高速切削加工技术
- 格式:docx
- 大小:17.26 KB
- 文档页数:5
高速切削加工实验报告1. 引言高速切削加工是一种先进的制造技术,通过提高切削速度和优化刀具材料与结构,可以加快加工速度、提高加工效率和加工精度。
本实验旨在通过对铝合金进行高速切削加工,探究加工参数对加工效果的影响,为实际加工提供依据。
2. 实验方法2.1 材料准备选取工业常用的6061铝合金作为实验材料,该材料具有良好的机械性能和加工性能。
2.2 实验设备* 高速切削机床:使用一台高速切削机床进行实验,该设备能够实现高速切削并准确控制加工参数。
* 刀具:选用合适的高速切削刀具,具备良好的切削性能和刚性。
* 冷却液:使用专用的冷却液,避免材料在高速切削过程中引起过热。
* 测量仪器:使用数控测量仪器对实验结果进行测量和记录,保证数据的准确性。
2.3 实验步骤1. 将铝合金工件固定在高速切削机床上,并确认其位置和稳定性。
2. 选择合适的切削刀具,并调整好刀具安装参数。
3. 设置高速切削加工参数,如切削速度、进给速度、切削深度等。
4. 启动高速切削机床,进行加工。
5. 实时记录切削过程中的数据,如工件表面温度、切削力、切削动力等。
6. 完成加工后,对工件进行后续处理,如去毛刺、抛光等。
7. 使用数控测量仪器对工件进行尺寸测量,并记录测量结果。
3. 实验结果3.1 加工参数对加工效果的影响在实验中,我们选取了不同的切削速度、进给速度和切削深度进行加工,并记录了加工过程中的数据和加工效果。
图1 展示了不同切削速度下的加工效果。
可以观察到,随着切削速度的增加,加工效率明显提高,同时工件表面质量也有所改善。
然而,当切削速度达到一定范围时,过高的切削速度会导致材料过热和刀具磨损的加剧,从而降低切削质量。
图2 展示了不同进给速度下的加工效果。
可以发现,在一定范围内,增加进给速度可以提高加工效率,但过高的进给速度会导致切屑堆积、刀具磨损和精度下降。
图3 展示了不同切削深度下的加工效果。
可以看到,增加切削深度可以在一定程度上提高加工效率,但同时也会增加材料的变形和切削力,从而降低加工质量。
高速切削技术研究第一部分高速切削技术的定义与特点 (2)第二部分高速切削刀具材料与磨损机理 (4)第三部分高速切削机床的选型与应用 (7)第四部分高速切削参数优化方法 (10)第五部分高速切削过程的热控制技术 (13)第六部分高速切削加工精度与表面质量 (15)第七部分高速切削在典型零件加工中的应用 (17)第八部分高速切削技术的发展趋势与挑战 (20)第一部分高速切削技术的定义与特点高速切削技术是一种先进的制造工艺,它通过使用高转速的刀具和优化的切削参数来提高材料去除率、加工精度和表面质量。
该技术的核心在于实现高效率、高质量和高精度的加工过程。
在高速切削过程中,刀具以极高的速度旋转(通常超过每分钟数千转),同时进给速度也相应提高。
这种高速旋转产生的离心力有助于减小切削力和切削热,从而延长刀具寿命并减少工件的热变形。
此外,由于切削力的降低,高速切削还可以减少振动,进一步提高加工精度。
高速切削技术的优势主要体现在以下几个方面:1.高效率:与传统切削相比,高速切削可以显著提高材料去除率,缩短加工时间。
研究表明,高速切削可以提高生产效率达 30%至50%。
2.高精度:高速切削过程中的低切削力可以减少工件的振动,从而提高加工精度。
此外,由于切削热的影响较小,工件的热变形也得到了控制。
3.高质量表面:高速切削产生的切削热较低,这有助于减少工件的烧伤和裂纹,从而获得更好的表面质量。
4.刀具寿命延长:高速切削可以降低切削力,减少刀具磨损,从而延长刀具的使用寿命。
5.节能减排:高速切削技术可以实现更高的材料去除率,从而减少能源消耗和碳排放。
然而,高速切削技术也存在一些挑战,如刀具成本较高、对机床性能要求较高等。
