河北省2018年中考数学总复习第二编专题突破篇专题6二次函数与综合应用精练试题及答案
- 格式:doc
- 大小:185.00 KB
- 文档页数:5
2018年中考数学二次函数压轴题汇编(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年中考数学二次函数压轴题汇编(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年中考数学二次函数压轴题汇编(word版可编辑修改)的全部内容。
1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N 能否成为正方形?若能,求出m的值;若不能,请说明理由.3.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.4.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.6.已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).(1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.①当点P’落在该抛物线上时,求m的值;②当点P’落在第二象限内,P’A2取得最小值时,求m的值.7.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.8.已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是.A.0 B。
二次函数的图像、性质及解析式【知识梳理】【方法集会】一.二次函数的概念(一)二次函数的定义一般地,形如c bx ax y ++=2(c b a ,,为常数,0≠a )的函数称为x 的二次函数,其中x 为自变量,y 为因变量,c b a ,,分别为二次函数的二次项、一次项和常数项系数.二.二次函数的图象性质二次函数c bx ax y ++=2)(0≠a 的性质 1、对称轴:a b x 2-= 2、顶点坐标:)442(2ab ac a b --, (1)最值:当0>a 时有最小值ab ac 442- 当0<a 时有最大值ab ac 442- (2)单调性:二次函数c bx ax y ++=2(0≠a )的变化情况(增减性)当0>a 时,对称轴左侧a b x 2-<,y 随着x 的增大而减小,在对称轴的右侧a b x 2-> ,y 随x 的增大而增大;当0<a 时,对称轴左侧a b x 2-<, y 随着x 的增大而增大,在对称轴的右侧a b x 2->,y 随x 的增大而减小;二次函数k h x a y +-=2)()(0≠a 的性质1、对称轴: x h =2、顶点坐标: (,)h k3、最值:0a >时有最小值k0a <时有最大值k ;二次函数21()()y a x x x x =--)(0≠a 的性质 1、对称轴: 212x x x +=2、与x 轴的交点坐标为21(,0),(,0)x x(六)二次函数的图象与系数的关系3、a 的符号决定抛物线的开口方向:当0a >时,抛物线开口向上;当0a <时,抛物线开口向下.4、a 决定抛物线的开口大小:a 越大,抛物线开口越小;a 越小,抛物线开口越大.5、a 和b 共同决定抛物线对称轴的位置(抛物线的对称轴:2b x a=-) 当0b =时,抛物线的对称轴为y 轴;当a 、b 同号时,对称轴在y 轴的左侧;当a 、b 异号时,对称轴在y 轴的右侧.简要概括为“左同右异” . 6、c 的大小决定抛物线与y 轴交点的位置(抛物线与y 轴的交点坐标为()0c ,) 当0c =时,抛物线与y 轴的交点为原点;当0c >时,交点在y 轴的正半轴;当0c <时,交点在y 轴的负半轴.(七)根据二次函数的图象判断代数式符号1、24b ac -决定了函数图象与x 轴的交点情况:当240b ac ->,有两个交点;当240b ac -=,有一个交点;当240b ac -<,没有交点.2、当1x =时,可以得到a b c ++的值;当1x =-时,可以得到a b c -+的值三.二次函数解析式的确定一、待定系数法1、一般式:2(0)y ax bx c a =++≠.2、顶点式:2()(0)y a x h k a =-+≠.3、交点式:12()()(0)y a x x x x a =--≠.【考点突破】考点1:二次函数的概念例1、已知函数2222()(32)2mm y m m x m m x m m -=++++++,当m 是什么数时,函数是二次函数?变式1、如果函数22(1)1k k y k x kx -+=-+-是关于x 的二次函数,则k =____.考点2:二次函数的图像与性质例1、解决下列问题:1、抛物线233y x =+的顶点坐标为_________,对称轴为________.当x ______时,y 随x 的增大而减小;当x =______时,y 有最______值是______,它可以由抛物线23y x =向______平移______个单位得到.2、抛物线23(2)y x =-的开口方向是______,顶点坐标为______,对称轴是______.当x ______时,y 随x 的增大而增大;当x =______时,y 有最______值是______,它可以由抛物线23y x =向______平移______个单位得到.例2、若二次函数222-++=a bx ax y (a ,b 为常数)的图象如图,则a 的值为______.变式1、 已知二次函数213y x =-、2213y x =-、2332y x =,它们的图象开口由小到大的顺序 是( )A .123y y y ,,B .321y y y ,,C .132y y y ,,D .231y y y ,,例3、关于x 的二次函数()()m x x y -+=1,其图象的对称轴在y 轴的右侧,则实数m 的取值范围是________.例4、二次函数2()y a x m n =++的图象如图,一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限例5、二次函数2y ax bx c =++的图象如下左图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号.变式1、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出下列五个结论: ①abc >0;②4ac -b 2<0;③4a +c <2b ;④3b +2c <0;⑤m (am +b )<a -b (m ≠-1).其中正确结论的序号是___________________.考点3:二次函数解析式及几何变换 例3、将二次函数22y x =的图象先向右平移1的解析式为( )A .()2213y x =--B .()2213y x =-+C .()2213y x =+-D .()2213y x =++变式1、函数25(1)2y x =+-的图象可由函数25y x =的图象平移得到,那么平移的步骤是( )A.右移一个单位,下移两个单位B.右移一个单位,上移两个单位C.左移一个单位,下移两个单位D.左移一个单位,上移两个单位【模考链接】1、如图1,已知一次函数3y x =+的图象与x 轴、y 轴分别交于A ,B 两点,抛物线2y x bx c =-++过A ,B 两点,且与x 轴交于另一点C .(1)求b ,c 的值.(2)将抛物线向下平移h 个单位长度,使平移后所得抛物线的顶点落在△AOB 内(包括△AOB 的边界),求h 的取值范围.(3)将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,如图2,P 为△ACG 内一点,连接PA ,PC ,PG ,分别以AP ,AG 为边,在它们的左侧作等边△APR 、等边△AGQ ,连接QR .求证:PG =RQ ;2、如图1,已知直线与抛物线交于两点. (1)求两点的坐标; (2)如图2,取与线段等长的一根橡皮筋,端点分别固定在两处.用铅笔拉着这根橡皮筋使笔尖在直线上方的抛物线上移动,动点将与构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点的坐标;如果不存在,请简要说明理由.12y x =-2164y x =-+A B ,AB ,AB AB ,P AB P AB ,P。
