动量 动量守恒定律
- 格式:doc
- 大小:142.50 KB
- 文档页数:4
动量知识点总结动量是物体运动的重要物理量,它是描述物体运动状态的性质。
动量的概念最早由牛顿提出,并在牛顿力学体系中得到了广泛应用。
本文将从动量的概念、动量定理以及动量守恒定律三个方面对动量的知识点进行总结。
一、动量的概念:动量可以看作是物体运动的数量,它等于物体质量与速度的乘积。
即动量p=mv,其中p表示动量,m表示物体质量,v表示物体速度。
根据动量的定义,我们可以得到以下几个结论:1. 动量与速度方向相同,即速度越大,动量越大;2. 动量与物体的质量成正比,即质量越大,动量越大;3. 动量属于矢量量,具有大小和方向。
二、动量定理:动量定理是牛顿力学中的一条重要定理,它描述了物体受力作用时动量的变化关系。
动量定理可以用数学公式表示为:F=dp/dt,其中F表示受力,dp表示动量的变化量,dt表示时间的变化量。
根据动量定理,我们可以得到以下几个结论:1. 物体所受的力越大,动量的变化越大;2. 动量的变化量与变化时间成正比,变化时间越长,动量的变化越大;3. 稳定运动的物体,动量的变化率为零,即动量保持不变。
三、动量守恒定律:动量守恒定律是描述物体碰撞过程中动量守恒的定律。
在一个孤立系统中,当各个物体之间发生碰撞时,系统的总动量保持不变。
根据动量守恒定律,我们可以得到以下几个结论:1. 在碰撞过程中,物体之间的相互作用力会改变各自的动量,但系统的总动量保持不变;2. 弹性碰撞条件下,动量和能量都得到守恒;3. 非弹性碰撞条件下,动量得到守恒,但能量不守恒。
动量守恒定律在实际生活中有着重要的应用,例如交通事故中的汽车碰撞、弓箭发射、火箭推进等。
通过运用动量守恒定律,可以更好地理解物体碰撞过程中的运动规律,为实际问题的分析和解决提供参考。
总结起来,动量是描述物体运动状态的重要物理量,它具有大小和方向,可以通过质量与速度的乘积来计算。
动量定理描述了物体受力作用时动量的变化关系,而动量守恒定律则描述了物体碰撞过程中动量守恒的规律。
动量和动量守恒定律动量是物体运动的重要物理量,它描述了物体在运动中的惯性和力的效果。
动量守恒定律是描述一个孤立系统中动量守恒的原理。
本文将详细介绍动量和动量守恒定律的概念、公式以及实际应用。
一、动量的概念和公式动量是一个矢量量,它的大小等于物体的质量乘以其速度。
动量的公式可以表示为:p = m * v其中,p代表动量,m代表物体的质量,v代表物体的速度。
根据动量的定义和公式,我们可以得出以下结论:1. 动量与物体的质量成正比,即物体的质量越大,其动量也越大。
2. 动量与物体的速度成正比,即物体的速度越大,其动量也越大。
3. 动量是矢量量,具有方向性。
方向与速度的方向一致。
二、动量守恒定律的原理动量守恒定律是描述一个孤立系统中动量守恒的基本原理。
在一个孤立系统中,如果没有外力作用,系统内物体的动量总和保持不变。
具体而言,如果一个物体在没有外力作用下,其动量守恒定律可以表示为:m1 * v1 + m2 * v2 = m1 * v'1 + m2 * v'2其中,m1和m2分别代表参与碰撞的两个物体的质量,v1和v2分别代表碰撞前两个物体的速度,而v'1和v'2则代表碰撞后两个物体的速度。
三、动量守恒定律的应用动量守恒定律是物理学中的重要定律,广泛应用于各个领域。
以下是一些常见的应用:1. 碰撞问题:动量守恒定律可用于解析碰撞问题。
在碰撞中,通过应用动量守恒定律,可以计算出物体碰撞前后的速度。
