勾股定理教案
- 格式:doc
- 大小:1.94 MB
- 文档页数:4
勾股定理教案完整版第一章:引入勾股定理1.1 目的:通过实际问题引入勾股定理的概念,让学生了解勾股定理在实际问题中的应用。
1.2 教学内容:介绍直角三角形的定义和特点引入勾股定理的定义和表述讲解勾股定理的应用和意义1.3 教学方法:通过实际问题引导学生思考直角三角形的特点利用图形和实例讲解勾股定理的定义和表述举例说明勾股定理在实际问题中的应用1.4 教学活动:1. 引导学生观察直角三角形的特点,提出问题引导学生思考直角三角形的边长关系2. 引入勾股定理的定义和表述,解释勾股定理的意义3. 通过实际问题让学生应用勾股定理解决问题,体会勾股定理的应用价值第二章:证明勾股定理2.1 目的:通过几何图形和证明方法让学生理解勾股定理的证明过程。
2.2 教学内容:介绍勾股定理的几何证明方法讲解勾股定理的代数证明方法分析不同证明方法的思路和特点2.3 教学方法:利用几何图形和证明方法引导学生理解勾股定理的证明过程通过代数证明方法让学生了解勾股定理的数学推导分析不同证明方法的思路和特点,培养学生的逻辑思维能力2.4 教学活动:1. 利用几何图形引导学生思考勾股定理的证明方法,引导学生进行证明尝试2. 讲解勾股定理的代数证明方法,引导学生理解和掌握证明过程3. 分析不同证明方法的思路和特点,让学生体会数学证明的逻辑性和美感第三章:应用勾股定理3.1 目的:通过实际问题让学生应用勾股定理解决问题,巩固对勾股定理的理解和掌握。
3.2 教学内容:介绍勾股定理在实际问题中的应用场景讲解勾股定理在直角三角形问题中的应用举例说明勾股定理在其他几何问题中的应用3.3 教学方法:通过实际问题引导学生应用勾股定理解决问题讲解勾股定理在直角三角形问题中的应用,巩固学生对勾股定理的理解举例说明勾股定理在其他几何问题中的应用,拓展学生的应用能力3.4 教学活动:1. 提出实际问题,引导学生应用勾股定理解决问题,体会勾股定理的实际应用价值2. 讲解勾股定理在直角三角形问题中的应用,进行例题讲解和练习3. 举例说明勾股定理在其他几何问题中的应用,进行例题讲解和练习第四章:巩固练习4.1 目的:通过练习题巩固学生对勾股定理的理解和掌握,提高学生的解题能力。
人教版初中数学八年级下册《勾股定理》教案一. 教材分析人教版初中数学八年级下册《勾股定理》是学生在学习了平面几何基本概念和性质、三角形的知识后,进一步研究直角三角形的一个重要性质。
本节课通过探究勾股定理,培养学生的逻辑思维能力和空间想象能力,为后续学习勾股定理的运用和解决实际问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作、推理能力。
但勾股定理的证明较为抽象,需要学生能够克服困难,积极思考,理解并掌握证明过程。
三. 教学目标1.了解勾股定理的定义和证明过程。
2.能够运用勾股定理解决直角三角形的相关问题。
3.培养学生的逻辑思维能力和空间想象能力。
4.激发学生对数学的兴趣,培养合作探究的精神。
四. 教学重难点1.教学重点:勾股定理的定义和证明过程。
2.教学难点:勾股定理的证明过程和运用。
五. 教学方法采用问题驱动法、合作探究法、讲解法、实践操作法等,引导学生主动参与,积极思考,培养学生的创新精神和实践能力。
六. 教学准备1.教具:直角三角形、尺子、三角板、多媒体设备。
2.学具:学生用书、练习册、文具。
七. 教学过程1.导入(5分钟)教师通过展示古代数学家赵爽的《勾股定理图》,引导学生观察、思考,提出问题:“为什么说这是一个直角三角形?它的两条直角边的边长是多少?”2.呈现(10分钟)教师引导学生观察、操作,发现直角三角形中,两条直角边的平方和等于斜边的平方。
教师呈现勾股定理的表述:“在一个直角三角形中,斜边和直角边的平方和等于斜边的平方。
”3.操练(10分钟)教师学生进行小组合作,运用勾股定理计算直角三角形的边长。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师通过多媒体展示一系列直角三角形的问题,引导学生运用勾股定理解决问题。
学生独立思考,教师选取部分学生进行讲解。
5.拓展(10分钟)教师引导学生思考:“勾股定理在其他领域的应用有哪些?”学生分组讨论,分享自己的看法。
勾股定理的优秀教案教案标题:探索勾股定理教学目标:1. 了解勾股定理的历史和背景2. 理解勾股定理的概念和原理3. 能够应用勾股定理解决实际问题4. 培养学生的逻辑思维和数学推理能力教学重点和难点:重点:勾股定理的概念和应用难点:如何引导学生自主发现勾股定理教学准备:1. PowerPoint课件2. 黑板、彩色粉笔3. 勾股定理的几何模型4. 练习题和实例教学过程:一、导入(5分钟)通过展示一些古希腊数学家的图片和介绍,引出勾股定理的历史和背景,激发学生对数学的兴趣。
二、概念讲解(15分钟)1. 通过PowerPoint课件介绍勾股定理的概念和公式2. 通过几何模型和实例讲解勾股定理的证明过程三、示范演练(15分钟)老师在黑板上进行几个勾股定理的示范演练,引导学生理解和掌握勾股定理的应用方法。
四、小组讨论(10分钟)学生分成小组,通过老师提供的实际问题,讨论如何运用勾股定理进行解答。
五、展示分享(10分钟)每个小组派代表进行展示,分享他们的解题思路和方法。