年可能还出现在压轴题的位置上解题策略此专题多以压轴题出现,特别最后一问很难,但第(1)(2)两问比较容易得分,学生应该尽力使这两问不丢分.,重难点突破)二次函数的实际应用【例1】(2016石家庄中考模拟)天猫网某店铺销售新疆薄皮核桃,这种食品是健脑的佳品,它的成本价为20元/kg ,经市场调查发现,该产品每天的销售利润w(元)与销售价x(元/kg )有如下关系:w =ax 2+bx -1 600,当销售价为22元/kg 时,每天的销售利润为72元;当销售价为26元/kg 时,每天的销售利润为168元.(1)求该产品每天的销售利润w(元)与销售价x(元/kg )的关系式; (2)当销售价定为24元/kg ,该产品每天的销售利润为多少元?(3)如果该店铺的负责人想要在销售价不超过32元的情况下每天获得150元的销售利润,销售价应定为每千克多少元?(4)如果物价部门规定这种产品的销售价不高于29元/kg ,此店铺每天获得的最大利润为多少元?【解析】(1)根据题意可求出y 与x 的二次函数关系式;(2)将x =24代入w =-2x 2+120x -1 600中计算所得利润;(3)将w =150代入w =-2x 2+120x -1 600=150中计算出定价;(4)由二次函数表达式可知w =-2x 2+120x -1 600=-2(x -30)2+200,所以当x =29时利润最大.【答案】解:(1)依题意,把(22,72),(26,168)代入w =ax 2+bx -160,得⎩⎪⎨⎪⎧72=a ×222+b×22-1 600,168=a×262+b×26-1 600.解得⎩⎪⎨⎪⎧a =-2,b =120. ∴该产品每天的销售利润w(元)与销售价x(元/kg )的关系式为w =-2x 2+120x -1 600;(2)当x =24时,有w =-2×242+120×24-1 600=128.∴当销售价定为24元/kg 时,该产品每天的销售利润为128元;(3)当w =150时,有w =-2x 2+120x -1 600=150.解得x 1=25,x 2=35.∵x≤32,∴x =25.∴定价为25元/kg ;(4)w =-2x 2+120x -1 600=-2(x -30)2+200.又∵物价部门规定这种产品的销售价不高于29元/kg ,当x≤29时,w 随x 的增大而增大,∴当x =29元时,利润最大,为w =-2(29-30)2+200=198(元).【方法指导】正确建立二次函数模型,利用配方法和二次函数的性质结合自变量的取值范围,求出最佳方案.1.(2016张家口一模)某企业生产的一批产品上市后30天内全部售完,调查发现,国内市场的日销售量y 1(t )与时间t(t 为整数,单位:天)的关系如图①所示的抛物线的一部分,而国外市场的日销售量y 2(t )与时间t(t 为整数,单位:天)的关系如图②所示.(1)求y 1与时间t 的函数关系式及自变量t 的取值范围,并直接写出y 2与t 的函数关系式及自变量t 的取值范围;(2)设国内、国外市场的日销售总量为y t ,直接写出y 与时间t 的函数关系式,当销售第几天时,国内、外市场的日销售总量最早达到75 t?(3)判断上市第几天国内、国外市场的日销售总量y 最大,并求出此时的最大值.解:(1)设y 1=at 2+bt ,把点(30,0)和(20,40)代入得,⎩⎪⎨⎪⎧900a +30b =0,400a +20b =40.解得⎩⎪⎨⎪⎧a =-15,b =6.∴y 1=-15t 2+6t(0≤t≤30,t 为整数).设y 2=kt +b ,当0≤t<20时,y 2=2t ,当20≤t≤30时,⎩⎪⎨⎪⎧20k +b =40,30k +b =0.解得⎩⎪⎨⎪⎧k =-4,b =120,∴y 2=⎩⎪⎨⎪⎧2t (0≤t<20,且t 为整数),-4t +120(20≤t≤30,且t 为整数);(2)由y =y 1+y 2,得y =⎩⎪⎨⎪⎧-15t 2+8t (0≤t<20,且t 为整数),-15t 2+2t +120(20≤t≤30,且t 为整数).由图像可知,销售第20天,y =80, ∴y =75时,t <20,即-15t 2+8t =75,t 2-40t +25×15=0,解得:t 1=15,t 2=25>20(舍).即销售第15天时,国内、外市场的日销售总量最早达到75 t ;(3)当0≤t<20时,y =-15t 2+8t =- 15(t -20)2+80.此时,y 随t 的增大而增大.∵t 为整数, ∴当t =19时,y 最大,为79.8 t .当20≤t≤30时,y =-15t 2+2t +120=-15(t -5)2+125.∵当t >75时,y 随t 的增大而减小,∴当t =20时,y 的最大,为80 t .综上所述,上市后第20天国内、国外市场日销售总量y 值最大,最大值为80 t .【方法指导】先根据题意列函数关系式,建立二次函数模型,再解决实际问题.二次函数图像综合问题【例2】(2016河北中考)如图,抛物线L :y =-12(x -t)(x -t +4)(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP⊥x 轴,交双曲线y =kx(k >0,x >0)于点P ,且OA·MP=12.(1)求k 值;(2)当t =1时,求AB 的长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图像(含与直线MP 的交点)记为G ,用t 表示图像G 最高点的坐标;(4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接写出t 的取值范围.【解析】(1)设点P(x ,y),只要求出xy 即可解决问题;(2)先求出A ,B 两点的坐标,再求出对称轴以及点M 坐标即可解决问题;(3)根据对称轴的位置即可判断,当对称轴在直线MP 左侧,L 的顶点就是最高点,当对称轴在MP 右侧,L 与MP 的交点就是最高点;(4)画出图形求出C ,D 两点的纵坐标,利用方程即可解决问题.【答案】解:(1)设点P(x ,y),则MP =y ,OM =x.OA =2x.∵OA·MP=12, M 是OA 的中点,∴2x ·y =12,即xy =6; ∴k =xy =6.(2)当t =1时,令y =0,即0=-12(x -1)(x +3),解得x =1或-3. ∵点B 在点A 左边,∴B(-3,0),A(1,0). ∴AB =4,∴L 的对称轴是直线x =-1,M 的坐标为(12,0),∵12-(-1)=32, ∴MP 与L 对称轴之间的距离为32;(3)∵A(t,0),B(t -4,0), ∴L 的对称轴为直线x =t -2.又∵M ⎝ ⎛⎭⎪⎫t 2,0, 当t -2≤t2,即t≤4时,顶点(t -2,2)就是G 的最高点;当t >4时,L 与MP 的交点为最高点.联立⎩⎪⎨⎪⎧y =-12(x -t )(x -t +4),x =t 2,解得⎩⎪⎨⎪⎧x =t 2,y =-t28+t.即此时的最高点为⎝ ⎛⎭⎪⎫t 2,-t 28+t ;(4)5≤t≤8-2或7≤t≤8+ 2.2.(2017天水中考)如图所示,在平面直角坐标系xOy 中,抛物线y =ax 2-2ax -3a(a <0)与x 轴交于A ,B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC.