高速切削新工艺
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
CNC机床高速切削工艺优化第一章:引言CNC机床高速切削技术是目前机械制造业的重要发展方向之一,可以提高生产效率、改善加工质量、降低生产成本。
在大量应用历史的积累下,高速切削技术已经逐渐变得成熟稳定,但针对不同材料、不同加工过程的刀具建议仍有很大的研究空间。
本文将从高速切削的基本概念、切削机床的分析和优化、刀具选型等方面进行探讨。
第二章:CNC机床高速切削的基本概念1. 高速切削的定义高速切削是一种采用高速、高精度的运动控制技术和刀具几何学来实现高效率加工的方法。
高速切削的关键是实现高效切削和降低加工金属的热影响,通过这种方式可以缩短加工时间、提高加工精度和表面质量。
2. 高速切削的优势高速切削通过提高切削速度减少加工时间,同时提高加工精度、表面光洁度,降低加工成本,增强生产力。
这种技术适用于各种发动机、轴承、涡轮机叶片等高精度零部件的制造。
第三章:切削机床的分析和优化1. 机床的结构分析CNC机床的结构分析包括床身、主轴箱、进给系统、传动系统、切削液系统分析,通过建立数学模型可以优化机床结构参数,以便获得出色的切削性能。
2. 切削系统的仿真与优化为了确定最佳的切削参数,必须进行仿真和优化。
优化的主要目标是减少切削过程中的热影响和机床振动,并确保表面质量和切削力控制在可接受的范围内。
3. 刀具选型高速切削需要使用特殊的刀具,以便适应高速切削的要求,常使用的刀具包括高速钢刀具、硬质合金刀具、陶瓷刀具、CBN刀具、PCD刀具等。
每种刀具都有其特殊的使用条件和材料成分。
刀具的选用要考虑加工材料的硬度、切削速度和切削深度等因素。
此外,刀具的合理配合必须考虑到切削液的使用和润滑要求以及刀柄的尺寸匹配等因素。
第四章:结论CNC机床高速切削技术的发展前景十分广阔,可以大幅提高机械制造业生产效率、改善加工质量、降低生产成本,但在实际应用过程中,需要针对不同材料、不同加工过程的刀具建议仍有很大的研究空间。
高速切削技术的优化不会出现简单、单一或确定的结果,而是一个难度较大的综合性问题,需要从切削力、表面光洁度、刀具寿命、成本和可操作性等多个方面综合考虑,才能够找到最优的解决方案。
高速切削加工的工艺特点高速切削加工是一种先进的金属加工方法,具有以下几个主要的工艺特点:1. 切削速度高:高速切削加工的切削速度通常比传统的切削加工方法高出数倍甚至数十倍。
这是由于高速切削使用了高速切削工具和适合高速切削的加工参数,如切削速度、进给速度和切削深度等。
高速切削加工的切削速度可以达到数千米/分钟,这对于提高生产效率和缩短加工时间非常有益。
2. 切削质量高:高速切削加工的另一个显著特点是切削质量高,表面粗糙度低。
这是因为高速切削使用了高硬度、高韧性和高耐磨性的刀具材料,在高速切削下刀具磨损小,可以保持刀具的锋利度,切削力也相对较小,切屑容易破碎,减少了切削振动,从而得到更高质量的切削表面。
3. 加工精度高:高速切削加工具有很高的加工精度,通常可以达到数微米的级别。
这是由于高速切削加工的切削力小、切削热量集中,能够减小切削变形和热影响区域,从而得到更高精度的零件尺寸和形状。
4. 加工效率高:高速切削加工具有很高的加工效率,可以大大缩短加工周期。
高速切削的切削速度快、进给速度高,加工速度相对传统切削加工方法快数倍,可以实现高效率的切削。
此外,使用高速切削还可以减少切削次数,提高生产效益。
5. 节能环保:高速切削加工相较于传统切削加工方法具有较低的切削力和切削温度。
低切削力减小了机床和刀具的负荷,延长了机床和刀具的使用寿命。