六、概念强化(10分钟)老师对勾股定理的概念进行强化和总结,帮助学生理清思路。
七、课堂练习(10分钟)老师布置几道勾股定理的练习题,让学生在课堂上进行解答。
八、作业布置(5分钟)布置相关的作业,巩固学生对勾股定理的理解和运用能力。
教学反思:通过本节课的教学,学生能够了解勾股定理的历史和背景,掌握勾股定理的概念和应用方法,培养了学生的逻辑思维能力和数学推理能力。
同时,通过小组讨论和展示分享,增强了学生的团队合作意识和表达能力。
14.1.1直角三角形的三边关系(第1课时)教学目标:1.经历用画直角三角探索勾股定理的过程,进一步理解掌握勾股定理;2.了解勾股定理的历史,初步掌握勾股定理的简单应用.3经历观察、归纳、猜想和验证的数学发现过程,发展合情合理的推理能力,沟通数学知识之间的内在联系,体会数形结合的思想.4通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值.5 通过获得成功的经验和克服困难的经历,增进数学学习的信心;对比介绍我国古代和西方数学家有关勾股定理的研究,对学生进行爱国主义教育.教学重点:勾股定理教学难点:勾股定理的探索教学过程一引入1你对直角三角形的角度关系了解多少?你对直角三角形的边的关系了解多少?2创设情境导入新课如图1955年希腊发行了一张邮票,图案像是由三个棋盘排列而成.这张邮票是纪念2500年前希腊一个学术和宗教团体——毕达哥拉斯学派,它的成立以及在文化上的贡献,请同学们数一数正方形中小方格的个数,看有什么发现?二探究得出新知1.小组合作,根据表格中的要求画直角三角形,其中∠C=90°,量出c的长度,学生活动:(1))、验证.(2)各小组之间交流结论,一致得出:两直角边的平方和等于斜边的平方.老师活动:用几何画板,画任意的直角三角形,然后有度量和计算功能,做出一般直角三角形三边关系的表格.同样得到两直角边的平方和等于斜边的平方.板书:[勾股定理]直角三角形两直角边的平方和等于斜边的平方.提示:注意勾股定理中的关键点.教师提问:你能证明这一结论吗?这是下节课的知识,请同学们课后通过阅读课本或上网查找相关的资料,来证勾股定理.三应用举例例1在Rt⊿ABC中,已知∠B=90°,AB=6,BC=8.求AC.变式:(例1补充)在Rt△ABC,∠C=90°(1)已知a=b=5,求c;(2)已知a=1,c=2,求b;(3)已知c=17,b=8,求a;(4)已知a:b=1:2,c=5,求a.刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系.(1)已知两直角边,求斜边直接用勾股定理.(2)(3)已知斜边和一直角边,求另一直角边,用勾股定理的变式.(4)已知一边长,两边比,求未知边.四拓展提升例2已知△ABC中,BC边的上的高为AD,AB=13,BC=19,AD=5,求BD及AC的长.四课堂训练1.课本P111中的练习T1,22.课本P117中的习题1.1中的T2五小结图14-1-1.直角三角形的角度关系2.直角三角形三边关系勾股定理:直角三角形中,两直角边的平方和等于斜边的平方:a2+b2=c2(其中c是斜边).3.勾股定理的变式c=a2+b2,a=c2-b2,b=c2-a2.【教学反思】①设置问题情景,体现数学来源于生活,通过观察感悟图形中的美妙之处,体现勾股定理的美学价值,激发学生的求知探索欲望.②通过画直角三角形,操作、观察、计算、探索出勾股定理的内容,让学生切身感受到自己是学习的主人.为学生今后获取知识、探索发现和创造打下了良好的基础.这种方法符合学生认识图形的过程,培养了学生合作学习、主动探索、敢于实践、善于发现的科学精神以及合作交流的学习习惯,最后通过例题巩固勾股定理,体会勾股定理定理的变式.教学内容:直角三角形的三边关系(第2课时)教学目标:1理解几种常见证明勾股定理的方法,并会验证勾股定理;2应用勾股定理解决一些简单实际问题.3用勾股定理会进行灵活变形,已知直角三角形的任两边,会求它的第三边;会将实际问题转化为数学问题.4在勾股定理的应用过程中,培养探究能力和合作精神,感受勾股定理的作用,培养数学素养.教学重点:应用勾股定理解决简单的实际问题.教学难:将实际问题转化为数学问题中数形结合的思想.一复习1勾股定理:直角三角形中,两直角边的平方和等于斜边的平方:a2+b2=c2(其中c是斜边).2.勾股定理的变式c=a2+b2,a=c2-b2,b=c2-a2.【探究3】探究只有直角三角形才满足a2+b2=c2.二应用例1【教材例2】如图,Rt⊿ABC的斜边AC比直角边AB长2 cm,另一直角边BC长为6 cm,求AC的长.变式:如图14-1-,在Rt⊿ABC中,∠C-90°,AD、BE是中线,AD=,BE=,求AB 的长.例2【教材p111例3】如图14-1-,为了求出位于湖两岸的点A、B之间的距离,一名观测者在点C设桩,使△ABC 恰好为直角三角形.通过测量,得到AC的长为16米,BC的长为12米.问从点A穿过湖到点B有多远?三拓展提升图14-1-例3如图14-1-,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC 为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2015个等腰直角三角形的斜边长是__(____)2015__.四课堂训练1.