(1)求A ,B 两点的坐标及抛物线的对称轴;(2)求直线l 的函数表达式;(其中k ,b 用含a 的式子表示)(3)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值;(4)设P 是抛物线对称轴上的一点,点Q 在抛物线上,以点A ,D ,P ,Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.解:(1)当y =0时,ax 2-2ax -3a =0,解得:x 1=-1,x 2=3,∴A(-1,0),B(3,0),对称轴为直线x =-1+32=1; (2)∵直线l :y =kx +b 过A(-1,0),∴0=-k +b ,即k =b ,∴直线l :y =kx +k. ∵CD =4AC ,点A 的横坐标为-1,∴点D 的横坐标为4,代入抛物线得y =5a , ∴将(4,5a)代入y =kx +k 得k =a , ∴直线l 的函数表达式为y =ax +a ;(3)如图①,过E 作EF∥y 轴交直线l 于F ,设E(x ,ax 2-2ax -3a),则F(x ,a x +a),EF =ax 2-2ax -3a -ax -a =ax 2-3ax -4a ,∴S △ACE =S △AFE -S △CEF =12(ax 2-3ax -4a)(x +1)-12(ax 2-3ax -4a)x =12(ax 2-3ax -4a)=12a(x -32)2-258a ,∴△ACE 的面积的最大值为-258a.∵△ACE 的面积的最大值为54,∴-258a =54,解得a =-25;(4)以点A ,D ,P ,Q 为顶点的四边形能成为矩形.由(2)知,D(4,5a).∵抛物线的对称轴为直线x =1,∴设P(1,m).①如图②,连接AP.若AD 是矩形ADPQ 的一条边,由中点公式可得12(x A +x P )=12(x D +x Q ),解得x Q =-4,将x=-4代入y =ax 2-2ax -3a 得y =21a ,∴Q(-4,21a),m =21a +5a =26a ,则P(1,26a).∵四边形ADPQ 是矩形,∴∠ADP =90°,∴AD 2+PD 2=AP 2,∴52+(5a)2+32+(26a -5a)2=(-1-1)2+(26a)2,解得a 1=77(不合题意,舍去),a 2=-77.∴P(1,-2677);②如图③,若AD 是矩形APDQ 的对角线,由中点公式得12(x A +x D )=12(x Q +x P ),解得:x Q =2,将x Q =2代入y =ax 2-2ax -3a 得y =-3a ,∴Q(2,-3a),m =5a -(-3a)=8a ,则P(1,8a).∵四边形APDQ 是矩形,∴∠APD =90°,∴AP 2+PD 2=AD 2,∴(-1-1)2+(8a)2+(1-4)2+(8a -5a)2=52+(5a)2,解得a 1=12(不合题意,舍去),a 2=-12.∴P(1,-4).综上所述,以点A ,D ,P ,Q 为顶点的四边形能成为矩形,点P 的坐标为⎝⎛⎭⎪⎫1,-2677或(1,-4).。
第二节一元二次方程及应用年份题号考查点考查内容分值总分201719 一元二次方程的解法综合题,在新定义的背景下用直接开平方法解一元二次方程37 26(2)一元二次方程及根的判别式利用题中已知条件列出方程,并用判别式判断根的情况4201614 一元二次方程根的判别式利用已知条件判断含字母系数的一元二次方程的根的情况2 2201512 一元二次方程根的判别式考一元二次方程无实数根求参数的取值范围2 2201421 解一元二次方程(1)从推导一元二次方程的求根公式的步骤中找错误,并写出正确的求根公式;(2)用配方法解一元二次方程10 102013年未考查命题规律纵观河北近五年中考,2014、2015、2016、2017年考查了一元二次方程,分值2~10分,涉及的题型有选择、填空、解答,题目难度一般,其中一元二次方程的配方法在选择和解答题中各考查了1次,一元二次方程的应用在选择、填空中各考过1次,一元二次方程根的判别式考查了3次,属基础题.河北五年中考真题及模拟一元二次方程的解法1.(2014河北中考)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2-4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x 2+b a x =-c a ,第一步x 2+b a x +⎝ ⎛⎭⎪⎫b 2a 2=-c a +⎝ ⎛⎭⎪⎫b 2a 2,第二步⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2,第三步 x +b 2a =b 2-4ac 4a(b 2-4ac >0),第四步 x =-b +b 2-4ac 2a.第五步(1)嘉淇的解法从第__四__步开始出现错误;事实上,当b 2-4ac>0时,方程ax 2+bx +c =0(a≠0)的求根公式为__x =-b ±b 2-4ac2a__.(2)用配方法解方程:x 2-2x -24=0. 解:x 1=6,x 2=-4.2.(2017沧州中考模拟)在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是( A )A .甲错误,乙正确B .甲正确,乙错误C .甲、乙都正确D .甲、乙都错误3.(2016石家庄二十八中一模)现定义运算“★”,对于任意实数a ,b ,都有a★b=a 2-3a +b ,如3★5=32-3×3+5,若x★2=6,则实数x 的值是( B )A .-4或-1B .4或-1C .4或-2D .-4或2 一元二次方程根的判别式及根与系数的关系4.(2015河北中考)若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值范围是( B ) A .a<1 B .a>1 C .a ≤1 D .a ≥15.(2016河北中考)a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为06.(2016唐山十三中三模)已知关于x 的方程2x 2-mx -6=0的一个根是2,则m =__1__,另一个根为__-32__.7.(2017唐山二模)对于实数a ,b ,定义新运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b),ab -b 2(a <b ),例如:4*2,因为4>2,所以4*2=42-4×2=8.(1)求(-5)*(-3)的值;(2)若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,求x 1*x 2的值. 解:(1)∵-5<-3,∴(-5)*(-3)=(-5)×(-3)-(-3)2=6;(2)方程x 2-5x +6=0的两根为2或3;①2*3=2×3-9=-3;②3*2=32-2×3=3. 一元二次方程的应用8.(2016邯郸25中模拟)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( D )A .48(1-x)2=36B .48(1+x)2=36C .36(1-x)2=48D .36(1+x)2=489.(2016石家庄十八县重点中学一模)为落实“两免一补”政策,某市2014年投入教育经费2 500万元,预计2016年要投入教育经费3 600万元.已知2014年至2016年的教育经费投入以相同的百分率逐年增长,则2015年该市要投入的教育经费为__3__000__万元.10.(2017河北中考)某厂按用户的月需求量x(件)完成一种产品的生产,其中x >0.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x 与月份n(n 为整数,1≤n ≤12)符合关系式x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据.月份n(月) 1 2 成本y(万元/件) 11 12 需求量x(件/月) 120 100(1)求y 与x(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(m +1)个月的利润相差最大,求m.