整理,然后利用一次函数的增减性确定出最小值以及t 值;(3)过点D 作DF ⊥x 轴于F ,根据点A 、D 的坐标判断出△ADF 是等腰直角三角形,然后求出∠ADF=45°,根据二次函数的对称性可得∠BDF=∠ADF=45°,从而求出∠PDA=90°时点P 为BD 与y 轴的交点,然后求出点P 的坐标,再利用勾股定理列式求出AD 、PD ,再根据两边对应成比例夹角相等两三角形相似判断即可.【解答】解:(1)对称轴为x=﹣=﹣2,解得b=﹣1,所以,抛物线的解析式为y=﹣x 2﹣x +3,∵y=﹣x 2﹣x +3=﹣(x +2)2+4,∴顶点D 的坐标为(﹣2,4);(2)令y=0,则﹣x 2﹣x +3=0,整理得,x 2+4x ﹣12=0,解得x 1=﹣6,x 2=2,∴点A (﹣6,0),B (2,0),如图1,过点D 作DE ⊥y 轴于E ,∵0≤t ≤4,∴△PAD 的面积为S=S 梯形AOED ﹣S △AOP ﹣S △PDE ,=×(2+6)×4﹣×6t ﹣×2×(4﹣t ),=﹣2t +12,∵k=﹣2<0,∴S 随t 的增大而减小,∴t=4时,S 有最小值,最小值为﹣2×4+12=4;(3)如图2,过点D 作DF ⊥x 轴于F ,∵A(﹣6,0),D(﹣2,4),∴AF=﹣2﹣(﹣6)=4,∴AF=DF,∴△ADF是等腰直角三角形,∴∠ADF=45°,由二次函数对称性,∠BDF=∠ADF=45°,∴∠PDA=90°时点P为BD与y轴的交点,∵OF=OB=2,∴PO为△BDF的中位线,∴OP=DF=2,∴点P的坐标为(0,2),由勾股定理得,DP==2,AD=AF=4,∴==2,令x=0,则y=3,∴点C的坐标为(0,3),OC=3,∴==2,∴=,又∵∠PDA=90°,∠COA=90°,∴Rt△ADP∽Rt△AOC.【点评】本题是二次函数综合题型,主要利用了二次函数的对称轴,三角形的面积二次函数的性质,相似三角形的判定,综合题,但难度不是很大,(2)利用梯形和三角形的面积表示出△ADP的面积是解题的关键,(3)难点在于判断出点P为BD与y轴的交点.。
山东省日照市莒县2020届中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.121的算术平方根是()A. 11B. −11C. ±11D. ±1212.下列字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.3.下列运算,正确的是()A. m2−m=mB. (mn)3=mn3C. (m2)3=m6D. m6÷m2=m34.某区新教师招聘中,七位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是()A. 中位数B. 众数C. 方差D. 平均数5.某种病毒的直径约为0.000000029米,将0.000000029用科学记数法表示为()A. 2.9×10−8B. 29×10−8C. 2.9×10−9D. 29×10−96.一副直角三角板按如图所示的方式摆放,其中点C在FD的延长线上,且AB//FC,则∠CBD的度数为()A. 15°B. 20°C. 25°D. 30°7.下列命题是真命题的是()A. 如果a2=b2,则a=bB. 两边一角对应相等的两个三角形全等C. √81的算术平方根是9D. x=2,y=1是方程2x−y=3的解(m>0)的图象如图所示,则当y1>y2时,8.已知一次函数y1=kx+b(k≠0)与反比例函数y2=mx自变量x满足的条件是()A. 1<x<3B. 1≤x≤3C. x>1D. x<39.如图,在□ABCD中,∠ABC和∠BCD的平分线交边AD于点E,且BE=12,CE=5,则点A到BC的距离是()A. 125B. 6013C. 4D. 70610.如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60米到达C点,测得点B在点C的北偏东60°方向,则这段河的宽度为()A. 60(√3+1)米B. 30(√3+1)米C. (90−30√3)米D. 30(√3−1)米11.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当−1<x<3时,y>0,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤12.将正整数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应;数14与(3,4)对应,根据这一规律,数2016对应的有序数对为()A. (44,10)B. (45,10)C. (44,12)D. (45,12)二、填空题(本大题共4小题,共16.0分)13.若代数式1√x−1有意义,则x的取值范围是______________.14.如图是某几何体的三视图和相关数据,则这个几何体的侧面积是______.(结果保留π)15.小明一月底时每分钟120次,因为很快就要体育中考,所以他有意加强训练结果到三月底时每分钟已经达到180次.设二、三月份每月的平均增长率为x,根据题意列出的方程是______.(x>0,m>0)16.如图,一次函数y=kx+4的图象与反比例函数y=mx的图象交于A,B两点,与x轴,y轴分别交于C,D两点,点E为线段AB的中点,点P(2,0)是x轴上一点,连接EP.若△COD的面积是△AOB的面积的√2倍,且AB=2PE,则m的值为______.三、计算题(本大题共1小题,共10.0分)17.全面二孩政策定于2016年1月1日正式实施,武侯区某年级组队该年级部分学生进行了随机问卷调查,其中一个问题是“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有300名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“非常愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“非常满意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.四、解答题(本大题共5小题,共58.0分)18.(1)求值:2√2sin45°+(−3)2−20170×|−4|+(16)−1;(2)先化简,再求值:(3x−1−x−1)÷x−2x2−2x+1,其中x是不等式组{x−3(x−2)≥24x−2<5x−1的一个整数解.19.我市城市绿化工程招标,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,再由甲、乙合作12天,共完成总工作量的三分之二.(1)乙队单独完成这项工程需要多少天?(2)甲队施工1天需付工程款4.5万元,乙队施工一天需付工程款2万元,该工程由甲乙两队合作若干天后,再由乙队完成剩余工作,若要求完成此项工程的工程款不超过186万元,求甲、乙两队最多合作多少天?20.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作CE⊥AC交AD的延长线于点E,F为CE的中点,连结DB,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;.(3)若tan∠ABD=3时,求的值.21.如图,正方形ABCD的边长为4,点P是正方形ABCD内的一点,连结CP,将线段CP顺时针旋转90°,得到线段CQ,连结BP、DQ.(1)求证:△BCP≌△DCQ;(2)2√3判断三角形PED的形状并说明理由;(3)延长BP交直线QD于点E,若BP=PC=2√3,∠PDE=∠CDQ,求ED的长.22.如图,已知抛物线的顶点为P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求此抛物线的解析式;(2)设Q是直线BC上方该抛物线上除点P外的一点,且△BCQ与△BCP的面积相等,求点Q的坐标.-------- 答案与解析 --------1.答案:A解析:解:121的算术平方根是11,故选:A.根据算术平方根的定义求出即可.本题考查了算术平方根,能熟记算术平方根的定义是解此题的关键.2.答案:A解析:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:A.3.答案:C解析:解:(A)原式=m2−m,故A错误;(B)原式=m3n3,故B错误;(C)原式=m6,故C正确;(D)原式=m4,故D错误;故选:C.根据同底数幂的运算,及积的乘方和幂的乘方、合并同类项法则即可求出答案.本题考查同底数幂的运算、积的乘方和幂的乘方、合并同类项法则,解题的关键是熟练运用这些法则,本题属于基础题型.4.答案:A解析:[分析]根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.[详解]解:去掉一个最高分和一个最低分对中位数没有影响,故选A.[点睛]本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.5.答案:A解析:解:0.000000029=2.9×10−8.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.答案:A解析:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.先根据平行线的性质得出∠ABD的度数,进而可得出结论.解:∵AB//FC,∴∠ABD=∠EDF=45°,∴∠CBD=∠ABD−∠ABC=45°−30°=15°.故选:A.7.答案:D解析:解:A、若a2=b2,则a=b或a=−b,故本选项错误;B、两边和它们的夹角对应相等的两个三角形全等,故本选项错误;C、√81的算术平方根是3,故本选项错误;D、x=2,y=1是方程2x−y=3的解,故本选项正确;故选D.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.答案:A解析:解:当1<x<3时,y1>y2.故选:A.利用两函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.9.答案:B解析:此题主要考查了平行四边形的性质以及平行线的性质和角平分线的定义,勾股定理,三角形的面积等知识,正确把握平行四边形的性质是解题关键.根据平行四边形的性质可证明△BEC是直角三角形,利用勾股定理可求出BC的长,作EM⊥BC于M,利用三角形的面积求出EM,即可得出结论.解:∵四边形ABCD是平行四边形,∴AB//CD,AD//BC,∴∠ABC+∠BCD=180°,∵∠ABC、∠BCD的角平分线的交点E落在AD边上,∴∠EBC+∠ECB=12×180°=90°,∴∠BEC=90°,∵BE=12,CE=5,∴BC=√122+52=13,作EM⊥BC于M,如下图所示:∵S△BCE=12BE·CE=12BC·EM,∴EM=BE×CEBC =6013,∴点A到BC的距离是6013;故选B.10.