勾股定理教学设计及反思
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
勾股定理教学反思作为一名人民老师,我们的任务之一就是课堂教学,通过教学反思可以有效提升自己的课堂经验,如何把教学反思做到重点突出呢?下面是小编为大家收集的勾股定理优秀教学反思(精选5篇),仅供参考,希望能够帮助到大家。
勾股定理教学反思1通过复习让学生充分回忆前面学习的有关三角形的内容,使学生加深对知识的理解,从而为本节课的学习打下良好的基础。
同时,学生回忆的过程也是一个思考的过程,特别是面积法来验证勾股定理,是本章教学的难点,对此学生应该先形成一个印象、概念,然后才能学习掌握好。
已知直角三角形中的两条直角边求斜边,这是上节课学习的内容。
在上节课学习过程中,学生已经练习过。
但为什么本节课中仍然有部分学生出错呢?究其原因,是因为上节课学习的内容太多,方法也较多、较灵活,因而学生对每一个内容与方法都仍是一种感性的认识,而仍没达到理解掌握的程度。
因此,当让学生自己独立完成问题时,往往就产生了思维上存在的缺点,从而出现各种错误。
另一方面,教学中我们往往会采用一种“一问齐答”的问答形式,这样会容易掩盖学生的真实想法。
其实,在解答此问题时,教师很容易就走进了这样的问答方式,原因在于我们认为这样的问题太简单了,上节课学生也似学会了,于是便产生了一种忽视的教学。
可现实却往往不是这样的,我们认为简单的知识对于学生(特别是基础较弱的学生)来说,往往是不简单的。
因此,教学中应尽量少用“一问齐答”的欺骗教师的问答方式,让学生充分发表自己的意见,同时引导学生分析错误,养成反思的意识,只有这样,才能真正使学生学有所获。
同一个问题的不同变式,可以让学生自我检查对知识与方法是否能真正达到理解、掌握与运用,从而提高学生学习的自信心。
解答这个问题的方法其实就是验证勾股定理所用到的方法——面积法。
在课堂教学之初始让学生回忆上一堂课的方法,有了一个初步的印象,在这里再提出来时学生就不会感到突然和陌生,达到承上启下的作用。
另一方面,教师在讲解问题的解答时,并不是把问题的解答方法与过程全部一下子出来,而是引导学生经过一步步的思考,让学生自己在思考与感悟中得到问题的解答,这样可以培养学生思考问题的方法,提高学生的思维能力。
勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。
2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。
启发学生对空间的认知,为将来学习空间几何奠定根底。
二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。
2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。
三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。
【难点】:查找长方体中最短路线。
四、教学方法本课采纳学生自主探究归纳教学法。
教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。
五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。
思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。
【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。
《勾股定理》教学反思〔通用11篇〕《勾股定理》教学反思〔通用11篇〕《勾股定理》教学反思1新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与才能的培养置身于学生形式各异的探究经历中;关注学生探究过程中的情感体验,并开展理论才能及创新意识。
为学生的终身学习及可持续开展奠定坚实的根底。
为此我在教学设计中注重了以下几点:一、让学生主动想学上这节课前一个星期老师布置给学生任务:查有关勾股定理的资料〔可上网查,也可查阅报刊、书籍〕。
提早两三天由几位学生汇总〔老师可适当指导〕。
这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国教育,培养民族自豪感,鼓励他们发奋向上。
同时培养学生的自学才能及归类总结才能。
二、在课堂教学中,始终注重学生的自主探究首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜测、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步稳固进步。
表达了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的开展。
对于拼图验证,学生还没有接触过,所以在教学中老师给予学生适当指导与鼓励。
充分表达了老师是学生数学学习的组织者、引导者、合作者。
三、学生思维,培养学生多种才能课前查资料,培养学生的自学才能及归类总结才能;课上的探究培养学生的动手动脑的才能、观察才能、猜测归纳总结的才能、合作交流的才能……四、注重了数学应用意识的培养数学来于理论,而又应用于理论。
因此从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分表达了数学的应用价值。
整节课都是在生生互动、师生互动的和谐气氛中进展的,在老师的鼓励、引导下学生进展了自主学习。
学生上讲台表达自己的思路、解法,体验了数形结合的数学思想方法,培养了细心观察、认真考虑的态度。
勾股定理教案范本勾股定理教案教学方法优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!勾股定理教案范本勾股定理教案教学方法优秀6篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
验证勾股定理教学设计及教学反思【教学目标】(1)知识目标:经历及验证勾股定理的过程,理解勾股定理的证明方法,能用图形、文字和符号表达来描述勾股定理的内容。