解:(1)由题意,设y =a +bx ,由表中数据得⎩⎪⎨⎪⎧11=a +b120,12=a +b100,解得⎩⎪⎨⎪⎧a =6,b =600,∴y =6+600x,由题意,若12=18-⎝⎛⎭⎪⎫6+600x ,则600x =0,∵x >0, ∴600x>0,∴不可能;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13,∴x =2n 2-26n +144,将n =2,x =100代入x =2n 2-26n +144也符合, ∴k =13;由题意,得18=6+600x,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0,∵Δ=(-13)2-4×1×47<0, ∴方程无实数根, ∴不存在;(3)设第m 个月的利润为W ,W =x(18-y)=18x -x ⎝⎛⎭⎪⎫6+600x=12(x -50)=24(m 2-13m +47),∴第(m +1)个月的利润为W′=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35),若W≥W′,W -W′=48(6-m),m 取最小值1时,W -W′取得最大值240;若W <W′,W ′-W =48(m -6),由m +1≤12知m 取最大值11时,W ′-W 取得最大值240; ∴m =1或11.,中考考点清单一元二次方程的概念1.只含有__1__个未知数,未知数的最高次数是__2__,像这样的__整式__方程叫一元二次方程.其一般形式是__ax 2+bx +c =0(a≠0)__.【易错警示】判断一个方程是一元二次方程的条件:①是整式方程;②二次项系数不为零;③未知数的最高次数是2,且只含有一个未知数.一元二次方程的解法2.直接开 平方法这种方法适合于左边是一个完全平方式,而右边是一个非负数的一元二次方程,即形如(x +m)2=n(n≥0)的方程. 配方法配方法一般适用于解二次项系数为1,一次项系数为偶数的这类一元二次方程,配方的关键是把方程左边化为含有未知数的__完全平方__式,右边是一个非负常数.公式法求根公式为__x =-b ±b 2-4ac 2a(b 2-4ac≥0)__,适用于所有的一元二次方程.因式分 解法因式分解法的步骤:(1)将方程右边化为__0__;(2)将方程左边分解为一次因式的乘积;(3)令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是一元二次方程的解.【温馨提示】关于x 的一元二次方程ax 2+bx +c =0(a≠0)的解法:(1)当b =0,c ≠0时,x 2=-c a,考虑用直接开平方法解;(2)当c =0,b ≠0时,用因式分解法解; (3)当a =1,b 为偶数时,用配方法解简便.一元二次方程根的判别式3.根的判别式:一元二次方程ax 2+bx +c =0(a≠0)的根的情况可由__b 2-4ac__来判定,我们将__b 2-4ac__称为根的判别式.4.判别式与根的关系:(1)b 2-4ac>0⇔方程有__两个不相等__的实数根;(2)b 2-4ac<0⇔方程没有实数根;(3)b 2-4ac =0⇔方程有__两个相等__的实数根.【易错警示】(1)一元二次方程有实数根的前提是b 2-4ac≥0;(2)当a ,c 异号时,Δ>0.一元二次方程的应用5.列一元二次方程解应用题的步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)检验;(6)做结论. 6.一元二次方程应用问题常见的等量关系:(1)增长率中的等量关系:增长率=增量÷基础量;(2)利率中的等量关系:本息和=本金+利息,利息=本金×利率×时间;(3)利润中的等量关系:毛利润=售出价-进货价,纯利润=售出价-进货价-其他费用, 利润率=利润÷进货价.,中考重难点突破一元二次方程的解法【例1】(2016保定十七中二月调研)解下列方程:(1)(x -2)2=12;(2)x 2-4x +1=0;(3)x 2-3x +1=0;(4)x 2=2x.【解析】(1)可以用直接开平方法解;(2)因为b =-4是偶数,可以用配方法解;(3)因为b =-3是奇数,配方法解较复杂,可用公式法;(4)直接因式分解.【答案】解:(1)直接开平方,得x -2=±22,即x 1=2+22,x 2=2-22;(2)配方,得(x -2)2=3,直接开平方,得x -2=±3,即x 1=2+3,x 2=2-3;(3)∵a=1,b =-3,c =1,∴Δ=b 2-4ac =(-3)2-4×1×1=5>0,∴x =-(-3)±52×1,即x 1=3+52,x 2=3-52; (4)分解因式,得x(x -2)=0.即x 1=2,x 2=0.1.方程(x -3)(x +1)=0的解是( C ) A .x =3 B .x =-1C .x 1=3,x 2=-1D .x 1=-3,x 2=12.(2016唐山路北一模)用配方法解一元二次方程x 2+4x -5=0,此方程可变形为( A ) A .(x +2)2=9 B .(x -2)2=9 C .(x +2)2=1 D .(x -2)2=1 3.用公式法解方程:(1)(广东中考)x 2-3x +2=0; 解:x 1=1,x 2=2;(2)(兰州中考)x 2-1=2(x +1). 解:x 1=-1,x 2=3.一元二次方程根的判别式及根与系数的关系【例2】(2017包头中考)若关于x 的不等式x -a 2<1的解集为x <1,则关于x 的一元二次方程x 2+ax+1=0根的情况是( A )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定【解析】解不等式x -a 2<1得x <1+a 2,而不等式x -a 2<1的解集为x <1,所以1+a2=1,解得a =0,又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.故选C .【答案】C4.(2016唐山丰润二模)方程x 2-x +3=0根的情况是( D ) A .只有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根5.(2016保定博野模拟)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( C )A .a>2B .a<2C .a<2且a≠1D .a<-26.(2017咸宁中考)已知a ,b ,c 为常数,点P(a ,c)在第二象限,则关于x 的方程ax 2+bx +c =0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断一元二次方程的应用【例3】(2017达州中考)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x 的代数式表示第3年的可变成本为________万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.【解析】(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x)万元,则第三年的可变成本为 2.6(1+x)2万元;(2)根据养殖成本=固定成本+可变成本建立方程即可.【答案】(1)2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146.解得x 1=0.1,x 2=-2.1(不合题意,舍去). 答:可变成本平均每年增长的百分率为10%.【例4】有一人患了流感,经过两轮传染后共有256人患了流感,则每轮传染中平均一个人传染( A ) A .17人 B .16人 C .15人 D .10人【解析】设每轮传染中平均一个人传染了x 个人,则第一轮传染了x 个人;患流感的人把病毒传染给别人,自己也包括在总数中,第二轮作为传染源的是(x +1)人,每人传染x 个人,则传染x(x +1)人.