放学以后,小红和小颖从学校分手,分别沿着东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖用20分钟到家,小红和小颖家的距离为()A.600米;B.800米;C.1000米;D.不能确定2.等腰三角形的腰长为13 cm,底边长为10 cm,则面积为().A.30 cm2B.130 cm2C.120 cm2D.60 cm23.下列阴影部分是一个正方形,求此正方形的面积图14-1-图14-1-4.如图14-1-,受台风麦莎影响,一棵高18 m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高.五小结勾股定理的变式c=a2+b2,a=c2-b2,b=c2-a2.作业P112/ 1教学内容:直角三角形的判定教学目标1掌握勾股定理的逆定理,并能进行简单的应用;理解勾股数的概念并能熟记常用的勾股数.2经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.3通过应用勾股定理逆定理解决实际问题,培养应用数学的意识.教学重点:通过边长判断一个三角形是否是直角三角形,熟悉几组勾股数,并会辨析哪些问题应用哪个结论.教学难点:解勾股定理的逆定理是通过数的关系来反映形的特点.教学过程:一复习引入1.上节课的勾股定理内容是什么?画出图形,写出表达式.2.如何判定一个三角形是直角三角形?学生一般是从直角三角的定义出发,或两个角互余的三角形是直角三角形.二探索新知活动内容1:下面有三组数,分别是一个三角形的三边长a,b,c,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:1.这三组数都满足a2+b2=c2吗?2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数.活动内容2:提问:有同学认为测量结果可能有误差,不同意这个发现.你认为这个发现正确吗?你能给出一个更有说服力的理由吗?如果一个三角形的三边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.活动内容3:勾股定理的逆定理的证明勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角形三角,且边c所对的角为直角.图14-1-已知:如图14-1-,在△ABC中,AB=c,BC=a,AC=b,a2+b2=c2.求证:∠C=90°证明:如图14-1-(2)所示,作△A′B′C′,使∠C′=90°,A′C′=b,B′C′=a,则A′B′2=a2+b2=c2,即A′B′=c.在△ABC和△A′B′C′中,∵BC=a=B′C′,AC=b=A′C′,AB=c=A′B′,∴△ABC≌△A′B′C′.∴∠C=∠C′=90°.活动内容4:反思总结提问:1.同学们还能找出哪些勾股数呢?2.今天的结论与前面学习勾股定理有哪些异同呢?3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?三应用例1(教材第113页-114页)已知△ABC,AB=a2-1,BC=2n,AC=n2+1(n为大于1的正整数),试问△ABC是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由.变式变形1.如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?2.已知△ABC的三边长为a,b,c,根据下列各组已知条件,试判定△ABC的形状.(1)a=41,b=40,c=9.(2)a=m2-n2,b=m2+n2,c=2mn.(m>n>0)四、练习P114/练习1、2题五、小结勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角形三角,且边c所对的角为直角.六、作业P118/5教学内容:反证法教学目标:1通过实例体会反证法的含义.培养用反证法简单推理的技能,进一步培养观察能力、分析能力、逻辑思维能力及解决问题的能力.2了解反证法证题的基本步骤,会用反证法证明简单的命题3通过学习反证法,让学生体会用直接证法证明命题困难时,用反证法解决数学问题时的优势.教学重点:应用反证法解决简单的数学问题.教学难点:证明过程中引出矛盾所在.教学过程:一、探究新知在△ABC中,已知AB=c,BC=a,CA=b,且∠C≠90°.求证:a2+b2≠c2.问题:根据勾股定理及其逆定理,你能直接证明吗?思考:假设a2+b2=c2,则由勾股定理的逆定理可以得到∠C=90°,这与已知条件∠C≠90°产生矛盾,因此,假设a2+b2=c2是错误的.所以a2+b2≠c2是正确的.有些命题想从已知条件出发,经过推理,得出结论是很困难的,因此,人们想出了一种证明这种命题的方法,即反证法.归纳:反证法的步骤:1.假设命题的结论的反面是正确的;2.从这个假设出发,经过逻辑推理,推出与公理、巳证的定理、定义或已知条件矛盾;3.由矛盾判定假设不正确,从而肯定命题的结论是正确的.二、应用例1【教材p116页例5】求证:两条直线相交只有一个交点.已知:两条相交直线l1与l2.求证:l1与l2只有一个交点.例2【教材p116例6】求证:在一个三角形中,至少有一个内角小于或等于60°.