答案:B解析:解:作BD⊥CA交CA的延长线于D,设BD=xm,∵∠BCA=30°,=√3x,∴CD=BDtan30∘∵∠BAD=45°,∴AD=BD=x,则√3x−x=60,=30(√3+1),解得x=60√3−1答:这段河的宽约为30(√3+1)米.故选:B.作BD⊥CA交CA的延长线于D,设BD=xm,根据正切的定义用x表示出CD、AD,根据题意列出方程,解方程即可.本题考查的是解直角三角形的应用−方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.11.答案:A解析:解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;=1,②∵对称轴x=−b2a∴2a+b=0;故正确;③∵2a+b=0,∴b=−2a,∵当x=−1时,y=a−b+c<0,∴a−(−2a)+c=3a+c<0,故错误;④根据图示知,当x=1时,二次函数有最大值;此时y=a+b+c,所以有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当−1<x<3时,y不只是大于0.故错误.故选:A.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=−1时,y=a−b+c;然后由图象确定当x取何值时,y>0.本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).12.答案:B解析:本题考查了规律型中数字的变换类,根据奇数行首位数的变化,找出变化规律“a2n−1=(2n−1)2”是关键.设第n行第一个数为a n(n为正整数),观察研究奇数行的第一个数,根据数的变换找出变换规律“a2n−1=(2n−1)2”,依此规律即可找出a45=2025,再根据数的排布方式即可得出结论.解:设第n行第一个数为a n(n为正整数),观察,发现规律:a1=1,a3=9=32,a5=25=52,…,∴a2n−1=(2n−1)2.∵当2n−1=45时,a45=452=2025,根据图中数字排列特点,发现12之后往正下方增大;32之后往正下方增大,往右减小,52之后往正下方增大,往右减小……,∵2016<2025,∴2025−2016+1=10,2016应该在其位置往右数第10个位置,所以∴数2016对应的有序数对为(45,10).故选B.13.答案:x≥0且x≠1解析:此题主要考查了二次根式和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.根据二次根式和分式有意义的条件可得x≥0,√x−1≠0,再解不等式即可.解:由题意得:x≥0,√x−1≠0,解得x≥0且x≠1.故答案为x≥0且x≠1.14.答案:60π解析:解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为6,高为8,∴圆锥的母线长为10∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×6=12π,∴圆锥的侧面积=12lr=12×12π×10=60π,故答案为60π.根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为6,高为8,利用勾股定理求得圆锥的母线长为10,代入公式求得即可.本题考查了圆锥的侧面积的计算,解题的关键是正确的理解圆锥的底面周长等于圆锥的侧面展开扇形的面积.15.答案:120(1+x)2=180解析:本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.设二、三月份每月的平均增长率为x,根据一月底及三月底每分钟达到的次数,即可得出关于x 的一元二次方程,此题得解.解:设二、三月份每月的平均增长率为x,依题意,得:120(1+x)2=180.故答案为120(1+x)2=180.16.答案:m=2或6解析:解:把y=kx+4代入y=mx ,得kx+4=mx,整理,得kx2+4x−m=0,解得x=−2±√km+4k,所以B(−2+√km+4k ,2+√km+4),A(−2−√km+4k,2−√km+4).∵一次函数y=kx+4的图象与x轴,y轴分别交于C、D两点,∴D(−4k ,0),C(0,4).∵BD 2=(−2+√km+4k +4k )2+(2+√km +4−0)2=(2+√km+4k )2+(2+√km +4)2, AC 2=(−2−√km+4k −0)2+(2−√km +4−4)2=(2+√km+4k )2+(2+√km +4)2,∴AC 2=BD 2,∴AC =BD .∵△COD 的面积是△AOB 的面积的√2倍,∴S △COD =√2S △AOB =√2(S △COD −2S △AOC ),∴12×OC ×OD =√2(12×OC ×OD −2×12×OC ×−2−√km+4k ),∴km =−2,∴B(−2+√2k ,2+√2),A(−2−√2k ,2−√2).连接AP ,BP ,过A 作x 轴垂线交x 轴于点M ,过B 作x 轴垂线交x 轴于点N ,∵点E 为线段AB 的中点,AB =2PE ,∴△ABP 是直角三角形,Rt △AMP∽Rt △PNB ,∴AM PN =MP NB ,∴√2−2+√2k −2=2+2+√2k 2+√2,∴3k 2+4k +1=0,∴k =−1或k =−13,∴m =2或6;故答案为m =2或6;联立方程组表示出A 和B 点坐标,判断AC =BD ,利用面积相等得到km =−2,连接AP ,BP ,过A 作x 轴垂线交x 轴于点M ,过B 作x 轴垂线交x 轴于点N ,由点E 为线段AB 的中点,AB =2PE ,可知△ABP 是直角三角形,证明Rt △AMP∽Rt △PNB ,利用边的关系求出k 的值,进而求出m ; 本题考查反比例函数和一次函数的图象和性质,直角三角形的性质,相似三角形的性质;能够熟练掌握函数的性质,利用相似三角形求k 的值是解题的关键. 17.答案:解:(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B 的人数=40×30%=12(人),选A 的人数=40−12−20−4=4(人)补全条形统计图为:(2)300×4+1240=120,所以估计全年级可能有120名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率=612=12.解析:(1)用选D的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B所占的百分比得到选B的人数,然后用总人数分别减去选B、C、D的人数得到选A的人数,再补全条形统计图;(2)利用样本估计总体,用300乘以样本中选A和选B所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.18.答案:解:(1)2√2sin45°+(−3)2−20170×|−4|+(16)−1=2√2×√22+9−1×4+6=2+9−4+6 =13;(2)(3x−1−x−1)÷x−2x2−2x+1=3−(x+1)(x−1)x−1÷x−2(x−1)2=3−x2+1x−1⋅(x−1)2x−2=−(x +2)(x −2)x −1⋅(x −1)2x −2=−(x +2)(x −1)=−x 2−x +2,由{x −3(x −2)≥24x −2<5x −1得,−1<x ≤2, ∵x −1≠0,x −2≠0,∴x ≠1,x ≠2,∵x 是不等式组{x −3(x −2)≥24x −2<5x −1的一个整数解, ∴x =0,当x =0时,原式=−02−0+2=2.解析:(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值可以解答本题;(2)先化简题目中的式子,然后求出不等式组{x −3(x −2)≥24x −2<5x −1的解集,然后选取一个使得原分式有意义的整数值代入即可解答本题.本题考查分式的化简求值、实数的运算、特殊角的三角函数值、负整数指数幂、零指数幂、绝对值,解答本题的关键是明确它们各自的计算方法.19.答案:解:(1)设乙队单独完成这项工程需要x 天,依题意,得:20+1260+12x =23, 解得:x =90,经检验,x =90是原方程的解,且符合题意.答:乙队单独完成这项工程需要90天.(2)设甲、乙两队合作m 天,则乙队还需单独工作[(1−m 60−m 90)÷190]天才可完工,依题意,得:4.5m +2[m +(1−m 60−m 90)÷190]≤186,整理,得:1.5m +180≤186,解得:m ≤4.答:甲、乙两队最多合作4天.解析:(1)设乙队单独完成这项工程需要x 天,根据甲队完成的工作量+乙队完成的工作量=总工作量的三分之二,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设甲、乙两队合作m 天,则乙队还需单独工作[(1−m 60−m 90)÷190]天才可完工,根据总工程款=4.5×甲队工作时间+2×乙队工作时间结合工程款不超过186万元,即可得出关于m 的一元一次不等式,解之取其最大值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.20.答案:解:(1)∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠CDE=180°−90°=90°;(2)如图,连接OD,∵∠CDE=90°,F为CE的中点,∴DF=CF,∴∠FDC=∠FCD,∵OD=OC,∴∠ODC=∠OCD,∴∠FDC+∠ODC=∠FCD+∠OCD,即∠ODF=∠OCF,∵CE⊥AC,∴∠ODF=∠OCF=90°,即OD⊥DF,∴DF是⊙O的切线;(3)∵∠E=90°−∠ECD=∠DCA=∠ABD,∴tanE=tan∠DCA=tan∠ABD=3,设DE=x,则CD=3x,AD=9x,∴AC=√(3x)2+(9x)2=3√10x,.解析:本题考查了圆的切线的判定的性质,圆周角定理,锐角三角函数的定义.解题的关键是掌握圆的切线的判定方法.(1)因为对角线AC为⊙O的直径,可得∠ADC=90°,即∠CDE=90°;(2)连接OD,证明DF=CF,可得∠FDC=∠FCD,因为OD=OC,可得∠ODC=∠OCD,即∠ODF=∠OCF=90°,可得DF是⊙O的切线;(3)证明∠E=∠DCA=∠ABD,可得tan∠E=tan∠DCA=tan∠ABD=3,设DE=x,则CD=3x,AD=9x,在Rt△ADC中,求得AC的长,即可得出AC的值.DE21.