两轮后得流感的总人数为:一开始的1人+第一轮传染的x 个人+第二轮传染的x(x +1)人,列方程:1+x +x(1+x)=256,解得x 1=15,x 2=-17.因为x 表示人数,所以x =-17不合题意,应舍去;取x =15,故选C .【答案】C【例5】商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.据此规律,正常销售情况下,每件商品降价多少元时,商场日盈利可达到2 100元?【解析】设降价x 元,则每件盈利(50-x)元,数量增多2x 件,再由单件利润×数量=2 100即可. 【答案】解:设每件商品降价x 元,则商场日销售量增加2x 件,每件商品盈利(50-x)元.由题意,得(50-x)(30+2x)=2 100.整理,得x 2-35x +300=0. 解得x 1=15,x 2=20. ∵要尽快减少库存,∴x =15不合题意,舍去,只取x =20.答:每件商品降价20元时,商场日盈利可达到2 100元.【例6】(2017南通中考)如图,为美化校园环境,某校计划在一块长为60 m ,宽为40 m 的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道宽为a m .(1)用含a 的式子表示花圃的面积;(2)如果甬道所占面积是整个长方形空地面积的38,求出此时甬道的宽.【解析】(1)用含a 的式子先表示出花圃的长和宽,再利用矩形面积公式列出式子即可;(2)甬道所占面积等于大长方形空地面积减去中间小花圃的面积,再根据甬道所占面积是整个长方形空地面积的38,列出方程进行计算即可.【答案】解:(1)(60-2a)(40-2a); (2)由题意,得60×40-(60-2a)(40-2a)=38×60×40,解得a 1=5,a 2=45(舍去). 答:此时甬道的宽为5 m .7.(2017巴中中考)某地2014年外贸收入为2.5亿元,2016年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为( A )A .2.5(1+x)2=4B .(2.5+x%)2=4C .2.5(1+x)(1+2x)=4D .2.5(1+x%)2=48.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了 1 m ,另一边减少了 2 m ,剩余空地的面积为18 m 2,求原正方形空地的边长.设原正方形的空地的边长为x m ,则可列方程为( C )A .(x +1)(x +2)=18B .x 2-3x +16=0C .(x -1)(x -2)=18D .x 2+3x +16=09.(2017原创)有一人患了流感,经过两轮传染后共有64人患了流感,问每轮传染中平均一个人传染__7__个人.如果不及时控制,第三轮又将有__448__人被传染.10.为了绿化校园环境,学校向某园林公司购买了一批树苗.园林公司规定;如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,每棵所出售的这批树苗售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8 800元,那么该校共购买了多少棵树苗?解:设该校共买了x棵树苗.120×60=7 200(元).∵7 200<8 800,∴购买树苗超过60棵;x[120-0.5(x-60)]=8 800,x1=220,x2=80,当x=220时,120-0.5×(220-60)=40<100,∴x=220舍去.∴x=80.答:该校共购买了80棵树苗.。
河北中考复习之二次函数一、填选题一、填选题 1、在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =+的图象大致为的图象大致为2、某车的刹车距离y (m )与开始刹车时的速度x (m/s m/s)之间满足二次函数)之间满足二次函数y=201x2(x >0),若该车某次的刹车距离为5m 5m,则开始刹车时的速度为(,则开始刹车时的速度为(,则开始刹车时的速度为( )A .40m/sB .20m/sC .10m/sD .5m/s 3、一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:(秒)满足下面函数关系式:h=h=h=﹣﹣5(t ﹣1)2+6+6,,则小球距离地面的最大高度是(则小球距离地面的最大高度是( ) A 、1米B 、5米C 、6米D 、7米 4、如图,已知抛物线y=x 2+bx+c 的对称轴为x=2x=2,点,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(的坐标为(00,3),则点B 的坐标为(的坐标为( ) A .(.(22,3) B .(.(33,2) C .(.(33,3) D .(.(44,3)5、如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是(的函数图象大致是( )A 、B 、C 、D 、6、如图6,抛物线21(2)3y a x =+-与221(3)12y x =-+交于点(13)A ,,过点A 作x 轴的平行线,分别交两条抛物线于点B C ,.则以下结论:.则以下结论: ①无论x 取何值,2y 的值总是正数.的值总是正数. ②1a =. ③当0x =时,214y y -=. ④23AB AC =.其中正确结论是(其中正确结论是( ) A .①②.①② B.②③B.②③ C.③④C.③④ D.①④D.①④ 7、如图,一段抛物线:、如图,一段抛物线:y=-x y=-x y=-x((x-3x-3)()()(00≤x ≤3),记为C 1,它与x 轴交于点O ,A 1; 将C 1绕点A 1旋转180180°得°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180180°得°得C 3,交x 轴于点A 3;…;… 如此进行下去,直至得C 13.若P (3737,,m )在第13段抛物线C 13上,则m=8、已知二次函数y=ax 2+bx+c +bx+c((a ≠0)的图象如图所示,下列结论错误的是( ) A .abc abc>>0 B .3a 3a>>2b C .m (am+b am+b))≤a-b a-b((m 为任意实数) D .4a-2b+c 4a-2b+c<<0 9、对于实数c 、d ,我们可用min{ min{ c c ,d d }}表示c 、d 两数中较小的数,如min{3min{3,,-1}=-1-1}=-1..若关于x 的函数y=min{2x 2,a (x-t x-t))2}的图象关于直线x=3对称,则a 、t 的值可能是( ) A .3,6 B .2,-6 C .2,6 D .-2-2,,61010、、求一元二次方程x 2+3x-1=0的解,除了课本的方法外,我们也可以采用图象的方法:在平面直角坐标系中,画出直线y=x+3和双曲线y=x1的图象,则两图象交点的横坐标即该方程的解.类似地,我们可以判断方程x 3-x-1=0的解的个数有(的解的个数有( ) A .0个 B .1个 C .2个 D .3个O xy AOxyBOxyCOxyD二、解答题二、解答题1、已知一条抛物线经过A (0,3)、)、B B (4,6)两点,对称轴为x =53. (1)求这条抛物线的解析式;)求这条抛物线的解析式; (2)试证明这条抛物线与x 轴的两个交点中,轴的两个交点中,必有一点必有一点C ,使得对于x 轴上任意一点轴上任意一点 D D ,都有AC+BC AC+BC≤≤AD+BD AD+BD..2、如图7,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的DGD DGD′部分为一段抛物线,顶点′部分为一段抛物线,顶点G 的高度为8米,米,AD AD 和A ′D ′是两侧高为5.5米的支柱,的支柱,OA OA 和OA OA′为两个方向的汽车通行区,宽都为′为两个方向的汽车通行区,宽都为15米,线段CD 和C ′D ′为两段对称的上桥斜坡,其坡度为1∶4 (1)求拱桥DGD DGD′所在抛物线的解析式及′所在抛物线的解析式及CC CC′的长;′的长;′的长; (2)BE 和B ′E ′为支撑斜坡的立柱,其高都为4米,相应的AB 和A ′B ′为两个方向的行人及非机动车通行区.