2. 火箭推进原理:根据动量守恒定律,当火箭喷射出高速废气时,枪炮发射子弹时,火箭或子弹的向后喷射废气或火药的速度减小,而火箭或子弹的速度相应增加。
3. 交通安全:根据动量守恒定律,人行道上的行人在与汽车碰撞时,如果行人速度较快,可能会对汽车产生较大的碰撞力,导致严重伤害。
因此,交通中的速度限制和行人过街设施的设置都是基于动量守恒定律的。
4. 运动员技巧:运动员在一些体育项目中,通过善用动量守恒定律来改变自身的状态。
动量与动量守恒定律动量是物体运动中的重要物理量,它描述了物体在运动过程中的惯性和动力。
本文将介绍什么是动量以及动量守恒定律的原理和应用。
一、动量的定义动量是物体质量和速度的乘积,用符号p表示。
对于质量为m的物体,速度为v,则其动量p = mv。
动量的单位为 kg·m/s。
动量与速度的关系非常重要,当速度改变时,物体的动量也会发生相应的变化。
二、动量守恒定律的原理动量守恒定律是物理学中的基本定律之一。
它指出在一个封闭系统中,当物体之间相互作用时,它们的总动量保持不变。
也就是说,封闭系统中的物体在相互作用过程中,其动量的代数和保持不变。
三、动量守恒定律的应用动量守恒定律在物理学中有广泛的应用,下面将介绍其中几个重要的应用。
1. 碰撞碰撞是动量守恒定律最常见的应用之一。
碰撞可以分为完全弹性碰撞和非完全弹性碰撞。
在完全弹性碰撞中,物体之间相互碰撞后会发生弹性变形,但总动量保持不变。
在非完全弹性碰撞中,物体之间相互碰撞后会发生能量损失,但总动量仍保持不变。
2. 炮击问题炮击问题是指考虑火炮发射炮弹时的动量守恒。
在考虑空气阻力等因素的情况下,我们可以利用动量守恒定律来分析火炮的发射速度、炮弹的飞行轨迹等问题。
3. 火箭原理火箭的工作原理是基于动量守恒定律的。
火箭通过排出燃料来产生向后的冲量,从而产生推力推动火箭前进。
在火箭推进过程中,燃料的排出速度越大,获得的速度增量就越大。
四、动量守恒定律的实验验证为了验证动量守恒定律的正确性,许多实验被设计出来。
其中一个常见的实验是两个小球的弹性碰撞。
实验中,两个小球以不同的速度运动,在碰撞后它们的速度会发生变化。
通过测量碰撞前后小球的速度,可以验证动量守恒定律的正确性。
另一个实验是利用气垫轨道进行碰撞实验。
在气垫轨道上,可以将物体的摩擦力降到最低,使得碰撞实验更加精确。
通过测量碰撞前后的速度和质量,可以验证动量守恒定律。
总结:动量守恒定律是物理学中的重要定律,它在物体运动和相互作用中发挥着重要作用。
第 7 章动量定理和动量守恒定律§7-1 动量定理和动量守恒定律物体之间或物体内部各部分之间因运动发生相对地点变化的过程称为机械运动。
它是物质的各种各种运动形式中最简单、也是最广泛的一种,比如:行星绕太阳的转动、宇宙飞船的航行、机器的运行、弹簧的伸长或压缩、水和空气等流体的流动等等,都是机械运动。
而各种复杂的运动形式如生命现象、化学反响等,固然也有地点的变化,但其实不归纳为机械运动。
机械运动有两种量度:假如存在的机械运动仍以保持机械运动的形式进行传达,那么应以动量 mv 来量度;假如机械运动转变成其余形式的运动,应以动能12mv2来量度。
即动量是以机械运动来量度机械运动,动能是以机械运动转变成必定量的其余形式的运动的能力来量度机械运动的,动量和动能是研究机械运动不行缺乏的物理量。
动量、动量定理1、动量p物体的质量 m 与其速度 v 的乘积,称为该物体的动量p ,即p mv 。