【归纳总结】用反证法证明一个命题时,要先把文字命题转化为符号命题,写出已知和求证,再用反证法完成证明.证明过程的步骤主要是:先假设结论的反面是正确的;然后通过演绎推理,推出与基本事实、已证的定理、定义或已知条件相矛盾;从而说明假设不成立,进而得出原结论正确.变式:用反证法证明:两直线都与第三条直线平行,那么这两条直线也与第三条直线平行.三、当堂训练1.要证明命题“若a>b,则a2>b2”是假命题,下列a、b的值不能作为反例的是()A.a=1,b=-2B.a=0,b=-1C.a=-1,b=-2D.a=2,b=-12.选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°”时,应先假设( )A .∠A>45°,∠B>45°B .∠A ≥45°,∠B ≥45°C .∠A<45°,∠B<45°D .∠A ≤45°,∠B ≤45°3.用反证法证明命题“在直角三角形中至少有一个锐角不大于45°”时,应先假设( )A .有一个锐角小于45°B .每一个锐角都小于45°C .有一个锐角大于45°D .每一个锐角都大于45°四、小结反证法⎩⎪⎨⎪⎧假设推理得到矛盾否定假设,则原命题的结论成立五、作业P117 练习第2题教学反思:。
勾股定理教学设计勾股定理教学设计1一、教学目标1、让学生通过对的图形制造、观察、思考、猜想、验证等过程,体会勾股定理的产生过程。
2、通过介绍我国古代讨论勾股定理的成就感培育民族自豪感,激发学生为祖国的复兴努力学习。
3、培育学生数学发现、数学分析和数学推理证明的能力。
二、教学重难点利用拼图证明勾股定理三、学具准备四个全等的直角三角形、方格纸、固体胶四、教学过程(一) 趣味涂鸦,引入情景老师:很多同学都喜欢在纸上涂涂画画,今天想请大家帮老师完成一幅涂鸦,你能按要求完成吗?(1)在边长为1的方格纸上任意画一个顶点都在格点上的直角三角形。
(2)再分别以这个三角形的三边向三角形外作3个正方形。
学生活动:先独立完成,再在小组内互相沟通画法,最后班级展示。
(二)小组探究,大胆猜想老师:观察自己所涂鸦的图形,回答下列问题:1、请求出三个正方形的面积,再说说这些面积之间具有怎样的数量关系?2、图中所画的直角三角形的边长分别是多少?请根据面积之间的关系写出边长之间存在的数量关系。
3、与小组成员沟通探究结果?并猜想:如果直角三角形两直角边分别为a、b,斜边为c,那么a,b,c具有怎样的数量关系?4、方法提炼:这种利用面积相等得出直角三角形三边等量关系的方法叫做什么方法?学生活动:先独立思考,再在小组内互相沟通探究结果,并猜想直角三角形的三边关系,最后班级展示。
(三)趣味拼图,验证猜想老师:请利用四个全等的直角三角形进行拼图。
1、你能拼出哪些图形?能拼出正方形和直角梯形吗?2、能否就你拼出的图形利用面积法说明a2+b2=c2的合理性?如果可以,请写下自己的推理过程。
学生活动:独立拼图,并思考如何利用图形写出相应的证明过程,再在组内沟通算法,最后在班级展示。
(四)课堂训练巩固提升老师:请完成下列问题,并上台进行展示。
1.在Rt△ABC中,△C=900,△A,△B,△C的对边分别为a,b,c已知a=6,b=8.求c.已知c=25,b=15.求a .已知c=9,a=3.求b.(结果保留根号)学生活动:先独立完成问题,再组内沟通解题心得,最后上台展示,其他小组帮助解决问题。
一、教学目标1. 让学生理解勾股定理的定义和证明过程。
2. 培养学生运用勾股定理解决实际问题的能力。
3. 提高学生对数学美的感悟,培养学生的逻辑思维和空间想象能力。
二、教学重点与难点1. 教学重点:勾股定理的定义、证明及应用。
2. 教学难点:勾股定理的证明过程和灵活运用。
三、教学方法1. 采用问题驱动法,引导学生探究勾股定理。
2. 运用多媒体辅助教学,直观展示勾股定理的应用场景。
3. 结合实例,让学生通过自主探究、合作交流的方式,理解并掌握勾股定理。
四、教学准备1. 教师准备:勾股定理的相关知识、实例及教学课件。
2. 学生准备:笔记本、文具、数学素养。
五、教学过程1. 导入新课1.1 教师通过展示直角三角形模型,引导学生观察并提出问题:“直角三角形的两条直角边长分别为3cm和4cm,请问斜边长是多少?”1.2 学生尝试解答,教师给予引导和提示。
2. 自主探究2.1 教师提出问题:“你能发现勾股定理的规律吗?”2.2 学生分组讨论,尝试证明勾股定理。
2.3 各组汇报成果,教师点评并总结。
3. 讲解与演示3.1 教师讲解勾股定理的证明过程,并结合多媒体展示。
3.2 学生跟随教师一起动手操作,加深对勾股定理的理解。
4. 应用练习4.1 教师提出应用题,让学生运用勾股定理解决问题。
4.2 学生独立解答,教师给予指导和评价。
5. 课堂小结5.1 教师引导学生总结本节课所学内容。
5.2 学生分享学习心得,教师给予鼓励和指导。
6. 课后作业6.1 教师布置作业,让学生巩固勾股定理的知识。
6.2 学生认真完成作业,教师及时批改和反馈。
7. 教学反思教师在课后对教学过程进行反思,总结优点和不足,为下一节课的教学做好准备。
六、教学拓展1. 教师提出拓展问题:“勾股定理在其他领域的应用有哪些?”2. 学生分组讨论,教师给予引导和提示。
3. 各组汇报成果,教师点评并总结。