低切削温度减少了切削变形和刀具磨损,减少了能源的消耗。
因此,高速切削加工具有节能环保的特点,符合可持续发展的要求。
6. 加工适应性广:高速切削加工适用于各类金属材料的加工,如铁、钢、铜、铝、合金等。
而且,对于复杂零件的加工,高速切削加工也能够发挥其优势,提高生产效率和加工质量。
总之,高速切削加工具有切削速度高、切削质量高、加工精度高、加工效率高、节能环保和加工适应性广的特点。
在现代制造业中,高速切削加工已经成为提高加工效率和改善产品质量的重要工艺方法,对于推动制造业的快速发展具有重要意义。
机械制造中的机械加工高速切削技术高速切削是机械加工领域中的一项重要技术,它在工件加工过程中使用高速切削工具,以较大的进给速度和转速进行切削,提高了加工效率和加工质量。
本文将介绍机械加工高速切削技术的原理、特点以及在机械制造中的应用。
一、高速切削技术的原理高速切削技术是基于高速运动的切削工具和工件之间的相对运动原理。
在高速切削过程中,切削工具以较高的转速和进给速度与工件接触,形成切屑并进行切削。
相比传统的慢速切削,高速切削具有以下特点:1. 切削速度较快:高速切削在保持刀具刃口整齐的情况下,增大刀具转速和进给速度,从而大幅提高了切削效率。
2. 切削温度较低:高速切削由于切削时间短,切削工具与工件接触时间减少,从而减少了热量在切削区域的积累,使得切削温度低于常规切削。
3. 切削力较小:高速切削采用较高的转速和进给速度,在单位时间内切削的材料量相对较大,切削力得到了有效分散,从而降低了切削力的大小。
二、高速切削技术的应用1. 提高生产效率:高速切削技术在机械制造中广泛应用,能够显著提高生产效率。
通过提高切削速度和进给速度,生产厂商可以在较短时间内完成更多的加工任务,提高了机械加工的效率。
2. 提高加工精度:高速切削技术具有切削温度低、切削力小等特点,能够减小热变形和机械振动对工件加工精度的影响,提高了加工精度和表面质量。
3. 增加工件材料种类:高速切削技术在闪光电火花加工、超硬材料和薄壁工件高速切削等领域应用广泛。
高速切削通过较高的转速和进给速度,能够更好地适应不同材料的加工需求。
4. 降低加工成本:高速切削技术通过提高加工效率和降低切削力,可以减少切削时间和刀具磨损,从而降低了加工成本。
三、机械加工高速切削技术的挑战与发展高速切削技术在机械制造中的应用受到了一些挑战,如切削热问题、切削润滑和冷却问题等。
同时,随着高速切削技术的发展,一些新的切削方式如超声波切削、激光切削等也受到了广泛关注。
为了进一步推动高速切削技术的发展,需要加强研究,探索新的切削理论和方法。
高速铣削加工工艺技巧各种材料的高速切削技术高速切削不同材料时,其所用的切削工具、工艺方法以及切削参数均有很大不同,而且和在普通切削速度加工时的情况也有很大不同,掌握正确的高速切削工艺方法,是高速切削应用技术中的一个重要环节。
高速切削铝合金技术铝材料零件的高速加工,在20世纪80年代就已经在工业中广泛应用,经过适当冷处理的铝合金材料,强度可高达540Mpa,它的相对密度很轻,是飞机和各种航天器零部件的主要材料,也是机器和仪表零部件的常用金属。
近年来铝合金在汽车和其它动力机械中的应用也逐渐增多。
加工轻合金的优势主要在:切削力和切削功率小,大约比切削钢件小70%;切削短、不卷曲,因而在高速加工中易于实现大量切屑的排屑自动化,刀具磨损小,用硬质合金、多晶金刚石等刀具在很高的转速下切削铝合金材料,可以达到很高的刀具寿命;加工表面质量高,仅采用少量的切削液、在近乎干切的情况下不用再经过任何加工或手工研磨,零件即可得到很高的表面质量;可采用很高的切削速度进行加工,切削速度可高达1000-20000/min,高速加工95%以上切削热被切屑迅速带走,工件可保持室温状态,热变形小,保证了加工的高精度。