试求AB 和A ′B ′的宽;′的宽; (3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米.今有一大型运货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与地面的距离均为7米.它能否从OA OA(或(或OA OA′)区域安′)区域安全通过?请说明理由.全通过?请说明理由.3、某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图8所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件)。
第三部分 函数及其图象3.5 二次函数的应用【一】知识点清单1、实际问题与二次函数根据实际问题列二次函数关系式;二次函数的应用【二】分类试题汇编一、选择题1.(2004年课标卷-8题-2分)把一个小球以20m/s 的速度竖直向上弹出,它在空中的高度h (m )与时间t (s )满足关系:h=20t ﹣5t 2.当h=20时,小球的运动时间为( )A .20sB .2sC .()sD .(2)s2.(2009年-9题-2分)某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5m ,则开始刹车时的速度为( )A .40m/sB .20m/sC .10m/sD .5m/s 3.(2011年-8题-3分)一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=﹣5(t ﹣1)2+6,则小球距离地面的最大高度是( )A .1米B .5米C .6米D .7米4.(2014年-9题-3分)某种正方形合金板材的成本y (元)与它的面积成正比,设边长为x 厘米.当x=3时,y=18,那么当成本为72元时,边长为( )A .6厘米B .12厘米C .24厘米D .36厘米二、填空题三、解答题 1.(1997年-31题-10分)如图,是某空军部队进行射击训练时在平面直角坐标系中的示意图,在地面O 、A 两个观测点测得空中固定目标C 的仰角分别是α和β,OA=1千米,9tan 28α=,3tan 8β=,位于O 点的正上方53千米D 点处的直升飞机向目标C 发射防空导弹,该导弹运行达到距地面最大3千米时,相应水平距离为4千米.(即图中E 点)(1)若导弹运行轨道为一抛物线,求该抛物线的解析式;(2)按以上轨道运行的导弹能否击中目标C?请说明理由.2.(1999年-28题-14分)如图,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x轴,横断面的对称轴为y轴.桥拱的DGD′部分为一段抛物线,顶点G的高度为8米,AD和A′D′的两侧高为5.5米的支柱,OA和OA′为两个方向的汽车通行区,宽都为15米,线段CD和C′D′为两段对称的上桥斜坡,其坡度为1:4.(1)求桥拱DGD′所在抛物线的解析式及CC′的长;(2)BE和B′E′为支撑斜坡的立柱,其高都为4米,相应的AB和A′B′为两个方向的行人及非机动车通行区.试求AB和A′B′的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米.今有一大型运货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与地面的距离均为7米.它能否从OA (或OA′)区域安全通过?请说明理由.3.(2001年-27题-13分)某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价为70元时,日均销售60千克;单价每降低1元,日均多销售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元.(1)求y与x的二次函数关系式,并指出自变量x的取值范围;(2)将(1)中所求出的二次函数配方成y=a(x﹣h)2+k的形式.写出顶点坐标,并在图中画出草图;观察图象,指出单价定为多少时日均获利最多是多少?(3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,哪一种获总利较多,多多少?4.(2002年-27题-12分)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润;(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式;(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?5.(2004年大纲卷-25题-12分)如图1是某段河床横断面的示意图.查阅该河段的水文资料,得到下表中的数据:(1)请你以上表中的各对数据(x,y)作为点的坐标,尝试在图2所示的坐标系中画出y关于x的函数图象;(2)①填写下表:②根据所填表中数据呈现的规律,猜想出用x表示y的二次函数的表达式:;(3)当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为1.8米的货船能否在这个河段安全通过?为什么?6.(2005年大纲卷-27题-12分)某机械租赁公司有同一型号的机械设备40套.经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出.在此基础上,当每套设备的月租金每提高10元时,这种设备就少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20元.设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入﹣支出费用)为y(元).(1)用含x的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费;(2)求y与x之间的二次函数关系式;(3)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该出租多少套机械设备?请你简要说明理由;(4)请把(2)中所求出的二次函数配方成22424b ac by a xa a-⎛⎫=++⎪⎝⎭的形式,并据此说明:当x为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?7.(2005年课标卷-24题-12分)某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).(1)用含x的代数式分别表示出每个面包的利润与卖出的面包个数;(2)求y 与x 之间的函数关系式;(3)当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?8.(2006年课标卷-24题/大纲卷-27题-12分)某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x (元),该经销店的月利润为y (元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y 与x 的函数关系式(不要求写出x 的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.9.