勾股定理的证明教学设计
- 格式:doc
- 大小:76.56 KB
- 文档页数:2
《17.1勾股定理》教学设计与教学反思【教学目标】一、知识目标1.了解勾股定理的历史背景,体验勾股定理的探索过程。
2.掌握直角三角形中的三边关系并会运用勾股定理解决实际问题。
二、能力培养目标:1.在勾股定理的探索过程中,体验数学思维的严谨性,发展学生合理推理能力,体会数形结合的思想。
2.把实际问题转化为数学模型,培养学生分析问题解决问题的能力。
三、情感态度目标1.学生通过适当训练,养成数学说理的习惯,培养学生参与的积极性,逐步体验数学说理的重要性。
2.在探究活动中体验解决问题方法的多样性,培养学生的合作交流意识和探究精神。
3.了解勾股定理的历史,理解勾股定理的证明方法,加强爱国主义教育,体验数学的价值,增强通过应用意识。
【重点难点】1.重点:探索和证明勾股定理。
2.难点:灵活运用勾股定理。
3.疑点:把线段的计算转化为直角三角形,用勾股定理解决实际问题。
教学方法:讲练结合;讨论探究法。
教具准备:多媒体课件。
【设计思路】本课时教学强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力。
让学生通过动手、动脑、动口自主探索,感受到“无出不在的数学”与数学的美,以提高学习兴趣,进一步体会数学的地位与作用。
通过对勾股定理历史背景有初步了解,感受人类文明的力量,增强爱国情感。
【教学流程安排】活动一:了解历史,探索勾股定理活动二:拼图验证并证明勾股定理活动三:例题讲解,巩固练习活动四:反思小结,布置作业活动内容及目的:①通过多勾股定理的发现,(国外、国内)了解历史,激发学生对勾股定理的探索兴趣,培养学生爱国主义情感。
②观察、分析方格图,得到直角三角形的性质——勾股定理,发展学生分析问题的能力。
③通过拼图验证勾股定理,体会数学的严谨性,培养学生的数形结合思想,激发探究精神。
④布置作业,巩固、发展提高学生运用能力。
【教学过程设计】【活动一】(一)问题与情景1、你听说过“勾股定理”吗?(1)勾股定理古希腊数学家毕达哥拉斯发现的,西方国家称勾股定理为“毕达哥拉斯”定理(2)我国著名的《算经十书》最早的一部《周髀算经》。
勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
2.1证明勾股定理(教案)教学内容:苏科版初中数学八年级上册第二章第一节第二课时教学目标:1、会用拼图、面积计算的方法证明勾股定理;2、通过勾股定理的证明培养学生主动操作、合作探究的意识;3、引领学生感受古代文化的魅力,学习古人勇于探索的优良品质。
教学重点:用拼图、面积计算的方法证明勾股定理。
教学难点:“毕达哥拉斯”证法。
教具准备:三角尺、红笔、红粉笔、磁铁、4张直角三角形纸片、多媒体课件。
教学时间:2009年9月28日第2节课(公开课)教学地点:兴化市文正实验学校八(4)班教学过程:一.回顾与复习直角三角形有哪些性质?(用符号语言表达)板书:(1)边:∠C=90°→AC2+BC2=AB2(2)角:∠C=90°→CA+CB=90°(3)中线:∠C=90°→CD=ABAD=BD师:其中,性质(1)也叫什么定理?(板书课题:勾股定理)二.新授1.导入:勾股定理是人类数学史上一次重大的发现,全世界几乎所有拥有古代文化的民族和国家都对此定理实行了大量的研究,找到了很多证明方法。
下面呀!让我们一起沿着古人的足迹去寻找勾股定理的证明方法。
(补充板书:证明)2.问题(1):师:中国历史上第一位证明勾股定理的人三国时期东吴的数学家赵爽先生,他说呀……(出示课件)赵爽:“如果同学们能够用4个全等的直角三角形拼成一个正方形(中间允许有空隙),通过面积计算的方法就能够证明勾股定理了。
”你知道他的证明方法吗?来!和对方合作一下,拼拼看!(师生合作)师:哪位同学给大家展示一下你拼的正方形?(学生展示)还有不同的拼法吗?3.问题(2):师:如果老师给出直角三角形的三边长分别为a、b、c(教师在图中标上a、b、c)你能通过面积计算的方法证明勾股定理吗?(板书:a2+b2=c2?)谁来说说看?(学生分析)学生板书:方法(1):方法(2):∵S大=(a+b)2 ∵S大=c2S大=ab×4+c2S大=ab×4+(b-a)2∴(a+b)2=ab×4+c2∴c2=ab×4+(b-a)2a2+2ab+b2=2ab+ c2c2=2ab+b2-2ab+a2∴a2+b2=c2 ∴a2+b2=c2师点评:(1)(出示课件)你们的这幅图以前在2002年北京举行的国际数学家大会上被选做过会标,你们的这种证法就是1700年前赵爽先生当时所用的方法。
勾股定理(第一课时)【学习目标】1.知识技能(1)了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理.(2)运用勾股定理.2.解决问题经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识.3.数学思考通过勾股定理的实验演示,发展自身对图形变换的认识能力.4.情感态度坚持严谨的数学学习态度,体会勾股定理的应用价值.【学习重难点】1.重点:掌握了解勾股定理,会用面积法证明勾股定理并能运用勾股定理.2.难点:用面积法证明勾股定理.一、课前延伸一、思考下列问题:(1)三角形三边关系(2)分别画一个锐角三角形和一个钝角三角形,用刻度尺量出各边的长度(3)分别计算锐角三角形和钝角三角形较小两边的平方和与较大边的平方有何大小关系?