因此,在实际应用中,需要根据具体加工需求和技术条件,合理选择切削参数和刀具,以确保高速切削技术的有效性和经济性。
总之,高速切削技术作为一种先进的制造工艺,具有高效率、高精度、高质量表面等优势,但在实际应用中需充分考虑其成本和设备要求。
刀具高速切削加工技术特点
高速切削加工技术中的“高速”是一个相对概念,对于不同的加工方法和工件材料与刀具材料,高速切削加工时应用的切削速度并不相同。
通常把切削速度比常规高出5~10倍甚至以上的切削加工叫作高速切削或超高速切削。
以德国达姆施塔特工业大学H.Schulz教授提出的铣削速度范围比较具有代表性:铝合金1000~7000m/min,铸铁800~3000m/min,钢500~2000m/min,钛合金100~1000m/min,镍基合金50~500m/min。
传统硬质合金类刀具加工铝合金壳体切削速度一般在150~300m/min之间,而聚晶石(PCD)类刀具的切削速度能达到2000m/min以上,实现高速切削。
高速切削加工时,高切削速度在材料剪切区短时释放大量热能。
因此,随着切削速度的增加,切削的剪切区、切屑压缩区和变形区内材料的单位切削力反而下降。
总切削力和必需的切削功率同样下降。
高速切削工艺典型的小切削深度结合高进给速度和高主轴转速,将降低切削刃切入工件的时间,或称接触时间。
刀具监控系统在高速切削加工过程中还应该考虑的一个问题是刀柄与机床主轴锥孔的连接方式,常用的锥柄有BT、HSK、CAT及CAPITO等多种形式,但是在高速切削时HSK因其的双面接触过定位结构可以保证刀尖很高的跳动要求,,特别适合高转速工况。
第 1 页共 1 页。
第三讲1.高速切削技术高速切削的产生背景和发展史高速切削(HSM或HSC)通常指高主轴转速和高进给速度下的立铣,它是20世纪90年代迅速走向实际应用的先进加工技术,在航空航天制造业、模具加工业、汽车零件加工、以及精密零件加工等得到广泛的应用。
高速铣削技术既可用于铝合金、铜等易切削金属,也可用于淬火钢、钛合金、高温合金等难加工材料,以及碳纤维塑料等非金属材料。
例如,在铝合金等飞机零件加工中,曲面多且结构复杂,材料去除量达高达90%~95%,采用高速铣削可大大提高生产效率和加工精度;在模具加工中,高速铣削可加工淬火硬度大于HRC50的钢件,因此许多情况下可省去电火花加工和手工修磨,在热处理后采用高速铣削达到零件尺寸、形状和表面粗糙度要求。
高速切削概念始于1931年德国所罗门博士的研究成果:“当以适当高的切削速度(约为常规速度的5~10倍)加工时,切削刃上的温度会降低,因此有可能通过高速切削提高加工生产率”。
60多年来,人们一直在探索有效、适用、可靠的高速切削技术,但直到20世纪90年代该技术才逐渐在工业实际中推广应用。
高速切削最早在飞机制造业和模具制造l受到很大的重视。
为使飞机的零部件满足很高的可靠性要求,大部分重要零件都是在整块铝合金坯件卜铣削而成,既可减少焊缝,又可提高零件的强度和抗振性。
但常规铣削效率很低,从而导致了高的生产成本和长的交货时间。
高速切削是克服这方面问题的最好解决方案。
汽车工业中,模具制造是产品更新换代的关键。
新车型定型后,模具制造周期的长短直接影响到产品的上市时间,也关系到市场竞争的成败。
所以在80年代美国、欧洲和日本的政府都出巨资推动高速切削在模具制造中的应用研究,90年代初高速切削已进入工业化应用。
图16 高速切削在生产应用中的发展历程图17 采用高速切削后产品质量提高的历程a一硬质合金切钢 b一硬质合金切铸铁c—CBN切铸铁图16是德国宝马公司(BMW)采用高速切削的历程。
高速加工技术及应用高速加工技术是一种在短时间内迅速、高效地完成工件加工的技术。
它是现代制造业发展的重要一环,广泛应用于航空航天、汽车、船舶、电子、模具等领域。