(2)技能目标:在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合思想,并在验证定理过程中,发展学生归纳、概括能力。
(3)情感与态度:培养学生积极参与、合作交流的意识,在探索定理过程中,体验获得成功的喜悦,锻炼克服困难的勇气。
【重点难点】重点:验证和证明勾股定理难点:通过拼图,利用图形等面积方法探索勾股定理实验准备64个全等的等腰直角三角形 64个全等的非等腰直角三角形128个全等的直角三角形两条直角边长分别为a、b,斜边长为c, 48个边长分别为a、b、c的正方形【教学过程设计】(一)问题与情景中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,有着极为广泛的应用。
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的实际生活,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨、研究它的证明,因此不断出现新的证法,同学们想不想亲自验证呢?今天我们就用拼图的方法来证明勾股定理(二)实验验证勾股定理实验1 利用卡纸剪出如图四个全等的等腰直角三角形使它们的两条直角边长均为a,斜边长为c,你能用剪出的四个全等的等腰直角三角形拼出一个正方形的图形吗?若能拼出你能利用拼出的图形面积验证勾股定理吗?实验2利用卡纸剪出如图四个全等的非等腰直角三角形,使它们的两条直角边长均为a,b。
斜边长为c,你能用剪出的四个三角形拼出一个正方形吗?若能拼出你能利用拼出的图形面积验证勾股定理吗?思考:大正方形面积怎么求?实验3 剪8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再剪三个边长分别为a 、b 、c的正方形,你能用它们拼成两个边长都是a + b 的正方形吗?若能,你能利用拼出的两个正方形图形面积相等来验证勾股定理吗? 实验4:以a 、b 为直角边,以c 为斜边剪两个全等的直角三角形,把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上。
人教版《勾股定理》教学设计勾股定理教学设计一、教学目标通过本节课的学习,学生应能够:1. 掌握勾股定理的概念和公式;2. 理解勾股定理的几何意义;3. 运用勾股定理解决简单的几何问题;4. 发展数学思维和解决问题的能力。
二、教学内容1. 勾股定理的概念和公式;2. 勾股定理的几何意义;3. 勾股定理的应用。
三、教学步骤步骤一:导入1. 创设情境:讲述勾股定理的历史背景。
2. 引入问题:如何确定一个直角三角形的边长关系?步骤二:呈现1. 呈现勾股定理的定义和公式。
2. 分析勾股定理的几何意义,引导学生发现直角三角形的特点。
步骤三:探究1. 设计实际测量的活动,让学生利用直尺和量角器测量直角三角形的边长和角度。
2. 引导学生发现直角三角形的边长关系,并验证勾股定理。
步骤四:拓展1. 给学生提供更多勾股定理的应用问题,引导他们运用定理解答问题。
2. 鼓励学生提出自己的问题,使用勾股定理解决。
步骤五:总结1. 归纳勾股定理的重要性和应用范围。
2. 引导学生总结勾股定理的几何意义和运用方法。
四、教学资源1. 教材:人教版九年级数学教材《勾股定理》单元。
2. 工具:直尺、量角器等测量工具。
五、教学评价与反馈1. 教师观察法:通过观察学生在测量活动中的操作和合作情况,评价他们对勾股定理的理解程度。
2. 提问评价法:随堂提问,了解学生对勾股定理的理解情况。
3. 练习评价法:布置小练习,检查学生对勾股定理的掌握情况。
六、教学反思本节课设计了一系列的教学活动,旨在引导学生理解和掌握勾股定理。
通过实际测量、问题解答等活动,学生能够感受到数学在实际生活中的应用,提高他们的数学思维和解决问题的能力。
在教学过程中,我注重启发式教学,让学生自己探索和发现,培养他们的主动学习意识。
同时,我也注重评价与反馈,及时了解学生的学习情况并做出针对性的指导。
在以后的教学中,我将进一步完善教学设计,提高学生的学习效果。
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
《勾股定理》教学反思
新课程标准要求我们:将数学教学置身于学生自主探究与合作交流的数学活
动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。
为学生的终身学习及可持
续发展奠定坚实的基础。
为此我在教学设计中注重了以下几点:
一、让学生主动想学
通过欣赏2002年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。
接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。
通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。
二、在课堂教学中,始终注重学生的自主探究
首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。
体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
对于拼图验证,学生还没有接触过,所以在教学中教师给予学生适当指导与鼓励。
充分体现了教师是学生数学学习的组织者、引导者。
三、教会学生思维,培养学生多种能力
课前查资料,培养学生的自学能力及归类总结能力;课上的探究培养学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……
四、注重了数学应用意识的培养
数学来源于实践,而又应用于实践。
因此从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分体现了数学的应用价值。
整节课都是在师生互动的和谐气氛中进行的,在教师的鼓励、引导下学生进行了自主学习,体验了数形结合的数学思想方法,培养了细心观察、认真思考的态度。
但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。
另在做练习的
过程中对学困生的关注不够,导致部分学生跟不上老师的节奏。
因此,在今后的教学过程中要培养优秀生、辅导学困生,使整个班级全面发展。