七、评价与反馈1. 教师对学生的学习情况进行评价,包括知识掌握、能力培养和素养提升等方面。
优质课教案教学设计-勾股定理一、教学目标:1. 知识与技能:(1)理解勾股定理的定义和证明;(2)能够运用勾股定理解决实际问题。
2. 过程与方法:(1)通过探究直角三角形三边的关系,发现勾股定理;(2)学会运用几何图形和数学推理证明勾股定理。
3. 情感态度与价值观:(1)培养学生的数学思维能力,提高对数学的兴趣;(2)培养学生合作探究、解决问题的能力。
二、教学重点与难点:1. 教学重点:(1)勾股定理的定义和证明;(2)运用勾股定理解决实际问题。
2. 教学难点:(1)勾股定理的证明;(2)灵活运用勾股定理解决复杂问题。
三、教学过程:1. 导入:(1)利用多媒体展示直角三角形的图片,引导学生观察直角三角形三边的关系;(2)提问:你们能否发现直角三角形三边之间存在某种特殊的关系?2. 探究:(2)每组派代表分享讨论成果,引导学生发现勾股定理。
3. 证明:(1)引导学生思考如何证明勾股定理;(2)学生分组探究,尝试证明勾股定理;(3)展示各种证明方法,引导学生理解并掌握勾股定理的证明。
四、巩固练习:1. 基本练习:(1)完成教材课后练习题;(2)利用勾股定理计算直角三角形的相关边长。
2. 拓展练习:(1)解决实际问题,如测量房屋的高度;(2)尝试证明其他定理,如毕达哥拉斯定理。
2. 教师点评学生表现,强调勾股定理的重要性和应用价值;3. 学生反思学习过程,提出改进措施。
六、教学评估1. 课堂观察:观察学生在探究和证明过程中的参与程度、思维活跃度和合作意识。
2. 练习反馈:收集学生的练习答案,分析其对勾股定理的理解和运用情况。
3. 学生评价:通过学生自评、互评和教师评价,了解学生的学习效果。
七、教学延伸1. 开展数学竞赛,激发学生学习兴趣;2. 组织数学沙龙,让学生分享勾股定理的应用实例;3. 推荐相关阅读材料,拓展学生知识面。
八、教学资源1. 多媒体课件:制作直观生动的课件,帮助学生形象理解勾股定理;2. 教学素材:提供丰富的勾股定理相关题目和案例,方便学生练习和探究;3. 在线资源:推荐相关数学网站和论坛,便于学生交流和获取更多信息。
勾股定理教案2篇(一等奖)教材分析:这节课是九年制义务教育课程标准实验教科书(苏科版),八年级上册第三章第一节“勾股定理”的第一课时、勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的重要性质,它把三角形有一个直角“形”的特点转化为三边之间的“数”的关系,它是数形结合的典范,它可以解决许多直角三角形中的计算问题、学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解、教学目标:1、让学生经历从数到形再由形到数的转化过程,从探求三个正方形面积间的关系转化为三边数量关系的过程、培养学生主动探究意识,发展合理推理能力,体会数形结合思想、2、能说出勾股定理,并能用勾股定理解决简单问题、3、在经历数学知识的形成与应用过程中培养学生学习数学的兴趣;感受勾股定理的文化价值、教学重点:探索勾股定理的过程,会利用两边长求直角三角形的另一边长、教学难点:用割、补法求面积探索勾股定理、教学方法与教学手段:采用探究发现式教学,提供适当的问题情境、给学生自主探究交流的空间,引导学生有方向地探索、教学过程:(一)创设情境提出问题1、同学们,我们已经学过三角形的一些基本知识,如果一个三角形的两条边分别长6和8,你能确定第三边的长吗?你能确定第三边的长的范围吗?2、如果这两边所夹的角确定了,那么第三边的长确定吗?第三边的长是多少?3、直角三角形两边长确定了,第三边的长确定吗?如何求第三边的长呢?这节课就让我们一起来探讨这个问题、板书:直角三角形三边数量关系、(这是对三角形三边的不等关系和三角形全等的判定的回顾,从学生的原有认知出发,揭示这节课产生的根源,符合学生的认知心理,也自然地引出本节课的目标、当一般性的问题不好解决时,可以先将一般问题转化为特殊问题来研究)(二)实践探索猜想归纳1、(几何画板出示),观察图形,我们以直角三角形ABC三边为边向形外作三个正方形、若将图形①②③④⑤剪下,用它们可以拼一个与正方形ABDE 大小一样的正方形吗?(同桌同学合作拼图)通过拼图,你有什么发现?(以BC为边的正方形面积与以AC为边的正方形面积的和等于以AB为边的正方形面积)(拼图活动,引发了学生的猜想,增加了研究的趣味性,锻炼了学生的空间思维能力和动手能力,体现了活动——数学)2、拼图活动引发我们的灵感,运算推演证实我们的猜想、为了计算面积方便,我们可将这幅图形放在方格纸中、如果每一个小方格的边长记作“1”,请你求出此时三个正方形的面积(SP=9,SQ=16)你是如何得到的?(可以数,也可以通过正方形面积公式计算得到)如何求SR?(SR的求法是这节课的难点,这时可让学生先在学案上独立分析,再通过小组交流,最后由小组代表到台前展示)学生可能提出割、补、平移、旋转四种方法(旋转这种方法只适用于斜边为整数的情况,没有一般性,而且此时斜边的长还不能求出来.若有学生提出,应提醒学生)肯定学生的研究成果,进而让学生打开书回顾课本上的提示、从小明、小丽的方法中你能得到什么启发?