高速加工技术的特点有以下几点:1.高速切削:高速加工技术采用高速旋转的切削工具,使得切削速度大大提高,一般可以达到切削速度的数倍甚至十数倍,从而大大缩短了加工时间。
2.小切削量:高速加工技术多采用微小切削量的方式进行切削,这样可以降低加工对机床、刀具和工件的热影响,提高加工精度。
3.高精度和高表面质量:高速加工技术能够实现很高的加工精度和表面质量,通常可以达到几个微米的加工精度和很低的表面粗糙度。
4.刀具寿命长:高速加工技术采用高硬度和高耐磨性的刀具材料,使得刀具使用寿命大大延长,降低了换刀频率和加工成本。
高速加工技术在以下方面有广泛的应用:1.航空航天领域:在航空航天领域,高速加工技术能够加工各种复杂曲面和薄壁结构件,如发动机叶片、航空航天零件等,提高了零件的精度和表面质量。
2.汽车领域:高速加工技术在汽车制造中主要用于零部件的加工,如发动机缸体、座椅滑块等,能够提高加工效率和产品质量。
3.船舶领域:高速加工技术在船舶制造中主要用于船体结构和轴承加工,如船体钢板切割、轴承的外圈和内圈加工等,提高了加工速度和质量。
4.电子领域:高速加工技术在电子领域主要用于半导体器件的切割和加工,如芯片切割、光纤连接器加工等,提高了加工精度和产品性能。
5.模具领域:高速加工技术在模具制造中主要用于模具的精细加工,如模具的深孔加工、细小结构的加工等,提高了模具的加工精度和寿命。
高速加工技术的发展对于提高制造业的竞争力和产品质量具有重要意义。
随着材料科学和机械加工技术的不断发展,高速加工技术将在更多领域得到应用,并不断推动制造业的发展。
目录一高速切削技术概述 (2)1 高速切削的基本概念 (2)2.高速铣削的特点 (3)2.1 高速铣削的一般特征 (3)2.2 高速铣削的优点 (3)2.3 高速铣削的问题 (4)2.4 高速铣削的应用 (5)3.高速铣削的关键技术 (5)3.1 高速切削机理的研究 (6)3.2 高速切削刀具 (7)3.3 高速切削机床技术 (7)3.4 高速切削的工艺技术 (9)3.5 高速加工的测试技术 (9)二高速切削机床 (10)(—)如何有效地选择高速切削机床 (10)1、高速切削机床基本结构 (10)2、高速主轴 (10)3、高速进给机构 (11)4、高速CNC 控制系统 (11)5、高速切削机床安全防护与实时监控系统 (11)6、选购高速切削机床的方法 (12)三、高速切削刀具 (18)1.刀具材料 (18)2.刀具结构 (19)3.刀杆结构 (20)4.刀具动平衡 (21)四、高速数控编程 (23)1.高速数控编程的特点 (23)1.1 现有的CAD/CAM/CNC 集成化系统 (23)1.2 高速切削对数控编程的具体要求 (24)2.粗加工数控编程 (26)3.精加工数控编程 (29)五、高速铣削工艺 (33)1、刀具的选择 (33)2、切削参数选择 (34)3.加工实例 (46)一高速切削技术概述1 高速切削的基本概念高速切削(HSM或HSC)是二十世纪九十年代迅速走向实际应用的先进加工技术,通常指高主轴转速和高进给速度下的立铣,国际上在航空航天制造业、模具加工业、汽车零件加工、以及精密零件加工等得到广泛的应用。
高速铣削可用于铝合金、铜等易切削金属和淬火钢、钛合金,高温合金等难加工材料,以及碳纤维塑料等非金属材料,例如,在铝合金等飞机零件加工中,曲面和结构复杂,材料去除量高达90%~95%,采用高速铣削可大大提高生产效率和加工精度;在模具加工中,高速铣削可加工淬火硬度大于HRC50的钢件,因此许多情况下可省去电火花加工和手工修磨,在热处理后采用高速铣削达到零件尺寸、形状和表面粗糙度要求。
高速切削加工技术的概念高速切削加工技术是一种在机械加工中使用高速旋转刀具来去除材料的工艺。
它可以提高加工效率、减少加工成本,提高切削质量,并延长刀具寿命。
在高速切削加工技术中,切削速度通常比传统切削速度高出几倍,达到可达到切削极限的速度。