答案:解:(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,{BC=CD∠BCP=∠DCQ PC=QC,∴△BCP≌△DCQ;(2)直角三角形,理由如下:∵△BCP≌△DCQ,∴∠CBP=∠CDQ,又∠CBP+∠ABP=90°,∠CDQ+∠ADE=90°,∴∠ABP=∠ADE,∴∠DEP=∠A=90°,∴三角形PED是直角三角形;(3)如图,过点P作PH⊥BC,交BC于点H,∵∠QDC+∠EDA=90°,∠ABP+∠PBC=90°,由(1)得∠QDC=∠PBC,∴∠ABP=∠EDA,∴∠DEP=∠A=90°,∵BP=PC=CQ=DQ=2√3,∠PCQ=90°,∴PQ=2√6,∵∠EDP=∠QDC=∠PBC,∠PHB=∠DEP=90°,∴△PDE∼△PBH,ED PE =2√2,∴设ED=x,∴PE=√2x,EQ=x+2√3,∴(x+2√3)2+(√2x)2=(2√6)2,解得:x=2√33,∴ED=2√33.解析:本题属于四边形综合题,主要考查了正方形的性质、三角形全等的判定和性质、相似三角形的判定与性质、勾股定理以及旋转的性质的综合应用,掌握正方形的四条边相等、四个角都是直角,旋转的性质是解题的关键.解题时注意:旋转前后的对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.(1)用SAS即可证明△BCP≌△DCQ;(2)由△BCP≌△DCQ知∠CBP=∠CDQ,根据正方形的性质进一步求得∠ABP=∠ADE,从而得到∠DEP=∠BAD=90°,由此可知三角形PED是直角三角形;(3)如图,过点P作PH⊥BC,交BC于点H,通过证明△PDE∼△PBH,再结合方程思想和勾股定理求得答案.22.答案:解:(1)∵抛物线的顶点为P(1,4),∴设y=a(x−1) 2+4(a≠0),把C(0,3)代入抛物线解析式得:a+4=3,即a=−1,则抛物线解析式为y=−(x−1) 2+4=−x 2+2x+3;(2)由B(3,0),C(0,3),得到直线BC解析式为y=−x+3,∵S △PBC =S △QBC,∴PQ//BC,过P作PQ//BC,交抛物线所得交点既为所求点Q.∵P(1,4),∴直线PQ解析式为y=−x+5.y=−x+5代入y=−x 2+2x+3得:x=1,y=4或x=2,y=3,而(1,4)与P重合,∴Q为(2,3).解析:此题属于二次函数综合题,涉及的知识有:待定系数法确定函数解析式,以及一次函数与二次函数的性质,熟练掌握待定系数法是解本题的关键.(1)设出抛物线顶点坐标,把C坐标代入求出即可;(2)由△BCQ与△BCP的面积相等,得到PQ与BC平行,①过P作PQ//BC,交抛物线于点Q,由点P的坐标可得直线PQ的解析式,然后代入二次函数解析式,解方程求出Q的坐标即可.。
山东省日照莒县联考2020届数学中考模拟试卷一、选择题1.如图,△ABC 中,BC =4,⊙P 与△ABC 的边或边的延长线相切.若⊙P 半径为2,△ABC 的面积为5,则△ABC 的周长为( )A .10B .8C .14D .132.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a (a >1),那么所得的图案与原图案相比( )A .形状不变,大小扩大到原来的a 倍B .图案向右平移了a 个单位长度C .图案向左平移了a 个单位长度,并且向下平移了a 个单位长度D .图案向右平移了a 个单位长度,并且向上平移了a 个单位长度3.如果一次函数y =2x ﹣4的图象与另一个一次函数y 1的图象关于y 轴对称,那么函数y 1的图象与x 轴的交点坐标是( ) A .(2,0)B .(﹣2,0)C .(0,﹣4)D .(0,4)4.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .5.化简211x x x x-++的结果为( ) A .2xB .1x x- C .1x x + D .1x x - 6.若点C 是线段AB 的黄金分割点,且AB =2(AC >BC ),则AC 等于( )A 1B .3CD 1或37.如图,∠AOB=50°,∠OCB=40°,则∠OAC=( )A .15B .25C .30D .408.下列运算正确的是( )A .232a a a +=B .326(a )a -=C .222(a b)a b -=- D .326(2a )4a -=-9.小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上共支出100元,则她在午餐上共支出( )A .50元B .100元C .150元D .200元 10.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或0 11.肥皂泡的泡壁厚度大约是0.0000007m ,将0.0000007用科学计数法可表示为( )A .60.710-⨯B .7710-⨯C .6710-⨯D .70.710-⨯ 12.下列计算正确的是( )A .a 3+a 4=a 7B .a 4•a 5=a 9C .4m•5m=9mD .a 3+a 3=2a 6二、填空题13.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成,根据如图所反映的规律,猜想第n 个图形中火柴棒的根数是_____(n 是正整数且n≥1).14.若37a b =,则a bb +=_______. 15.如图,将矩形OABC 置于一平面直角坐标系中,顶点A ,C 分别位于x 轴,y 轴的正半轴上,点B 的坐标为(5,6),双曲线y =kx(k≠0)在第一象限中的图象经过BC 的中点D ,与AB 交于点E ,P 为y 轴正半轴上一动点,把△OAP 沿直线AP 翻折,使点O 落在点F 处,连接FE ,若FE ∥x 轴,则点P 的坐标为___.16.某校九年级(1)班40名同学期末考试成绩统计表如下.70;④成绩的极差可能为40.其中所有正确结论的序号是______.17.如图,直线AB ,CD 分别经过线段MN 两端点,∠BMN =100°,∠MNC =70°,则AB ,CD 相交所成的锐角大小是_____.18.老师用公式()()()22221210133310S x x x ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦计算一组数据1210,,x x x ⋅⋅⋅的方差,由此可知这组数据的和是__________. 三、解答题19.第36届全国信息学冬令营在广州落下帷幕,长郡师生闪耀各大赛场,金牌数、奖牌数均稳居湖南省第一.学校拟预算7700元全部用于购买甲、乙、丙三种图书共20套奖励获奖师生,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元,设购买甲种图书x 套,乙种图书y 套,请解答下列问题:(1)请求出y 与x 的函数关系式(不需要写出自变量的取值范围); (2)若学校购买的甲、乙两种图书共14套,求甲、乙图书各多少套? (3)若学校购买的甲、乙两种图书均不少于1套,则有哪几种购买方案?20.2018年某市学业水平体育测试即将举行,某校为了解同学们的训练情况,从九年级学生中随机抽取部分学生进行了体育测试(把成绩分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题: (1)求本次抽测的学生人数;(2)求扇形图中∠α的度数,并把条形统计图补充完整;(3)在测试中甲乙、丙、丁四名同学表现非常优秀,现决定从这四名同学中任选两名给大家介绍训练经验,求恰好选中甲、乙两名同学的概率(用树状图或列表法解答).21.先化简再求值:22211221x x x x x x x ++--÷++-,其中x=()011260-20162π--︒++- 22.在平面直角坐标系xOy 中,直线y =x+1与抛物线y =ax 2+bx+3a 交于点A 和点B ,点A 在x 轴上. (1)点A 的坐标为 .(2)①用等式表示a 与b 之间的数量关系,并求抛物线的对称轴;②当图象,求a 的取值范围.23.如图,AB 为⊙O 的直径,O 过AC 的中点D ,DE 为⊙O 的切线,E 在BC 上. (1)求证:DE ⊥BC ; (2)如果DE =m ,tanC =12,请你写出求AB 长的解题思路.24.如图,在△ABF中,以AB为直径的作⊙O,∠BAF的平分线AD交⊙O于点D,AF与⊙O交于点E,过点B的切线交AF的延长线于点C(1)求证:∠FBC=∠FAD;(2)若54AEFD=,求ADBC的值.25.解不等式组:()-32421152x xx x⎧-≥⎪⎨-+<⎪⎩并把其解集在数轴上表示出来.【参考答案】*** 一、选择题13.3n+114.10 715.(0,53)或(0,15).16.①②④17.30°18.30三、解答题19.(1)y=﹣53x+18;(2)购买甲种图书6套,乙种图书8套;(3)共有三种购买方案:①购买甲种图书3套,乙种图书13套,丙种图书4套;②购买甲种图书6套,乙种图书8套,丙种图书6套;③购买甲种图书9套,乙种图书3套,丙种图书8套.【解析】【分析】(1)根据题意设购买甲种图书x套,乙种图书y套即可列出方程(2)根据题意x+y=14,在于(1)组成方程组,即可解答(3)根据题意x≥1,51813x-+≥,求出解集,再根据x为整数,即可解答【详解】(1)设购买甲种图书x套,乙种图书y套,则购买丙种图书(20﹣x﹣y)套,依题意,得:500x+400y+250(20﹣x﹣y)=7700,∴y=﹣53x+18.(2)依题意,得:145-183x yy x+=⎧⎪⎨=+⎪⎩,解得:6 {8 xy==,∴购买甲种图书6套,乙种图书8套.(3)依题意,得:151813xx≥⎧⎪⎨-+≥⎪⎩,解得:1≤x≤1015.∵x,﹣53x+18,20﹣x﹣(﹣53x+18)为整数,∴x=3,6,9.∴共有三种购买方案:①购买甲种图书3套,乙种图书13套,丙种图书4套;②购买甲种图书6套,乙种图书8套,丙种图书6套;③购买甲种图书9套,乙种图书3套,丙种图书8套.【点睛】此题考查二元一次方程组的解和一元一次不等式的应用,解题关键在于根据题意列出方程组20.(1)本次抽样测试的学生人数是400人;(2)扇形图中∠α的度数是108°;补全条形图如图见解析;(3)P(恰好选中甲、乙两位同学)=16.【解析】【分析】(1)根据B级的频数和百分比求出学生人数;(2)求出A级的百分比,360°乘百分比即为∠α的度数,根据各组人数之和等于总数求得C级人数即可补全图形;(3)根据列表法或树状图,运用概率计算公式即可得到恰好选中甲、乙两名同学的概率.【详解】(1)160÷40%=400,答:本次抽样测试的学生人数是400人;(2)120400×360°=108°,答:扇形图中∠α的度数是108°;C等级人数为:400﹣120﹣160﹣40=80(人),补全条形图如图:(3)画树状图如下:或列表如下:所以P (恰好选中甲、乙两位同学)=21126=. 