如瑞士米克朗的高速铣HSM400在2003年北京国际机床展上加工的一个薄壁铝件,厚度为0。
1mm,高度为25mm,进刀速度高达20000/min,而且保证了良好的尺寸精度和几何精度。
高速铣削钢技术近年来,高速加工开始用于钢的精加工,特别是加工形状复杂的零件,高速切削可以大大提高生产率,高速铣削钢和铝合金有所不同,主要问题是刀具的磨损,优化切削参数的目的不仅仅为了提高金属切除率,而且更注重于降低切削力,提高工件表面质量、尺寸精度和形状精度以及减少刀具磨损。
钢材的高速铣削技术高速铣削钢材时,刀具要用更锋利切削刃和较大的后角,这样可以减少切削时的刀具磨损提高刀具的使用寿命,刀具参数也应当随着进给速度的变化而变化。
当进给速度增加时,刀具的后角要减小;进给速度对刀具的前角的影响相对比较小。
第三讲1.高速切削技术高速切削的产生背景和发展史高速切削(HSM或HSC)通常指高主轴转速和高进给速度下的立铣,它是20世纪90年代迅速走向实际应用的先进加工技术,在航空航天制造业、模具加工业、汽车零件加工、以及精密零件加工等得到广泛的应用。
高速铣削技术既可用于铝合金、铜等易切削金属,也可用于淬火钢、钛合金、高温合金等难加工材料,以及碳纤维塑料等非金属材料。
例如,在铝合金等飞机零件加工中,曲面多且结构复杂,材料去除量达高达90%~95%,采用高速铣削可大大提高生产效率和加工精度;在模具加工中,高速铣削可加工淬火硬度大于HRC50的钢件,因此许多情况下可省去电火花加工和手工修磨,在热处理后采用高速铣削达到零件尺寸、形状和表面粗糙度要求。
高速切削概念始于1931年德国所罗门博士的研究成果:“当以适当高的切削速度(约为常规速度的5~10倍)加工时,切削刃上的温度会降低,因此有可能通过高速切削提高加工生产率”。
60多年来,人们一直在探索有效、适用、可靠的高速切削技术,但直到20世纪90年代该技术才逐渐在工业实际中推广应用。
高速切削最早在飞机制造业和模具制造l受到很大的重视。
为使飞机的零部件满足很高的可靠性要求,大部分重要零件都是在整块铝合金坯件卜铣削而成,既可减少焊缝,又可提高零件的强度和抗振性。
但常规铣削效率很低,从而导致了高的生产成本和长的交货时间。
高速切削是克服这方面问题的最好解决方案。
汽车工业中,模具制造是产品更新换代的关键。
新车型定型后,模具制造周期的长短直接影响到产品的上市时间,也关系到市场竞争的成败。
所以在80年代美国、欧洲和日本的政府都出巨资推动高速切削在模具制造中的应用研究,90年代初高速切削已进入工业化应用。
图16 高速切削在生产应用中的发展历程图17 采用高速切削后产品质量提高的历程a一硬质合金切钢 b一硬质合金切铸铁c—CBN切铸铁图16是德国宝马公司(BMW)采用高速切削的历程。
高速切削车刀的加工工艺流程详解下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!高速切削车刀的加工工艺流程详解在现代机械制造领域,高速切削车刀因其高效、高精度的特性,被广泛应用。
高速切削新工艺
切削加工作为制造技术的主要基础工艺,随着制造技术的发展,在 20世纪末也取得了很大的进步,进入了以发展高速切削、开发新的切削工艺和加工方法、提供成套技术为特征的发展新阶段。
它是制造业中重要工业部门,如汽车工业、航空航天工业、能源工业、军事工业和新兴的模具工业、电子工业等部门主要的加工技术,也是这些工业部门迅速发展的重要因素。