(2008年-25题-12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式y=110x 2+5x+90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额﹣全部费用) (1)成果表明,在甲地生产并销售x 吨时,P 甲=120-x+14,请你用含x 的代数式表示甲地当年的年销售额,并求年利润W 甲(万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,P 乙=10x -+n (n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线y=ax 2+bx+c (a≠0)的顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭. 10.(2010年-26题-12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y=1100-x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润=销售额﹣成本﹣广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a≤40),当月销量为x (件)时,每月还需缴纳1100x 2元的附加费,设月利润为w 外(元)(利润=销售额﹣成本﹣附加费).(1)当x=1000时,y= 元/件,w 内= 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是24,24b ac ba a⎛⎫-- ⎪⎝⎭.11.(2012年-24题-9分)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价﹣成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为24,24b ac ba a⎛⎫-- ⎪⎝⎭12.(2013年-25题-12分)某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.(1)用含x和n的式子表示Q;(2)当x=70,Q=450时,求n的值;(3)若n=3,要使Q最大,确定x的值;(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是24,24b ac ba a⎛⎫-- ⎪⎝⎭13.(2017年-26题-12分)某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.14.(2018年-26题-11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道kyx=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M ,A 的水平距离是vt 米.(1)求k ,并用t 表示h ;(2)设v=5.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t 的值及v 乙的范围.【三】参考答案与解析一、选择题1.(2004年课标卷-8题-2分)把一个小球以20m/s 的速度竖直向上弹出,它在空中的高度h (m )与时间t (s )满足关系:h=20t ﹣5t 2.当h=20时,小球的运动时间为( )A .20sB .2sC .()sD .(2)s【分类目录】3.5二次函数的应用【知识考点】二次函数的应用.【思路分析】此题只需把h 的值代入函数关系式,列方程求解即可.【解答过程】解:依题意,将h=20代入h=20t ﹣5t 2,解方程得:t=2s .故选B .【总结归纳】本题涉及二次函数的实际应用,难度一般.2.(2009年-9题-2分)某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5m ,则开始刹车时的速度为( )A .40m/sB .20m/sC .10m/sD .5m/s【分类目录】3.5二次函数的应用【知识考点】二次函数的应用.【思路分析】本题实际是告知函数值求自变量的值,代入求解即可.另外实际问题中,负值舍去.【解答过程】解:当刹车距离为5m 时,即y=5,代入二次函数解析式: 21520x =,。
专题六 二次函数与综合应用一、选择题1.(2017哈尔滨中考)抛物线y =-35⎝ ⎛⎭⎪⎫x +122-3的顶点坐标是( B )A .⎝ ⎛⎭⎪⎫12,-3 B .⎝ ⎛⎭⎪⎫-12,-3C .⎝ ⎛⎭⎪⎫12,3 D .⎝ ⎛⎭⎪⎫-12,32.(2017丽水中考)将函数y =x 2的图像用下列方法平移后,所得的图像不经过点A(1,4)的方法是( D )A .向左平移1个单位长度B .向右平移3个单位长度C .向上平移3个单位长度D .向下平移1个单位长度3.(2017绵阳中考)将二次函数y =x 2的图像先向下平移1个单位长度,再向右平移3个单位长度,得到的图像与一次函数y =2x +b 的图像有公共点,则实数b 的取值范围是( D )A .b >8B .b >-8C .b ≥8D .b ≥-84.(2017南充中考)二次函数y =ax 2+bx +c(a ,b ,c 是常数,且a≠0)的图像如图所示,下列结论错误的是( D )A .4ac <b 2B .abc <0C .b +c >3aD .a <b(第4题图)(第5题图)5.(2017达州中考)已知二次函数y =ax 2+bx +c 的图像如图,则一次函数y =ax -2b 与反比例函数y =c x 在同一平面直角坐标系中的图像大致是( C ),A ),B ),C ) ,D )6.已知二次函数y =x 2-x +a(a >0),当自变量x 取m 时,其相应的函数值小于0,那么下列结论中正确的是( B )A .m -1的函数值小于0B .m -1的函数值大于0C .m -1的函数值等于0D .m -1的函数值与0的大小关系不确定7.(2017考试说明)小明、小亮、小梅、小花四人共同探究代数式x 2-4x +5的值的情况.他们作了如下分工:小明负责找值为1时x 的值,小亮负责找值为0时x 的值,小梅负责找最小值,小花负责找最大值.几分钟后,各自通报探究的结论,其中错误的是( C )A .小明认为只有当x =2时,x 2-4x +5的值为1B .小亮认为找不到实数x ,使x 2-4x +5的值为0C .小梅发现x 2-4x +5的值随x 的变化而变化,因此认为没有最小值D .小花发现当x 取大于2的实数时,x 2-4x +5的值随x 的增大而增大,因此认为没有最大值8.(2017舟山中考)下列关于函数y =x 2-6x +10的四个命题:①当x =0时,y 有最小值10;②n 为任何实数,x =3+n 时的函数值大于x =3-n 时的函数值;③若n >3,且n 是整数,当n≤x≤n+1时,y 的整数值有(2n -4)个;④若函数图像过点(a ,y 0)和(b ,y 0+1),其中a >0,b >0,则a <b.其中真命题的序号是( C )A .①B .②C .③D .④二、填空题9.(荆门中考)若抛物线y =x 2+bx +c 与x 轴只有一个交点,且过点A(m ,n),B(m +6,n),则n =__9__.10.(兰州中考)如图所示,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,且点B 的坐标为(2,0).若抛物线y =12x 2+k 与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是__-2<k <12__. 11.军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行高度y(单位:m )与飞行时间x(单位:s )的关系满足y =-15x 2+10x ,经过__50__s ,炮弹落在地上爆炸.12.