【点睛】本题考查的是条形统计图和扇形统计图以及概率计算公式的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小. 21.12x -+,-1 【解析】 【分析】先把除法转化为乘法,并把分子、分母分解因式约分,再按分式的加减法化简,然后把x 化简后代入计算即可. 【详解】22211221x x x x x x x ++--÷++- =()()()2112211x xx x x x x +--⨯++-+ =122x x x x +-++=12x x x --+=12x -+,x=()011260-20162π--︒++-=11122+ =-1, 当x=-1时, 原式=1=112---+. 【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了实数的混合运算.22.(1)(﹣1,0);(2)①b =4a ,x =-2;②113a --剟或1175a 剟.【解析】 【分析】(1)令y =0,x+1=0,则A 点坐标为(﹣1,0),(2)①将(﹣1,0)代入y =ax 2+bx+3a ,可得b =4a ,由对称轴x =﹣2ba=﹣2,②设B (m ,m+1),由m+1=am 2+4am+3a ,得m =1a﹣3,AB |1a﹣2|,结合AB 的取值范围即可求解, 【详解】解:(1)令y =0,x+1=0,则A 点坐标为(﹣1,0), 故答案为(﹣1,0),(2)①将(﹣1,0)代入y =ax 2+bx+3a , ∴a ﹣b+3a =4a ﹣b =0, ∴b =4a , ∵x =﹣2ba=﹣2, ②设B (m ,m+1),AB |m+1|, ∵m+1=am 2+4am+3a , m+1=a (m+1)(m+3), ∵m≠﹣1, ∴m =1a﹣3,∴AB 1a﹣2|,∵∴|1a∴113a --剟或1175a 剟.【点睛】本题考查二次函数的图象及性质,一次函数的图象及性质,熟练掌握交点坐标的含义,不等式的解法是解题的关键.23.(1)详见解析;(2)详见解析. 【解析】 【分析】(1)证明:连结OD ,如图,先证明OD 为△ABC 的中位线得到OD ∥BC ,再根据切线的性质得到DE ⊥OD ,然后根据平行线的性质可判断DE ⊥BC ;(2)连结BD ,如图,先根据圆周角定理得到90ADB ∠=︒,再利用等腰三角形的判定得出AB BC =,接着根据正切的定义在Rt CDE △中计算出2CE DE =,在Rt △BDE 中计算出12BE DE =,然后利用OD 为△ABC 的中位线可求出OD ,从而得到圆的直径. 【详解】(1)证明:连接OD . ∵DE 为⊙O 的切线, ∴OD ⊥DE ,∵D 为AC 中点,O 为AB 中点, ∴OD 为△ABC 的中位线, ∴OD ∥BC ,∴90ODE DEC ∠∠︒== , ∴DE BC ⊥; (2)解:连接DB , ∵AB 为⊙O 的直径, ∴∠ADB =90°, ∴DB ⊥AC , ∴90CDB ∠=︒ ∵D 为AC 中点, ∴AB BC =, 在Rt △DEC 中,∵12DE m tanC =,= , ∴2tan DEEC m C== ,由勾股定理得:DC ,在Rt △DCB 中,•2BD DC tanC m ==, 由勾股定理得:52BC m = , ∴52AB BC m ==.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.24.(1)见解析;(2)5 8【解析】【分析】(1)根据等角的余角相等即可证明.(2)连接DE.证明△AED∽△BFC即可解决问题.【详解】(1)证明:∵AB是直径,∴∠ADB=90°,又∵AD平分∠BAF,∴∠BAD=∠FAD,∵BC切⊙O于B点,∴∠ABC=90°,∴∠BAD+∠ABD=∠FBC+∠ABD=90°,∴∠BAD=∠FBC,∴∠FBC=∠FDA.(2)解:连接DE.∵∠ADB=90°,AD平分∠BAF,∴△ABF是等腰三角形,∴∠ABD=∠AFD,BF=2FD,∵54 AEFD=,∴58 AEFB=,∵四边形AEDB内接于⊙O,∴∠AED+∠ABD=180°,∵∠AFD+∠CFB=180°,∵∠ABD=∠AFD,∴∠AED=∠CFB,∵∠FBC=∠FAD,∴△AED∽△BFC,∴58 AD AEBC FB==.【点睛】本题主要考查圆的切线的性质,关键在于构造辅助线,证明三角形相似,利相似比来计算. 25.−7<x ⩽1,见解析. 【解析】 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解不等式x −3(x −2)⩾4,得:x ⩽1, 解不等式52112x x -+< ,得:x>−7, 则不等式组的解集为−7<x ⩽1, 将解集表示在数轴上如下:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:一天有8.64 ×l04秒,一年如果按照365天计算,一年有多少秒?保留三个有效数字并用科学记数法表示为()A.3.1536×106 B.3.1536×107 C.3.15×106 D.3.15×107试题2:下列四个实数.其中有平方根的有()A.0个B.1个C.2个D.大于2个试题3:若a<0,则= ()A.一2a B.2a C.0 D.±2a试题4:下列给出的四个命题:()(1)若,则a>b;(2)若(3)若关于x的不等式(m一2)x>m 2―4的解集为x<m+2,则m<2(4)若a<b<0,则。
其中真命题有A.1个B.2个 C.3个D.4个试题5:二次函数的图象如图,则直线不经过()A.第一象限B.第二象限 C.第三象限D.第四象限试题6:丽丽、乐乐和倩倩都是一个班的同学.丽丽在学校(中心)的北偏东45°方向上,距学校2千米。
乐乐家与丽丽家关于学校中心对称,倩倩家与丽丽家关于学校中心的南北方向的直线轴对称,那么乐乐家和倩倩家相距约为()A.2千米 B.2.4千米 C.2.8千米 D.3.2千米试题7:△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19试题8:若一个圆锥的母线长是它的底面半径的3倍,则它的侧面展开图的圆心角为()A.180° B.135° C.120° D.90°试题9:如图,△ABC中,AB=AC,∠BAD=,且AE=AD.则∠EDC= ()A. B.C. D.试题10:若用图(1),(2),(3),(4)四幅图象分别表示变量之间的关系,请按图象所给顺序。
ED ′DB C′FCA图1某某省莒县教研室编写的2017届中考模拟测试(一)数学试题(考试时间100分钟,满分120分)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.()2--的相反数是 A.12 B.2 C.-2 D.12- 32)2(x -的结果是A.52x -B.68x -C.62x -D.58x - 3.不等式组1021x x +>⎧⎨-<⎩,的解集是A .1x >-B .3x <C .13x -<<D .31x -<<x y 21-=的自变量x 的取值X 围是A.21≤x B.21<x C.21≥x D.21>x 5.今年参观“12·12”某某冬交会的总人数约为589000人,将589000用科学记数法表示为 A .58.9×104B .5.89×105C9×1049×1066.如图1,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置.若∠AED′=40°, 则∠EFB 等于A.70° B .65° C.50°D .25°7.如图2,△ABC 中,D 、E 分别在边AB 、AC 上,DE ∥BC,BD=2AD,若DE=2,则BC= A.3 B.4 C8.如图3,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是ACD E 图2图3B CD图5A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=9009.已知一次函数y=x+b 的图象经过一、二、三象限,则b 的值可以是 A.-2 B.-1 C10.一个不透明的布袋中有分别标着数字1、2、3、4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为 A.16 B.13 C.12 D.23A.(2x+y)2B.2x+y 2C.2x 2+y 2D.2(x+y)2,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且∠A EB=600,则∠P =oooo13.如图5,在ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB于点E ,连接CE ,则阴影部分的面积是 A .33π-B .36π-C .43π-D .46π-14.如图6,O 为原点,点A 的坐标为(-1,2),将△ABO 绕点O 顺时针旋转90°后得到△CEO ,则点A 的对应点C 的坐标为A .(1,2)B .(2,1)C .(-2,1)D .(-2,-1) 二、填空题(本大题满分16分,每小题4分) 15.计算:1482-=________. 图4 ABOxy图6图7 16.分式方程xx x -=+--23123的解是_________.17.如图7,在∆ABC 中,AB =5,AC =4,点D 在边AB 上,若ACD ∠=B ∠,则AD 的长为 .18.如图8,在△ABC 中,AB=4,BC=6,∠B=600,将△ABC 沿射线BC 方向平移2个单位后得到△DEF , 连接DC ,则DC 的长为 .三、解答题(本大题满分62分) 19.(满分10分,每小题5分) (1)计算:()020153112243⎛⎫--÷-+-- ⎪⎝⎭(2)化简:22()a b ab b a a a --÷-20.(满分8分)某某中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买2个足球和5个篮球共需500元. (1)购买一个足球、一个篮球各需多少元?(2)根据某某中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个.要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?21.(满分8分)某中学九年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:成绩 频数 百分比 不及格 9 10% 及格 18 20% 良好3640%A DBF图8优秀 27 30% 合计90100%(1)请解释“随机抽取了50名男生和40名女生”的合理性;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示; (3)估计该校九年级学生体育测试成绩不及格的人数.22.