(把图形进行“割”和“补“,即把不能利用网格线直接计算面积的图形转化成可以利用网格线直接计算面积的图形、这种思想方法,称为化归思想)3、变化直角三角形,仿照以上方法计算直角边为5和3的直角三角形中以斜边为边的正方形面积(这是“割”和“补”思想的再一次应用、让学生感受所学即所用,体验成功的'乐趣)4、通过计算,你发现这三个正方形面积间有什么关系吗?(SP+SQ=SR,要给学生留有思考时间)5、利用方格纸,我们方便计算直角边为整数的情况,若直角边为小数时,所得到的正方形面积间也有如上关系吗?将网格线去掉,利用几何画板中的度量工具可以看到SP+SQ=SR(利用几何画板的高效性、动态性反映这一过程,让学生体会到更多一般的情形,从而为归纳提供基础,这样归纳的结论更具有一般性,学生的印象也更深刻)6、我们这节课是探索直角三角形三边数量关系、至此,你对直角三角形三边的数量关系有什么发现?(面积是边长的平方,面积间的等量关系转化为边长间的等量关系,即直角三角形三边的等量关系:两直角边的平方和等于斜边的平方)(这一问题的结论是本节课的点睛之笔,应充分让学生总结、交流、表达)7、用弯曲的手臂形象地表示勾、股、弦的概念,再给出勾股定理,进而给出字母表达式、一段紧张的探索过程之后,播放一段有关勾股历史的录音(这样既活跃了课堂气氛,又展现了勾股历史,激发学生热爱祖国悠久历史文化,激励学生发奋学习的情感)(三)学以致用体验成功1、完成课本第79-80页练习1、2(1)求下列直角三角形中未知边的长:(2)求下列图中未知数x、y、z的值:在学生回答的基础上,老师规范板书一题、(在对勾股定理基本应用的基础上,让学生体会知道直角三角形三边中的任意两边,可以求第三边)(四)课堂小结学生可以谈本节课的收获,也可以提出本节课的疑问、教师引导学生思考特殊的三角形直角三角形三边有特殊的等量关系,一般三角形三边是否也存在一种等量关系呢?这是我们今后将要探讨的内容、(学生总结本堂课的收获,从内容、应用,到数学思想方法,获取知识的途径等方面,给学生自由的空间,鼓励学生多说、这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力、最后提及的问题与引入首尾呼应,激发了学生深入研究的兴趣)(五)布置作业P82习题3.1第1、2题勾股定理教案(一等奖)一、教学内容分析这节课是人教版九年义务教育课程标准实验教材八年级第十八章勾股定理第一课时,是在前面学习了直角三角形一些性质的基础上学习的。
勾股定理优秀教学设计模板(精选11篇)勾股定理优秀教学设计模板(精选11篇)作为一位不辞辛劳的人民教师,通常需要用到教学设计来辅助教学,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
我们应该怎么写教学设计呢?以下是小编精心整理的勾股定理优秀教学设计模板,欢迎阅读与收藏。
勾股定理优秀教学设计篇1一、教案背景概述:教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。
它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。
本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学生分析:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。
2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。
设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。
教学目标:1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。
2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。
3、培养学生学习数学的兴趣和爱国热情。
4、欣赏设计图形美。
二、教案运行描述:教学准备阶段:学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。
勾股定理核心素养教案教案标题:勾股定理核心素养教案教案目标:1. 理解勾股定理的概念和原理。
2. 能够应用勾股定理解决实际问题。
3. 培养学生的逻辑思维和数学推理能力。
4. 提高学生的问题解决能力和团队合作精神。
教学重点:1. 理解勾股定理的概念和原理。
2. 能够应用勾股定理解决实际问题。
教学难点:1. 将勾股定理应用于实际问题的解决。
2. 培养学生的逻辑思维和数学推理能力。
教学准备:1. 教师准备:投影仪、教学PPT、白板、笔记本电脑等。
2. 学生准备:课本、笔记本、尺子、直角三角板等。
教学过程:一、导入(5分钟)1. 引入勾股定理的背景和应用场景,激发学生的学习兴趣。
2. 提问:你们对勾股定理有什么了解?它有什么应用?二、知识讲解(15分钟)1. 通过教学PPT或板书,介绍勾股定理的定义和公式。
2. 解释勾股定理的原理和推导过程。
3. 引导学生理解直角三角形的概念和性质。
三、示范演示(15分钟)1. 教师通过实际示范,展示如何使用勾股定理求解直角三角形的边长。
2. 引导学生观察示范过程,帮助他们理解和掌握应用勾股定理的方法。
四、小组合作探究(20分钟)1. 将学生分成小组,每个小组由3-4名学生组成。