高速切削加工技术的基本原理是通过尽可能高的转速来提高切削速度,以减小切削过程中的切削时间。
高速切削加工技术的发展需要满足以下几个条件:高速切削的刀具材料需要具备良好的硬度、热稳定性和刚性;高速切削需要使用高速转子以提供所需的切削速度;高速切削需要使用高速切削液以冷却和润滑刀具和切削床面。
高速切削加工技术的优点主要体现在以下几个方面:1. 高加工效率:高速切削加工可以提高切削速度,减少切削时间,从而提高加工效率。
与传统切削相比,高速切削可以将加工时间减少50%以上。
2. 高表面质量:高速切削加工可以减小切削过程中的机床振动和切削力,从而获得更高的表面质量。
切削过程中,高速转子产生的离心力可以抑制刀具的振动,提高切削表面的光洁度。
3. 刀具寿命长:高速切削加工可以减小切削温度,减小切削热对刀具的影响,从而延长刀具的使用寿命。
高速切削可以在减小切削温度的同时提高切削速度,从而有效地降低刀具的受热面积,减小刀具的磨损。
4. 减少加工成本:高速切削加工可以提高加工效率,减少切削时间,从而减少加工成本。
高速切削还可以减小切削力和切削温度,减少切削液的消耗,降低切削液的成本。
高速切削加工技术的应用范围广泛,包括航空航天、汽车制造、模具制造、电子制造等领域。
例如,在航空航天制造中,高速切削可以快速精确地加工复杂的零部件;在汽车制造中,高速切削可以提高发动机零部件的加工效率和精度;在模具制造中,高速切削可以提高模具的加工效率和精度;在电子制造中,高速切削可以提高电路板的加工效率和精度。
总之,高速切削加工技术是现代制造业的一个重要发展方向。
通过提高切削速度,高速切削加工可以提高加工效率、减少加工成本,并提高切削表面的质量。
高速切削加工技术
高速切削加工技术是21世纪的一种先进制造技术,有着强大的生命力和广阔的应用前景。
通过高速切削加工技术可以解决在汽车模具常规切削加工中备受困扰的一系列问题。
近年来,在美国、德国、日本等工业发达国家高速切削加工技术在大部分的模具公司都得到了广泛应用,85%左右的模具电火花成形加工工序已被高速加工所替代。
高速加工技术集高效、优质、低耗于一身,已成为国际模具制造工艺中的主流。
我国有关汽车模具高速切削加工技术的研究起步较晚。
据国际模协秘书长罗百辉介绍,我国众多模具企业相继从美国、德国、法国、日本等国家购买了大量高速加工设备及切削刀具,并在实践中摸索汽车模具高速切削加工的工艺技术,取得了一些成功经验。
但是,一方面,引进设备不等于引进技术。
高速切削尤其是大型汽车覆盖件模具的高速切削方面,没有成功的经验可供借鉴,怎样使引进的设备尽快发挥出应有的作用是摆在企业管理者和工程技术人员面前的一大课题;另一方面,技术人员在工作中边学习边应用,摸索、积累了一定的高速切削加工实例、工艺参数和工作经验,怎样将这些宝贵的经验和教训总结保存供其他技术人员借鉴、避免多走弯路也是一项难题。
高速切削加工技术在国内外汽车模具制造行业得到了广泛的应用,并且已取得了巨大的效益,但是高速切削加工的机理和相关理论至今仍不完善,针对汽车模具的高速切削数据库尚未建立。
国内外企业选择高速切削刀具参数和高速切削加工参数的方式仍以传统的“试
切”法和“经验”法为主,在加工某一新型材料时,往往需要使用多种刀具进行重复切削试验,研究分析刀具的磨损、破损方式及其原因,从中找出一组最佳的刀具材料和加工参数,如此反覆多次,盲目性大,并且浪费大量的人力、财力和资源。
而针对特种材料如合金铸铁、高强度合金钢、超级合金(如钛合金)等材料的高速切削加工,如何根据材料特性选择合适的切削刀具,如何设计合理的切削参数,目前仍在研究和发展中。
通过国内外汽车模具制造行业的高速切削加工技术实践应用,高速切削加工技术具有如下优势:
1、高速切削加工提高了加工速度
高速切削加工以高于常规切削10倍左右的切削速度对汽车模具进行高速切削加工。