(满分9分)如图9,某大楼的顶部竖有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°,沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°.已知山坡AB 的坡度为i =1︰3,AB =10米,AE =15米. (1)求点B 距水平面AE 的高度BH ; (2)求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到米.参考数据:2≈,3≈)23.(满分13分)在边长为1的正方形ABCD 中,点E 是射线BC 上一动点,AE 与BD 相交于点M ,AE 或其延长线与DC 或其延长线相交于点F ,G 是EF 的中点,连结CG . (1)如图,当点E 在BC 边上时.求证:①△ABM ≌△CBM ;②CG ⊥CM.(2)如图,当点E 在BC 的延长线上时,(1)中的结论②是否成立?请写出结论,不用证明. (3)试问当点E 运动到什么位置时,△MCE 是等腰三角形?请说明理由.MAB CDF EG ABCDEGM图9A HEB D45︒60︒24.(满分14分)如图11,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在xA(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M.交x轴于点N,问是否存在这样的点P,使得四边形ABNM为矩形?若存在,求出此时点P的坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.参考答案及评分标准一、选择题:1.C,2.B,3.C,4.A,5.B,6.A,7.D,8.C,9.D,10.B,11.A,12.C,13.A,14.B.二、填空题: 15.0,16.x=1,17.165,18.4.三、解答题:图1119.(1)解:原式=-1-8÷(-2)+1-2…(2分) (2)解:原式=()2a-b a-b a a÷…(3分) =-1+4+1-2 ………(4分) =()2a b aa a-b -⋅…(4分) =2 ………(5分) =1a-b………(5分) 20.解:(1)设购买一个足球x 元,一个篮球y 元,依题意得 …(1分)3231025500x y x y +=⎧⎨+=⎩……………(2分) 解得5080x y =⎧⎨=⎩……………(3分) 答:购买一个足球50元,一个篮球80元.……………(4分) (2)设这所中学购买z 个篮球, 依题意得 …(5分)()5096z 80z 5720-+≤……………(6分)解得2z 303≤,∵z 为整数, ∴z 最多是30 ……………(7分) 答:这所中学最多可以购买30个篮球.……………(8分)21.解:(1)∵5040250200=……………(1分) ∴随即抽取了50名男生和40名女生是合理.……………(2分)(2)答案不唯一,选择“频数”画条形统计图,选择“百分比”画扇形统计图, 只要画图正确均给分.……………(5分) (3)450×10%=45……………(7分)答:估计该校七年级学生体育测试成绩不合格的人数为45人.……………(8分)22.解:(1)∵tan ∠BAH=i 333=,∴∠BAH=300, 又∵AB=10,∴3(米),BH=5(米) ……………(3分) (2)过B 作BF ⊥CE 于F ……………(4分)在Rt △BFC 中,∠CBF=450,3,∴3∴CE=20+53……………(6分)在Rt△AED中,∠DAE=600,AE=15,∴DE=153……………(7分)∴CD=20+53-153=20-103 2.7(米)……………(8分) 答:广告牌CD的高度为米.……………(9分)23.(1)①证明:∵四边形ABCD是正方形∴AB=BC,∠ABM=∠CBM ……(2分)又∵BM=BM,∴ΔABM≌ΔCBM.……(4分)②∵ΔABM≌ΔCBM∴∠BAM=∠BCM又∵∠ECF=90º,G是EF的中点∴GC=GF,∴∠GCF=∠F ……(5分)又∵AB∥DF,∴∠BAM=∠F∴∠BCM=∠GCF……(6分)∴∠BCM+∠GCE=∠GCF+∠GCE=90º∴GC⊥CM……(7分)(2)成立……(9分)(3)①当点E在BC边上时∵∠MEC>90º,要使△MCE是等腰三角形,必须EM=EC,∴∠EMC=∠ECM∴∠AEB=2∠BCM=2∠BAE∴2∠BAE+∠BAE=90º,∴∠BAE=300∴BE=33.……(11分)②当点E在BC的延长线上时,仿①易知BE=3.……(12分)综上①②,当BE=33戓3MCE是等腰三角形.……(13分)24题:思路点拨:1、如果四边形ABPM是等腰梯形,那么AB为较长的底边,这个等腰梯形可以分割为一个矩形和两个全等的直角三角形,AB边分成的3小段,两侧的线段长线段。
日照市莒县中考模拟考试(一)姓名:_____________ 年级:____________ 学号:______________一、书面表达(共1题) 1. 假如你叫Li Ming .是个中学生.经常收听音乐节目.请你用英语给节目主持人写一篇信。
(字数70个单词左右)要点:1.你很喜欢这个节目,特别是英语歌曲;2.学习很忙,疲劳时,你会打开收音机,听这个节目;从英语歌你学到了很多单词;你最喜欢“My heart will go on”这首歌.希望得到歌词(words of the song)。
Dear Sir ,I am a middle school student,____________ D. lwh 988 @3. My little son ’s head is hurt, I had better make a telephone call. The number is____________his grandchildren to a seaside town for a holiday. The town was about a three hours train ride ____________for his grandchildren, he kept the name of the town a ____________of the town himself. ____________was at the station at that time. He helped to take care of the ____________while Mr North went back home to find out ____________he was going.Mr North was ____________to see Mr North again so soon. But she wins pleased when she understood ____________he come back. She wrote the name of the ____________on a piece of paper and sent her hushed off. Then some ____________later, she was greatly surprised to see Mr North outside ____________he had left the children.1. A. take B. give C. have D. make2. A. farther B. away C. over D. off3. A. interested B. careful C. interesting D. excited4. A. report B. present C. lesson D. secret5. A. people B. road C. wayD. name6. A. Luckily B. Surely C. Finally D. Usually7. A. his B. him C. himself D. wife8. A. Tickets B. children C. trainD. name9. A. when B. where C. howD. whether10. A. happy B. angry C. surprised D. sorry11. A. as B. because C. whyD. how12. A. friend B. town C. station D. children13.A. monthsB. weeksC. minutesD. days14. A. soon B. more C. again D. too15. A. who B. where C. whenD. whether【答案】 1—5 ABCDD 6—10AABBC 11—15CBCCB难度:中等知识点:阅读表达七、选择题(共30题)1. ---What did your son say in the letter?--- He told me that he ____________the Disney World the next day.A. will visitB. has visitedC. is going to visitD. would visit【答案】 D难度:中等知识点:动词时态2. ____________by himself.A. cryingB. playedC. readD. eats【答案】 A难度:中等知识点:非谓语动词4. ---Where are the twins?