(4)猜想直角三角形中较小两边的平方和与第三边的平方的关系.二、预习课本,完成思考题1.一个直角三角形的两条直角边分别为5cm、12cm,那么这个直角三角形斜边为.2.如图,要将楼梯铺上地毯,则需要米长的地毯.三、课内探究1、问题:毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系.(1)同学们,请你也来观察下图中的地面,看看能发现些什么?地面(2)你能找出图中正方形A、B、C面积之间的关系吗?(3)图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系?2、(1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?如图,每个小方格的面积均为1,以格点为顶点,有一个直角边分别是2、3的直角三角形.仿照上一活动,我们以这个直角三角形的三边为边长向外作正方形.(2)想一想,怎样利用小方格计算正方形A、B、C面积?(3)猜想:直角三角形三边有何数量关系四、课堂反馈1.在Rt△ABC,∠C=90°⑴已知a=b=5,求c.⑵已知a=1,c=2,求b.⑶已知c=17,b=8,求a.⑷已知a:b=1:2,c=5,求a.2.已知直角三角形的两边长分别为5和12,求第三边.3.小明的妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?4.如图,一根旗杆在离地面9m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆折断之前有多高?5.填空题(1)在Rt△ABC,∠B=90°,a=3,b=4,则c= .(2)在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= .(3)一个直角三角形的三边为三个连续偶数,则它的三边长分别为.(4)已知直角三角形的两边长分别为3cm和5cm,,则第三边长为.(5)已知等边三角形的边长为2cm,则它的高为,面积为.五、课后提升已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.勾股定理(第二课时)学习目标:1.知识目标:在上一节课学习了勾股定理的基础上,联系实际,应用勾股定理解决问题。
勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
初中数学教学案例18.1勾股定理(第一课时)教学目标知识技能数学思考解决问题情感态度教学重点教学难点教具教学过程教学流程教师活动学生活动设计意图情景引人[活动1]讲述资料故事提出问题1:数学家大会为什么用该图做会徽呢?它有什么特殊的含义吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.问题2:你听说过“勾股定理”吗?教师关注:学生对“赵爽弦图”及勾股定理的历史是否感兴趣.引人课题18.1《勾股定理》(板书课题)[活动2]学生观察图片发表见解.生1.会徽是很具有代表性的东西,比如2008年体育奥运会的会徽是五环旗.生2.我在其他的资料里见过这个图案.生3.课本面上也有这样的图案.(同学们积极踊跃的发言,学习积极性很高)学生当听到是“赵爽弦图”时,好奇之心更加强烈,学习热情很高.对“勾股定理”表示不从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料.探究新知A BC你知道他是通过什么途径找到怎样的三边关系的吗?问题1.你能发现S A、S B 、S C之间的关系吗?问题2.等腰直角三角形的三边a、b、c之间有什么关系?出示幻灯片3169254913否也有这样的性质呢?在本次活动中,教师重点关注:(1)教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形C的面积.理解观察图片后结合课本上的内容,学生很快就发现这一关系式SA+ SB=SCa2 + b2 = c2纷纷举手回答,并总结:等腰直角三角形的两条的平方问题是思维的起点,通过问题激发学生好奇心和主动学习的欲望.为学生提供参与数学活动的时间和组内交流(2)幻灯片展示答案(3)引导学生将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来:[活动3] 实践验证早在公元3世纪,我国数学家赵爽就用赵爽弦图验证了“勾股定理”幻灯片展示赵爽弦图教师详细介绍赵爽弦图的拼割过程.问题:.你能利用手中的材料通过其他的拼法验证勾股定理吗?试试看,你能拼几种在独立探究的基础上,学生分组(前后位四人一组)合作交流.用不同的方法得出大正方形C的面积生1:把C“补” 成边长为7的正方形面积的一半.生2:将正方形C分“割”成若干个直角边为整数的三角形当答案不同、意见有分歧时,所有同学都在积极思考,大胆发言,各抒己见,直到探求出正确结果.学生总结命题:直角三角形的两条直角边的平方和等于斜边的平方空间,让学生积极动手,发挥学生的主体作用,使学生在相互欣赏、争辩、互助中得到提高.,得出猜想实践验证在本次活动中,教师重点关注:(1)学生能否进行合理的拼图.对不同层次的学生有针对性地给予分析、帮助;(2)学生能否用语言准确的表达自己的观点.勾股定理(毕达哥拉斯定理)(板书)直角三角形两直角边的平方和等于斜边的平方。