由于高速机床主轴激振频率远远超过“机床—刀具—工件”系统的固有频率范围,汽车模具加工过程平稳且无冲击。
2、高速切削加工生产效率高
用高速加工中心或高速铣床加工模具,可以在工件一次装夹中完成型面的粗、精加工和汽车模具其他部位的机械加工,即所谓“一次过”技术(One Pass Machining)。
高速切削加工技术的应用大大提高了汽车模具的开发速度。
3、高速切削加工可获得高质量的加工表面
由于采取了极小的步距和切深,高速切削加工可获得很高的表面质量,甚至可以省去钳工修光的工序。
4、简化加工工序
常规铣削加工只能在淬火之前进行,淬火造成的变形必须要经手工修整或采用电加工最终成形。
现在则可以通过高速切削加工来完成,而且不会出现电加工所导致的表面硬化。
另外,由于切削量减少,高速加工可使用更小直径的刀具对更小的圆角半径及模具细节进行加工,节省了部分机械加工或手工修整工序,从而缩短了生产周期。
5、高速切削加工使汽车模具修复过程变得更加方便
汽车模具在使用过程中往往需要多次修复以延长使用寿命,如果采用高速切削加工就可以更快地完成该工作,取得以铣代磨的加工效果,而且可使用原NC程序,无需重新编程,且能做到精确无误。
6、高速切削加工可加工形状复杂的硬质汽车模具
由高速切削机理可知:高速切削时,切削力大为减少,切削过程变得比较轻松,高速切削加工在切削高强度和高硬度材料方面具有较大优势,可以加工具有复杂型面、硬度比较高的汽车模具。
在现代模具生产中,随着对塑件的美观度及功能要求得越来越高,塑件内部结构设计得越来越复杂,模具的外形设计也日趋复杂,自由曲面所占比例不断增加,相应的模具结构也设计得越来越复杂。
这些都对模具加工技术提出了更高要求,不仅应保证高的制造精度和表面质量,而且要追求加工表面的美观。
随着对高速加工技术研究的不断深入,尤其在加工机床、数控系统、刀具系统、CAD/CAM软件等相关技术不断发展的推动下,高速加工技术已越来越多地应用于模具型腔的加工与制造中。
数控高速切削加工作为模具制造中最为重要的一项先进制造技
术,是集高效、优质、低耗于一身的先进制造技术。
相对于传统的切削加工,其切削速度、进给速度有了很大的提高,而且切削机理也不相同。
高速切削使切削加工发生了本质性的飞跃,其单位功率的金属切除率提高了30%~40%,切削力降低了30%,刀具的切削寿命提高了70%,留于工件的切削热大幅度降低,低阶切削振动几乎消失。
随着切削速度的提高,单位时间毛坯材料的去除率增加了,切削时间减少了,加工效率提高了,从而缩短了产品的制造周期,提高了产品的市场竞争力。
同时,高速加工的小量快进使切削力减少了,切屑的高速排出减少了工件的切削力和热应力变形,提高了刚性差和薄壁零件切削加工的可能性。
由于切削力的降低,转速的提高使切削系统的工作频率远离机床的低阶固有频率,而工件的表面粗糙度对低阶频率最为敏感,由此降低了表面粗糙度。
在模具的高淬硬钢件(HRC45~HRC65)的加工过程中,采用高速切削可以取代电加工和磨削抛光的工序,从而避免了电极的制造和费时的电加工,大幅度减少了钳工的打磨与抛光量。
对于一些市场上越来越需要的薄壁模具工件,高速铣削也可顺利完成,而且在高速铣削CNC加工中心上,模具一次装夹可完成多工步加工。
高速加工技术对模具加工工艺产生了巨大影响,改变了传统模具加工采用的“退火→铣削加工→热处理→磨削”或“电火花加工→手工打磨、抛光”等复杂冗长的工艺流程,甚至可用高速切削加工替代原来的全部工序。
高速加工技术除可应用于淬硬模具型腔的直接加工(尤其是半精加工和精加工)外,在EDM电极加工、快速样件制造等方
面也得到了广泛应用。
大量生产实践表明,应用高速切削技术可节省模具后续加工中约80%的手工研磨时间,节约加工成本费用近30%,模具表面加工精度可达1 m,刀具切削效率可提高1倍。