--- I saw them ____________out for a walk just now.A. goB. to goC. goneD. went【答案】 A难度:中等知识点:非谓语动词5. The Smiths moved to China ten years ago and ____________here since then.A. has livedB. was livingC. liveD. have lived【答案】 D难度:中等知识点:动词时态6. Would yon please ____________the time of the next train in the timetable for me?A. look outB. look forC. look upD.look over【答案】 C难度:中等知识点:相似、相近词比较7. Don’t drive so fast____________the girls in the talk show.A. byB. inC. toD. on【答案】 C难度:中等知识点:介词和介词短语16. If you want to keep your teeth healthy, you’d better, not eat ____________sweet a lot.A. anythingB. somethingC. nothingD. everything【答案】 D难度:中等知识点:介词和介词短语17. Taiwan is ____________island to the south of East China Sea. It’s ____________largest in China.A. a, theB. an, theC. the, /D. /, a【答案】 A难度:中等知识点:冠词18. We have done ____________from plastic and some recycling things.A. butB. andC. orD. though【答案】 A难度:中等知识点:构词法23. No one told me ____________it, so I need your help.A. how to do B, how should I do C. what to do D. what should I do【答案】 A难度:中等知识点:宾语从句24. My brother ____________out in the hospital.A. to pull itB. pulled itC. it pullingD. it pulled【答案】 D难度:中等知识点:非谓语动词26. Her son speaks good English as he ____________America for five years.A. has been inB. has been toC. has gone atD. has gone to【答案】 A难度:中等知识点:相似、相近词比较27. My mother doesn’t like doing the housework at home. She usually ____________much time shopping in the supermarkets.A. spendsB. costsC. takesD. pays【答案】 A难度:中等知识点:相似、相近词比较28. ---You’d better ____________your toys after playing, Tom.--- All right, I will.A.put on B.put out C.put off D.put away【答案】 D难度:中等知识点:相似、相近词比较29. On every piece of the paper ____________pictures of some horses.A. isB. areC. hasD. have【答案】 B难度:中等知识点:主谓一致30. Bird flu (禽流感) is a kind of serous ____________in the world today.A. diseaseB. painC. patientsD. medicine【答案】 A难度:中等知识点:相似、相近词比较。
2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A.B.C.D.2.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示.下面有四个推断:①年用水量不超过180m 1的该市居民家庭按第一档水价交费;②年用水量不超过240m 1的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150~180m 1之间;④该市居民家庭年用水量的众数约为110m 1.其中合理的是( )A .①③B .①④C .②③D .②④3.a 、b 是实数,点A (2,a )、B (3,b )在反比例函数y=﹣2x 的图象上,则( ) A .a <b <0 B .b <a <0 C .a <0<b D .b <0<a4.如图,在平行四边形ABCD 中,∠ABC 的平分线BF 交AD 于点F ,FE ∥AB .若AB=5,AD=7,BF=6,则四边形ABEF 的面积为( )A .48B .35C .30D .245.实数﹣5.22的绝对值是( )A .5.22B .﹣5.22C .±5.22D . 5.226.已知一个多边形的内角和是1080°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形7.下列因式分解正确的是( )A .22x 2x 1(x 1)+-=-B .22x 1(x 1)+=+C .()2x x 1x x 11-+=-+D .()()22x 22x 1x 1-=+- 8.下列各组数中,互为相反数的是( )A .﹣2 与2B .2与2C .3与13D .3与39.如图,函数y =﹣2x +2的图象分别与x 轴,y 轴交于A ,B 两点,点C 在第一象限,AC ⊥AB ,且AC =AB ,则点C 的坐标为( )A .(2,1)B .(1,2)C .(1,3)D .(3,1)10.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是( )A .28B .29C .30D .3111.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位C ︒:﹣6,﹣1,x ,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是( )A .方差是8B .极差是9C .众数是﹣1D .平均数是﹣112.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______.14.-3的倒数是___________15.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n+1(n 为自然数)的坐标为 (用n 表示)17.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为.18.一个圆锥的侧面展开图是半径为8 cm、圆心角为120°的扇形,则此圆锥底面圆的半径为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?20.(6分)综合与探究:如图1,抛物线y=322333x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(03.(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:①请直接写出A′的坐标(用含字母t的式子表示);②当点A′落在抛物线上时,求直线l 的运动时间t 的值,判断此时四边形A′BEF 的形状,并说明理由;(3)在(2)的条件下,探究:在直线l 的运动过程中,坐标平面内是否存在点P ,使得以P ,A′,B ,E 为顶点的四边形为矩形?若存在,请直接写出点P 的坐标; 若不存在,请说明理由.21.(6分)2019年1月,温州轨道交通1S 线正式运营,1S 线有以下4种购票方式:A .二维码过闸B .现金购票C .市名卡过闸D .银联闪付某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D 的有200人,求选择方式A 的人数.小博和小雅对A ,B ,C 三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).22.(8分)阅读材料:已知点00(,)P x y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式0021kx y b d k -+=+计算.例如:求点(2,1)P -到直线1y x =+的距离.解:因为直线1y x =+可变形为10x y -+=,其中1,1k b ==,所以点(2,1)P -到直线1y x =+的距离为:00221(2)1122111kx y bd k -+⨯--+====++.根据以上材料,求:点(1,1)P 到直线32y x =-的距离,并说明点P 与直线的位置关系;已知直线1y x =-+与3y x =-+平行,求这两条直线的距离.23.(8分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题: ①小明一共统计了 个评价;②请将图1补充完整;③图2中“差评”所占的百分比是 ;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.24.(10分)解分式方程:2322x x x+--=1 25.(10分)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足H 在半径OB 上,AH=5,CD=45,点E 在弧AD 上,射线AE 与CD 的延长线交于点F .(1)求圆O 的半径;(2)如果AE=6,求EF 的长.26.(12分)计算:(1)2162)8)3- (2)221cos60cos 45tan 603+-27.(12分)如图,已知正方形ABCD 的边长为4,点P 是AB 边上的一个动点,连接CP ,过点P 作PC 的垂线交AD 于点E ,以 PE 为边作正方形PEFG ,顶点G 在线段PC 上,对角线EG 、PF 相交于点O .(1)若AP =1,则AE = ;(2)①求证:点O 一定在△APE 的外接圆上;②当点P 从点A 运动到点B 时,点O 也随之运动,求点O 经过的路径长;(3)在点P 从点A 到点B 的运动过程中,△APE 的外接圆的圆心也随之运动,求该圆心到AB 边的距离的最大值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、A【解析】 当点F 在MD 上运动时,0≤x <2;当点F 在DA 上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.【详解】解:当点F 在MD 上运动时,0≤x <2,则:y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则:y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A.【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.2、B利用条形统计图结合中位数和中位数的定义分别分析得出答案.