因此,在制造业发达的美、德、日等国家保持着快速发展的势头。
金属切削刀具作为数控机床必不可少的配套工艺装备,在数控加工技术的带动下,进入了“数控刀具”的发展阶段,显示出“三高一专”(即高效率、高精度、高可靠性和专用化)的特点。
显而易见,在21世纪初,尽管近净成形技术、堆积成形技术是非常有前途的新工艺,但切削加工作为制造技术主要基础工艺的地位不会改变。
从当前制造业发展的趋势中可以看到,制造业发展和人类社会进步对切削加工提出的双重挑战,这也是21世纪初切削加工技术发展的主要趋势。
当前以高速切削为代表的干切削、硬切削等新的切削工艺已经显示很多的优点和强大的生命力,成为制造技术提高加工效率和质量、降低成本的主要途径。
因此,发展高速切削等新的切削工艺促进制造技术的发展是现代切削技术面临的新任务。
当代的高速切削不是切削速度的少量提高,是需要在制造技术全面进步和进一步创新的基础上,包括数控机床、刀具
材料、涂层、刀具结构等技术的重大进步,才能达到的切削速度和进给速度的成倍提高,才能使制造业整体切削加工效率有显著的提高。
把当前的高速切削水平实用化,使我国机加工整体切削效率提高1~2倍,缩小与工业发达国家的差距,是我国从事切削加工与刀具技术的专业人员在新世纪的努力目标和面临的重大挑战。
硬切削是高速切削技术的一个应用领域,即用单刃或多刃刀具加工淬硬零件,它比传统的磨削加工有效率高、柔性好、工艺简单、投资少等优点,已在一些应用领域产生较好的效果。
在汽车业,用CBN 刀具加工20CrMo5淬硬齿轮(60HRC)内孔,代替磨削,表面粗糙度可达0 .22μm,已成为国内外汽车行业推广的新工艺。
长期以来,难加工材料如奥氏体不锈钢、高锰钢、淬硬钢、复合材料、耐磨铸铁等一直是切削加工中的难题,切削效率低,刀具寿命短。
随着制造业的发展,在21世纪这些材料的用量将迅速增加,加工的矛盾将更加突出。
与此同时,产品的材料构成将不断优化,新的工程材料也不断问世,而每一种新型材料的采用都对切削加工提出了新的要求。
如在切削加工比较集中的汽车工业,其发动机、传动器零件中的硅铝合金的比例在持续增加,并开始引入镁合金和新的高强度铸铁,以减轻汽车的重量和节省能耗。
又如在航空航天工业,钛合金、镍基合金以及超耐热合金、陶瓷等难加工材料的应用比例和加工难度也都将进一步增加。
能否高效加工这些材料,直接关系到我国汽车、航空航天、能源等重要工业部门的发展速度和制造业的整体水平,是对切削技术的最大挑战。
我们必须从现在开始探索,以从根本上解
决难加工材料大量使用及其品种性能多样化带来的世纪性难题,创新加工技术,开发包括激光在内的新的“刀刃”和加工方法。
进入21世纪以后,产品多样化和个性化的趋势进一步加剧,制造业的产品更新速度会大大加快。
每一种新产品的开发都意味着零件功能、结构、材料的重大变更,也是对切削加工提出的开发任务,就像大家熟知的如螺杆泵、等速万向节、底径定心的花键、电子工业印刷线路板等产品,无不反映着切削技术和刀具的成果。
今后随着产品更新速度的加快,将构成对切削加工新的挑战。
不仅如此,当前利用切削加工的柔性及现代切削加工和刀具技术的成果,革新零件加工方法,显示出投入少、产出大、见效快的特点。
正如在上世纪九十年代新建的轿车发动机、传动器生产线上所集中展示的那样:缸体孔系的整体硬质合金钻削工艺、缸盖的金刚石高速铣削工艺、同步器齿轮的筒式拉削工艺等新的加工工艺,使新建生产线的生产节拍时间缩短、产品质量提高,投资大量减少,充分显示出切削加工的巨大潜力。
在这种背景下,制造业对切削加工新技术、新产品的需求在现在将达到空前的高度,这既是对切削技术的挑战,也是对我国切削行业陈旧体制的挑战。