2. 给每个小组分发一些直角三角形的边长数据,要求他们应用勾股定理计算斜边长。
3. 鼓励学生相互讨论、合作解决问题,培养他们的团队合作精神。
五、讲解总结(10分钟)1. 分享各小组的解决方法和答案,让学生相互学习和交流。
2. 总结勾股定理的应用要点和注意事项。
3. 引导学生思考:勾股定理在日常生活中的实际应用。
六、拓展延伸(10分钟)1. 提供一些勾股定理相关的拓展问题,让学生思考和解决。
2. 鼓励学生尝试使用勾股定理解决其他几何问题,拓展他们的数学思维。
七、作业布置(5分钟)1. 布置一些课后习题,要求学生应用勾股定理解决问题。
2. 鼓励学生积极思考和讨论,提高问题解决能力。
教学反思:1. 教师应根据学生的实际情况和学习进度,合理调整教学内容和教学方法。
勾股定理教案范⽂3篇勾股定理逆定理教案重点、难点分析本节内容的重点是勾股定理的逆定理及其应⽤.它可⽤边的关系判断⼀个三⾓形是否为直⾓三⾓形.为判断三⾓形的形状提供了⼀个有⼒的依据.本节内容的难点是勾股定理的逆定理的应⽤.在⽤勾股定理的逆定理时,分不清哪⼀条边作斜边,因此在⽤勾股定理的逆定理判断三⾓形的形状时⽽出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到⼀个⽬标式,这种“转化”对学⽣来讲也是⼀个困难的地⽅.教法建议:本节课教学模式主要采⽤“互动式”教学模式及“类⽐”的教学⽅法.通过前⾯所学的垂直平分线定理及其逆定理,做类⽐对象,让学⽣⾃⼰提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂⽓氛.通过师⽣互动、⽣⽣互动、学⽣与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学⽣思维能⼒的⽬的.具体说明如下:(1)让学⽣主动提出问题利⽤类⽐的学习⽅法,由学⽣将上节课所学习的勾股定理的逆命题书写出来.这⾥分别找学⽣⼝述⽂字;⽤符号、图形的形式板书逆命题的内容.所有这些都由学⽣⾃⼰完成,估计学⽣不会感到困难.这样设计主要是培养学⽣善于提出问题的习惯及能⼒.(2)让学⽣⾃⼰解决问题判断上述逆命题是否为真命题?对这⼀问题的解决,学⽣会感到有些困难,这⾥教师可做适当的点拨,但要尽可能的让学⽣的发现和探索,找到解决问题的思路.(3)通过实际问题的解决,培养学⽣的数学意识.教学⽬标:1、知识⽬标:(1)理解并会证明勾股定理的逆定理;(2)会应⽤勾股定理的逆定理判定⼀个三⾓形是否为直⾓三⾓形;(3)知道什么叫勾股数,记住⼀些觉见的勾股数.2、能⼒⽬标:(1)通过勾股定理与其逆定理的⽐较,提⾼学⽣的辨析能⼒;(2)通过勾股定理及以前的知识联合起来综合运⽤,提⾼综合运⽤知识的能⼒.3、情感⽬标:(1)通过⾃主学习的发展体验获取数学知识的感受;(2)通过知识的纵横迁移感受数学的辩证特征.教学重点:勾股定理的逆定理及其应⽤教学难点:勾股定理的逆定理及其应⽤教学⽤具:直尺,微机教学⽅法:以学⽣为主体的讨论探索法教学过程:1、新课背景知识复习(投影)勾股定理的内容⽂字叙述(投影显⽰)图形(画在⿊板上)2、逆定理的获得(1)让学⽣⽤⽂字语⾔将上述定理的逆命题表述出来(2)学⽣⾃⼰证明逆定理:如果三⾓形的三边长有下⾯关系:那么这个三⾓形是直⾓三⾓形强调说明:(1)勾股定理及其逆定理的区别勾股定理是直⾓三⾓形的性质定理,逆定理是直⾓三⾓形的判定定理.(2)判定直⾓三⾓形的⽅法:①⾓为、②垂直、③勾股定理的逆定理2、定理的应⽤(投影显⽰题⽬上)例1如果⼀个三⾓形的三边长分别为则这三⾓形是直⾓三⾓形证明:∠C=例2已知:如图,四边形ABCD中,∠B=,AB=3,BC=4,CD=12,AD=13求四边形ABCD的⾯积解:连结AC∠B=,AB=3,BC=4AC=5∠ACD=例3如图,已知:CDAB于D,且有求证:ACB为直⾓三⾓形证明:CDAB⼜ABC为直⾓三⾓形以上例题,分别由学⽣先思考,然后回答.师⽣共同补充完善.(教师做总结)4、课堂⼩结:(1)逆定理应⽤时易出现的错误:分不清哪⼀条边作斜边(最⼤边)(2)判定是否为直⾓三⾓形的⼀种⽅法:结合勾股定理和代数式、⽅程综合运⽤.5、布置作业:a、书⾯作业P131#9b、上交作业:已知:如图,DEF中,DE=17,EF=30,EF边上的中线DG=8求证:DEF是等腰三⾓形板书设计:分别以直⾓三⾓形三边为直径作三个半圆,这三个半圆的⾯积之间有什么关系?为什么?提⽰:设直⾓三⾓形边长分别为则三个半圆⾯积分别为勾股定理教学案例设计【教学⽬标】⼀、知识⽬标1.了解勾股定理的⽂化背景,体验勾股定理的探索过程。
勾股定理(一)
常德市第二中学张美荣
教学目标
1、知识与技能
知识点掌握程度
了解理解掌握熟练应用
勾股定理的内容√
勾股定理的证明√
勾股定理的文化背景√
勾股定理的应用√
2、过程与方法
让学生经历“观察——猜测——证明——应用”的数学探究过程,在动手实践中体会“特殊到一般”和“数形结合”的数学思想方法。
3、情感态度与价值观
通过实验,让学生感受到数学所具有的探索性和创造性,激发学生探究热情,培养学生良好的团队合作意识和创新精神。
通过对我国古代数学成就的了解,增强民族自豪感,激发学习热情。
教学重点与难点
教学重点:勾股定理的探索过程与应用
教学难点:勾股定理的证明
教学过程
一、创设情景引入新知
创设校园问题情景
1、观看多媒体照片
照片中,你看到了什么?