【详解】①由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),45×100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;②∵年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),∴0.355×100%=7%≠5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;③∵5万个数据的中间是第25000和25001的平均数,∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误;④该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,故选B.【点睛】此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键.3、A【解析】解:∵2yx=-,∴反比例函数2yx=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数2yx=-的图象上,∴a<b<0,故选A.4、D【解析】分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积.详解:∵AB∥EF,AF∥BE,∴四边形ABEF为平行四边形,∵BF平分∠ABC,∴四边形ABEF为菱形,连接AE交BF于点O,∵BF=6,BE=5,∴BO=3,EO=4,∴AE=8,则四边形ABEF的面积=6×8÷2=24,故选D.点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形.5、A【解析】根据绝对值的性质进行解答即可.【详解】实数﹣5.1的绝对值是5.1.【点睛】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.6、D【解析】根据多边形的内角和=(n ﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n ,∴(n ﹣2)•180°=1080°,解得n =8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理. 7、D【解析】直接利用提取公因式法以及公式法分解因式,进而判断即可.【详解】解:A 、2x 2x 1+-,无法直接分解因式,故此选项错误;B 、2x 1+,无法直接分解因式,故此选项错误;C 、2x x 1-+,无法直接分解因式,故此选项错误;D 、()()22x 22x 1x 1-=+-,正确. 故选:D .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.8、A【解析】根据只有符号不同的两数互为相反数,可直接判断.【详解】-2与2互为相反数,故正确;2与2相等,符号相同,故不是相反数;3与13互为倒数,故不正确;3与3相同,故不是相反数.故选:A.【点睛】此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.9、D【解析】过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.【详解】如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B (0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO 和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。
2019—2020学年日照市莒县中考模拟考试初中数学数学试卷(时刻:120分钟 分值:120分)一、选择题(此题共12小题,l 一8每题3分,9一l2每题4分,共40分)1.一天有8.64 ×l04秒,一年假如按照365天运算,一年有多少秒?保留三个有效数字并用科学记数法表示为( )(A)3.1536×106 (B)3.1536×107 (C)3.15×106 (D)3.15×1072.以下四个实数()4-22,2,23-----,.其中有平方根的有( ) (A)0个 (B)1个 (C)2个 (D)大于2个3.假设a<0,那么332a a -= ( )(A)一2a (B)2a (C)0 (D)±2a4.以下给出的四个命题:(1)假设22ac bc >,那么a>b ; (2)假设()211,12-1->>x x 则(3)假设关于x 的不等式(m 一2)x>m 2—4的解集为x<m+2,那么m<2(4)假设a<b<0,那么ab 11>。
其中真命题有( ) (A)1个 (B)2个 (C)3个 (D)4个 5.二次函数c bx ++=2ax y 的图象如图,那么直线b c x -=a c y 不通过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限6.丽丽、乐乐和倩倩差不多上一个班的同学.丽丽在学校(中心)的北偏东45°方向上,距学校2千米。
乐乐家与丽丽家关于学校中心对称,倩倩家与丽丽家关于学校中心的南北方向的直线轴对称,那么乐乐家和倩倩家相距约为( )(A)2千米 (B)2.4千米 (C)2.8千米 (D)3.2千米7.△ABC 中,AC=5,中线AD=7,那么AB 边的取值范畴是( )(A)1<AB<29 (B)4<AB<24 (C)5<AB<19 (D)9<AB<198.假设一个圆锥的母线长是它的底面半径的3倍,那么它的侧面展开图的圆心角为( )(A)180° (B)135° (C)120° (D)90°9.如图,△ABC 中,AB=AC ,∠BAD=∂,且AE=AD .那么∠EDC=〔 〕 (A) ∂21 (B) ∂31 (c) ∂41 (D) ∂3210.假设用图(1),(2),(3),(4)四幅图象分不表示变量之间的关系,请按图象所给顺序。
山东省数学中考模拟卷(1)一.选择题(共8小题,满分24分,每小题3分)1.(3分)下列实数中是无理数的为()A.0B.﹣3.6C.D.2.(3分)某球形病毒直径的约为0.000063米,将0.000063用科学记数法表示为()A.6.3×10﹣5B.6.3×10﹣4C.63×10﹣6D.63×10﹣53.(3分)下列图形是中心对称图形的是()A.B.C.D.4.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5 5.(3分)在如图所示的尺规作图中,与AD相等的线段是()A.线段AC B.线段BD C.线段DC D.线段DE6.(3分)若二次函数y=x2+bx+c的图象的对称轴是经过点(2,0)且平行于y轴的直线,且过点(5,5),则关于x的方程x2+bx+c=5的解为()A.x1=0或x2=4B.x1=1或x2=5C.x1=﹣1或x2=5D.x1=1或x2=﹣57.(3分)如图,△ABC与△DEF位似,点O为位似中心,且B为OE的中点,则△ABC 与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:58.(3分)如图,四边形ABCD是矩形,AB=4,BC=6,点O是线段BD上一动点,EF、GH过点O,EF∥AB,交AD于点E,交BC于点F,GH∥BC,交AB于点G,交DC 于点H,四边形AEOG的面积记为S,GB=a,则S关于a的函数关系图象是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)9.(3分)m2﹣=(m+)(﹣n2).10.(3分)若关于x的方程=的解为x=1,则a的值是.11.(3分)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC 相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.12.(3分)在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为.13.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y 轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=,则BN的长为.14.(3分)如图,已知点P是正方形ABCD对角线BD上一点,且AP=3,PF⊥CD于点F,PE⊥BC于点E,连结EF,则EF的长为.三.解答题(共10小题,满分78分)15.(4分)计算:(﹣)﹣1+tan60°﹣|2﹣|+(π﹣3)0﹣.16.(6分)已知x是不等式组的整数解,选取一个合适的x值,进行化简求值:(﹣)÷17.(6分)如图,已知菱形ABCD中,AB=6,∠B=60°,E是BC边上一动点,F是CD 边上一动点,且BE=CF,连接AE、AF.(1)∠EAF的度数是;(2)求证:AE=AF;(3)延长AF交BC的延长线于点G,当∠BAE=30°时,求点F到BG的距离18.(6分)某校为了更好的记录学生们在秋季运动会中精彩的瞬间,学校特意邀请了一名摄影师携带无人机来进行航拍.如图,摄影师在水平地面上点A测得无人机位置点C的仰角为53°;当摄影师迎着坡度为1:2.4的斜坡从点A走到点B时,无人机的位置恰好从点C水平飞到点D,此时,摄影师在点B测得点D的仰角为45°,其中AB=2.6米,CD=3米,无人机与水平地面之间的距离始终保持不变,且A、B、C、D四点在同一平面内,求无人机距水平地面的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈)19.(10分)“冰墩墩”和“雪容融”作为第24届北京冬奥会和冬残奥会的吉祥物深受大家喜爱.某文旅店订购“冰墩墩”和“雪容融”两种毛绒玩具,花费分别是24000元和10000元,已知“冰墩墩”毛绒玩具的订购单价是“雪容融”毛绒玩具的订购单价的1.2倍,并且订购的“冰墩墩”毛绒玩具的数量比“雪容融”毛绒玩具的数量多100件.(1)求文旅店订购的两种毛绒玩具的单价分别是多少元;(2)该文旅店计划再订购这两种毛绒玩具共200件,其中购进“雪容融”毛绒玩具的数量不超过“冰墩墩”毛线玩具的数量的,该文旅店购进“雪容融”毛绒玩具多少件时?购买两种玩具的总费用最低,最低费用是多少元?20.(8分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的表达式;(2)求△AOB的面积.21.(8分)学生社团是指学生在自愿基础上结成的各种群众性文化、艺术、学术团体.不分年级、由兴趣爱好相近的同学组成,在保证学生完成学习任务和不影响学校正常教学秩序的前提下开展各种活动.某校就学生对“篮球社团、动漫社团、文学社团和摄影社团”四个社团选择意向进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整).请根据图中信息,解答下列问题.(1)求扇形统计图中m=,并补全条形统计图;(2)已知该校有1600名学生,请估计“文学社团”共有多少人?(3)在“动漫社团”活动中,甲、乙、丙、丁四名同学表现优秀,现决定从这四名同学中任选两名参加“中学生原创动漫大赛”,请用列表或画树状图的方法求出恰好选中乙、丙两位同学的概率.22.(10分)如图,四边形ABCD内接于⊙O,BC=CD,点E在AB的延长线上,∠ECB =∠DAC.(1)求证:EC是⊙O的切线;(2)若AD=2,∠E=30°,求⊙O的半径.23.(10分)一节数学课上,张老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?(1)小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.(2)如图2,若点P是正方形ABCD外一点,P A=,PB=1,PC=,求∠APB 的度数.24.(10分)如图,在平面直角坐标系中,半径为2的⊙O与x轴分别交于点A,B,与y 轴分别交于点C,D,抛物线经过点A,B,C.点P为抛物线上一动点.(1)求抛物线的解析式;(2)若弦CE过AO的中点M,连接DE.求线段DE的长度;(3)连接PO,P A,PC,在抛物线上是否存在点P,使△POA≌△POC?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