(2017咸宁中考)如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A(-1,p),B(4,q)两点,则关于x 的不等式mx +n >ax 2+bx +c 的解集是__x <-1或x >4__.(第12题图)(第13题图)13.(2017乌鲁木齐中考)如图,抛物线y =ax 2+bx +c 过点(-1,0),且对称轴为直线x =1,有下列结论: ①abc <0;②10a+3b +c >0;③抛物线经过点(4,y 1)与点(-3,y 2),则y 1>y 2;④无论a ,b ,c 取何值,抛物线都经过同一个点⎝ ⎛⎭⎪⎫-c a ,0;⑤am 2+bm +a≥0,其中所有正确的结论是__②④⑤__.14.(2017考试说明)定义[a ,b ,c]为函数y =ax 2+bx +c 的特征数,下面给出特征数为[2m ,1-4m ,2m -1]函数的一些结论:①当m =12时,函数图像的顶点坐标是⎝ ⎛⎭⎪⎫12,-14;②当m =-1时,函数在x >1时,y 随x 增大而减小;③无论m 取何值,函数图像都经过同一个点.其中所有的正确结论为__①③__.(填写正确结论序号)三、解答题15.(2017孝感中考)在平面直角坐标系xOy 中,规定:抛物线y =a(x -h)2+k 的伴随直线为y =a(x -h)+k.例如:抛物线y =2(x +1)2-3的伴随直线为y =2(x +1)-3,即y =2x -1.(1)在上面规定下,抛物线y =(x +1)2-4的顶点坐标为__(-1,-4)__,伴随直线为__y =x -3__;抛物线y =(x +1)2-4与其伴随直线的交点坐标为__(0,-3)__和__(-1,-4)__;(2)如图,顶点在第一象限的抛物线y =m(x -1)2-4m 与其伴随直线相交于点A ,B(点A 在点B 的左侧),与x 轴交于点C ,D.①若∠CAB=90°,求m 的值;②如果点P(x ,y)是直线BC 上方抛物线的一个动点,△PBC 的面积记为S ,当S 取得最大值274时,求m 的值.解:①∵抛物线表达式为y =m(x -1)2-4m , ∴其伴随直线为y =m(x -1)-4m ,即y =mx -5m ,联立抛物线与伴随直线的表达式可得⎩⎪⎨⎪⎧y =m (x -1)2-4m ,y =mx -5m ,解得⎩⎪⎨⎪⎧x =1,y =-4m 或⎩⎪⎨⎪⎧x =2,y =-3m ,∴A(1,-4m),B(2,-3m),在y =m(x -1)2-4m 中,令y =0可解得x =-1或x =3, ∴C(-1,0),D(3,0),∴AC 2=4+16m 2,AB 2=1+m 2,BC 2=9+9m 2, ∵∠CAB =90°,∴AC 2+AB 2=BC 2,即4+16m 2+1+m 2=9+9m 2,解得m =22(抛物线开口向下,舍去)或m =-22, ∴当∠CAB=90°时,m 的值为-22; ②设直线BC 的表达式为y =kx +b ,∵B(2,-3m),C(-1,0),∴⎩⎪⎨⎪⎧2k +b =-3m ,-k +b =0,解得⎩⎪⎨⎪⎧k =-m ,b =-m.∴直线BC 表达式为y =-mx -m , 过P 作x 轴的垂线交BC 于点Q ,如答图,∵点P 的横坐标为x ,∴P[x ,m(x -1)2-4m],Q(x ,-mx -m), ∵P 是直线BC 上方抛物线上的一个动点,∴PQ =m(x -1)2-4m +mx +m =m(x 2-x -2)=m ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -122-94,∴S △PBC =12×[(2-(-1)]PQ =32m ⎝ ⎛⎭⎪⎫x -122-278m ,∴当x =12时,△PBC 的面积有最大值-278m.∴S 取得最大值274时,即-278m =274,解得m =-2.16.(2017广安中考)如图,已知抛物线y =-x 2+bx +c 与y 轴相交于点A(0,3),与x 正半轴相交于点B ,对称轴是直线x =1.(1)求此抛物线的表达式以及点B 的坐标;(2)动点M 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向运动,同时动点N 从点O 出发,以每秒3个单位长度的速度沿y 轴正方向运动,当N 点到达A 点时,M ,N 同时停止运动.过动点M 作x 轴的垂线交线段AB 于点Q ,交抛物线于点P ,设运动的时间为t s .①当t 为何值时,四边形OMPN 为矩形;②当t >0时,△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由. 解:(1)∵抛物线y =-x 2+bx +c 的对称轴是直线x =1,∴-b2×(-1)=1,解得b =2,∵抛物线过A(0,3),∴c =3,∴抛物线表达式为y =-x 2+2x +3, 令y =0可得-x 2+2x +3=0,解得x =-1或x =3,∴B 点坐标为(3,0);(2)①由题意可知ON =3t ,OM =2t ,∵P 在抛物线上,∴P(2t ,-4t 2+4t +3),∵四边形OMPN 为矩形,∴ON =PM ,∴3t =-4t 2+4t +3,解得t =1或t =-34(舍去),∴当t 的值为1时,四边形OMPN 为矩形;②∵A(0,3),B(3,0),∴OA =OB =3,且可求得直线AB 表达式为y =-x +3,∴当t >0时,OQ ≠OB.∴当△BOQ 为等腰三角形时,有OB =QB 或OQ =BQ 两种情况,由题意可知OM =2t ,∴Q(2t,-2t +3),∴OQ =(2t )2+(-2t +3)2=8t 2-12t +9,BQ =(-2t +3)2+(-2t +3)2=2|2t -3|,又由题意可知0<t <1,当OB =QB 时,则有2|2t -3|=3,解得t =6+324(舍去)或t =6-324;当OQ =BQ 时,则有8t 2-12t +9=2|2t -3|,解得t =34.综上可知,当t 的值为6-324或34时,△BOQ 为等腰三角形.17.(河北中考)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x 满足关系式y =110x 2+5x +90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲、p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售x 吨时,p 甲=-120x +14,请用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式;(2)成果表明,在乙地生产并销售x 吨时,p 乙=-110x +n(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1)、(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?[参考公式:抛物线y =ax 2+bx +c(a≠0)的顶点坐标是⎝ ⎛⎭⎪⎫-b 2a ,4ac -b 24a ]解:(1)甲地当年的年销售额为⎝ ⎛⎭⎪⎫-120x 2+14x 万元;w 甲=⎝ ⎛⎭⎪⎫-120x 2+14x -⎝ ⎛⎭⎪⎫110x 2+5x +90=-320x 2+9x -90;(2)在乙地区生产并销售时,年利润w 乙=-110x 2+nx -⎝ ⎛⎭⎪⎫110x 2+5x +90=-15x 2+(n -5)x -90. 由4ac -b 24a =4×⎝ ⎛⎭⎪⎫-15×(-90)-(n -5)24×⎝ ⎛⎭⎪⎫-15=35,解得n =15或-5.经检验,n =-5不合题意,舍去,∴n =15;(3)在乙地区生产并销售时,年利润w 乙=-15x 2+10x -90,将x =18代入上式,得w 乙=25.2(万元);将x =18代入w 甲=-320x 2+9x -90,得w 甲=23.4(万元).∵w 乙>w 甲,∴应选乙地.。