2、抽象出数学问题
如图,少数师生为了走“捷径”,在学校求索馆前的长方形草坪内走出一条小路AB。
已知两步为1m,你能算出“捷径”省了多少路吗?从计算出的结果,你有怎样的想法?
引导学生分析:要算节省的路程,就要算出AB的长,Rt△AOB中,已经知道AO、BO 的长,如何计算AB呢?即问题转化为:直角三角形中已知两边,如何求第三边?
这就是我们今天要探究的内容:勾股定理
二、测量实验猜测新知
操作一
在方格纸上画一个顶点都在格点上的R t△ABC,∠C=90°,其中a=3,b=4,测量斜边c 的长度。
操作二
分别以R t△ABC三边a、b、c为边长向外作正方形S、T、P,则正方形S、T的面积是多少?正方形P呢,如何计算?
引导学生先画图,由画图过程去体会正方形P的计算方法(割补法),然后请学生来表述。
操作三
继续实验,完成下表:
面积实验组S2
()
a T2
()
b P2
()
c三正方形
面积关系
实验一9 16
实验二 1 1
实验三 4 9
观察实验结果,猜测:
分析:学生从实验结果不难发现,S、T的面积之和恰好等于P的面积,由此猜测222
a b c
+=,即勾股定理:
直角三角形两直角边a,b的平方和,等于斜边c的平方.
222
a b c
+=
三、拼图探究验证新知
(一)拼图实验
步骤1剪出四个全等的(如右图)直角三角形,其中c为斜边,且b>a.
步骤2用这四个直角三角形拼出一个正方形(中间可以出现空心).
学生作品展示
运用多媒体工具(备课王)展示学生作品:
(Ⅰ) (Ⅱ) (二)运用拼图,验证勾股定理
作品(Ⅰ)中,大正方形的面积是多少?说说你的计算方法:
法一 正方形边长为(a+b )
则面积为2
()a b +
法二 正方形由四个直角三角形和一个正方形构成,则面积等于各个部分面积之和为
21
42
ab c ⨯+
由两种方法算出的面积相等,得出
2
21
()42
a b ab c +=⨯
+ 化简后得到 2
2
2
a b c +=
试一试
类似地,让学生自主探究,运用作品(Ⅱ)证明勾股定理,请学生到黑板上演示过程,师生共评学生给出的证明方法。
同时,指出作品(Ⅱ)就是著名的赵爽玄图,并介绍其相关历史背景。
介绍一下古今中外对勾股定理的研究。
让学生了解我国对勾股定理的发现比古希腊的毕达哥拉斯还早500多年。
(三)理解勾股定理 学习小组思考讨论:
1、勾股定理在任意三角形中都存在吗?
2、勾股定理有怎样的意义和用途呢?
3、引导学生写出勾股定理的几种表达形式: 若R t △ABC 中,∠C=90°则 ①22c a b =+ ②22b c a =-; ③22a c b =- 四、师生互动 应用新知 做一做
1、在R t △ABC 中,∠C=90° ①若a=8,b=6,则c=_________. ②若c=20,b=12,则a=__________.
2、如图,等腰△ABC 中,AB=AC=13cm ,BC=10cm , ①你能算出BC 边上的高AD 的长吗?
②△ABC的面积是多少?
试一试
现在你能计算出引入情景中“捷径”省下了几步路吗?结合计算结果,说说你的感想。
五、小结拓展内化新知
㈠课堂小结
思考、讨论:
这节课我学到了什么?
我还有哪些困惑?
㈡拓展思考
已知△ABC的两边分别为3和4,求第三边的长
六、分层作业巩固新知
基础题(必做)
教材101页习题3.6 A组1、2题
延伸题(选做)
1、一根长为70厘米的木棒,要放在长,宽,高分别为50厘米,40厘米,30厘米的长方体木箱中,能放进去吗?为什么?
2、搜集勾股定理古今中外相关历史背景及证明方法,了解美丽的勾股树。