E D ′ D BC′FCA 图1山东省莒县教研室编写的2017届中考模拟测试(一)数学试题(考试时间100分钟,满分120分)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.的相反数是A. B.2 C.-2 D.2.计算的结果是 A.B.C.D.3.不等式组的解集是A .B .C .D .4.函数的自变量的取值范围是A.B.C.D.5.今年参观“12·12”海口冬交会的总人数约为589000人,将589000用科学记数法表示为 A .58.9×104B .5.89×105C .5.89×104D .0.589×1066.如图1,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置.若∠AED′=40°, 则∠EFB 等于A.70°B.65°C.50°D.25°7.如图2,△ABC 中,D 、E 分别在边AB 、AC 上,DE ∥BC,BD=2AD,若DE=2,则BC= A.3 B.4 C.5 D.68.如图3,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=9009.已知一次函数y=x+b 的图象经过一、二、三象限,则b 的值可以是A.-2B.-1C.0D.210.一个不透明的布袋中有分别标着数字1、2、3、4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为ACD E图2图3B C D图7 图5A. B. C. D.11.x 的2倍与y 的和的平方用代数式表示为A.(2x+y)2B.2x+y 2C.2x 2+y 2D.2(x+y)212.如图4,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且∠A EB=600,则∠P =A.45oB.50oC.60oD.70o13.如图5,在ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB于点E ,连接CE ,则阴影部分的面积是A .B .C .D .14.如图6,O 为原点,点A 的坐标为(-1,2),将△ABO 绕点O 顺时针旋转90°后得到△CEO ,则点A 的对应点C 的坐标为A .(1,2)B .(2,1)C .(-2,1)D .(-2,-1) 二、填空题(本大题满分16分,每小题4分) 15.计算:=________.16.分式方程的解是_________.17.如图7,在ABC 中,AB =5,AC =4,点D 在边AB 上,若=,则AD 的长为 .18.如图8,在△ABC 中,AB=4,BC=6,∠B=600,将△ABC 沿射线BC 方向平移2个单位后得到△DEF , 连接DC ,则DC 的长为 .三、解答题(本大题满分62分)图4图6 A D BF 图819.(满分10分,每小题5分) (1)计算:(2)化简:20.(满分8分)海口中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买2个足球和5个篮球共需500元. (1)购买一个足球、一个篮球各需多少元?(2)根据海口中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个.要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?21.(满分8分)某中学九年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:成绩 频数 百分比 不及格 9 10% 及格 18 20% 良好 36 40% 优秀 27 30% 合计 90 100%(1)请解释“随机抽取了50名男生和40名女生”的合理性;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示; (3)估计该校九年级学生体育测试成绩不及格的人数.22.(满分9分)如图9,某大楼的顶部竖有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°,沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°.已知山坡AB 的坡度为i =1︰,AB =10米,AE =15米. (1)求点B 距水平面AE 的高度BH ; (2)求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)23.(满分13分)在边长为1的正方形ABCD 中,点E 是射线BC 上一动点,AE 与BD 相交于点M ,AE 或其延长线与DC 或其延长线相交于点F ,G 是EF 的中点,连结CG .图9A HEB D(1)如图10.1,当点E 在BC 边上时.求证:①△ABM ≌△CBM ;②CG ⊥CM.(2)如图10.2,当点E 在BC 的延长线上时,(1)中的结论②是否成立?请写出结论,不用证明.(3)试问当点E 运动到什么位置时,△MCE 是等腰三角形?请说明理由.24.(满分14分)如图11,把两个全等的Rt △AOB 和Rt △COD 分别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点A(1,2),过A 、C 两点的直线分别交x 轴、y 轴于点E 、F.抛物线y =ax 2+bx +c 经过O 、A 、C 三点. (1)求该抛物线的函数解析式;(2)点P 为线段OC 上一个动点,过点P 作y 轴的平行线交抛物线于点M.交x 轴于点N ,问是否存在这样的点P ,使得四边形ABNM 为矩形?若存在,求出此时点P 的坐标;若不存在,请说明理由.(3)若△AOB 沿AC 方向平移(点A 始终在线段AC 上,且不与点C 重合),△AOB 在平移过程中与△COD 重叠部分记为S.试探究S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.参考答案及评分标准一、选择题:1.C,2.B,3.C,4.A,5.B,6.A,7.D,8.C,9.D,10.B,11.A,12.C,13.A,14.B.MABCDF E图10.2G ABCDE F图10.1 GM图11二、填空题: 15.0,16.x=1,17.,18.4.三、解答题:19.(1)解:原式=-1-8(-2)+1-2…(2分) (2)解:原式=…(3分)=-1+4+1-2 ………(4分) =…(4分)=2 ………(5分) =………(5分)20.解:(1)设购买一个足球x元,一个篮球y元,依题意得…(1分)……………(2分)解得……………(3分)答:购买一个足球50元,一个篮球80元. ……………(4分)(2) 设这所中学购买z个篮球, 依题意得…(5分)……………(6分)解得,∵z为整数, ∴z最多是30 ……………(7分)答:这所中学最多可以购买30个篮球. ……………(8分)21.解:(1)∵……………(1分)∴随即抽取了50名男生和40名女生是合理. ……………(2分) (2)答案不唯一,选择“频数”画条形统计图,选择“百分比”画扇形统计图, 只要画图正确均给分. ……………(5分)(3)450×10%=45 ……………(7分)答:估计该校七年级学生体育测试成绩不合格的人数为45人. ……………(8分) 22.解:(1)∵tan∠BAH=i=,∴∠BAH=300,又∵AB=10,∴AH=5(米),BH=5(米)……………(3分) (2)过B作BF⊥CE于F ……………(4分) 在Rt△BFC中,∠CBF=450,BF=15+5,∴CF=15+5∴CE=20+5……………(6分) 在Rt△AED中,∠DAE=600,AE=15,∴DE=15……………(7分)∴CD=20+5-15=20-10 2.7(米)……………(8分)答:广告牌CD的高度为2.7米. ……………(9分) 23.(1)①证明:∵四边形ABCD是正方形∴AB=BC,∠ABM=∠CBM ……(2分)又∵BM=BM,∴ΔABM≌ΔCBM. ……(4分)②∵ΔABM≌ΔCBM∴∠BAM=∠BCM又∵∠ECF=90º,G是EF的中点∴GC=GF,∴∠GCF=∠F ……(5分)又∵AB∥DF,∴∠BAM=∠F∴∠BCM=∠GCF ……(6分)∴∠BCM+∠GCE=∠GCF+∠GCE=90º∴GC⊥CM ……(7分)(2)成立……(9分)(3)①当点E在BC边上时∵∠MEC>90º,要使△MCE是等腰三角形,必须EM=EC,∴∠EMC=∠ECM∴∠AEB=2∠BCM=2∠BAE∴2∠BAE+∠BAE=90º,∴∠BAE=300∴BE=. ……(11分)②当点E在BC的延长线上时,仿①易知BE=. ……(12分)综上①②,当BE=戓BE=时,△MCE是等腰三角形.……(13分)24题:思路点拨:1、如果四边形ABPM是等腰梯形,那么AB为较长的底边,这个等腰梯形可以分割为一个矩形和两个全等的直角三角形,AB边分成的3小段,两侧的线段长线段。
2、△AOB与△COD重叠部分的形状是四边形EFGH,可以通过割补得到,即△OFG减去△OEH。
3、求△OEH的面积时,如果构造底边OH上的高EK,那么Rt△EHK的直角边的比为1∶2。
4、设点A′移动的水平距离为m,那么所有的直角三角形的直角边都可以用m表示。