在直角坐标系中动量 p 可表示为p mv mv x i mv y j mv z k p x i p y j p z k ( 7-1-1 )由( 7-1-1 )式知,动量是一个矢量,拥有刹时性。
2、动量定理若在时辰 t ,物体的动量为 p(t ) ,经过t 时间段,其动量为p(t t ) ,在t tt 时间微元段上,其动量的增量dp 为d p p(t t ) p(t)若在该时间元段t 内,物体受力 f 作用,由牛顿第二定律知有dp fdt ( 7-1-2 )关系建立。
若在t1 t 2的时间段上,物体受力 f 作用,将每一个时间元段上动量的增量dp 加起来,即在 t1 t2 的时间段上对其乞降,则该时间段上的动量增量p 为p p 2 p1 t 2 f dt ( 7-1-3 )t 1t 2f dt 称为力( 7-1-2 )式与( 7-1-3 )式就是动量定理的表述。
人们又常把(7-1-3 )式的右项t 1f的冲量。
关于由多个物体所构成的系统,其总动量等于各物体动量p i的矢量和,即系统总动量p为np p ii 1系统所受的力可分为:外力、内力,外力即来自系统外的作用,内力即指系统内各物体间的互相作使劲。
动量定理与动量守恒定律的比较
动量定理和动量守恒定律都是描述物体运动状态的基本定律。
动量定理指出,当一个物体受到外力作用时,它的动量会发生变化,变化量等于外力作用时间内的动量变化率。
动量守恒定律则指出,当物体间只有内力作用时,它们的总动量保持不变。
两个定律都是基于牛顿第二定律推导而来的。
动量定理适用于描述瞬时的动量变化,比如撞击、碰撞等过程。
它可以用来计算物体在受力作用下的运动状态变化,如速度、位移等。
而动量守恒定律适用于描述长时间内的物体运动,比如行星绕太阳的运动、宇宙中物体的演化等。
它可以用来预测物体间的相对位置和速度等运动状态。
动量定理和动量守恒定律之间的关系是密切的,它们可以互相验证。
动量定理的推导基于牛顿第二定律,而牛顿第二定律的推导又基于动量守恒定律。
因此,这两个定律是相互支撑、相互补充的。
总之,动量定理和动量守恒定律是描述物体运动状态的基本定律,它们分别适用于不同的物理过程和时间尺度。
它们的相互关系是相当重要的,可以用来解释和预测物理现象。
- 1 -。
什么是动量守恒定律动量守恒定律是描述质点系列运动中动量守恒的物理定律。
它表明在一个孤立系统中,当系统内部没有外力作用或外力合成为零时,系统的总动量保持不变。
动量守恒定律是质点运动的基本定律之一,它与质量和速度密切相关。
质点的动量定义为质量与速度的乘积,即动量=质量 ×速度。
根据动量守恒定律,如果质点或质点系系统中的质点没有受到外力作用,或者外力作用合力为零,则系统的总动量在运动过程中保持不变。
动量守恒定律可以用数学公式来表示。
对于一个由n个质点组成的系统,在任意时刻t的总动量为:P_total(t) = P_1(t) + P_2(t) + ... + P_n(t)其中,P_i(t)为第i个质点在时刻t的动量。
动量守恒定律是通过对系统内部相互作用力和外力之和的分析得出的。
在一个孤立系统中,由于没有外力作用(或外力合成为零),系统内部相互作用力之和为零。
根据牛顿第三定律,质点i对质点j的作用力与质点j对质点i的作用力大小相等、方向相反。
因此,系统内各质点的作用力对总动量的贡献相互抵消,导致总动量保持恒定。
动量守恒定律适用于各种不同的物理情境。
在力学中,例如弹性碰撞和非弹性碰撞中,质点间的相互作用力可以改变质点的动量,但总动量保持不变。
在流体力学中,根据质点流体运动的动量守恒定律,可以推导出流体动量守恒定律,描述流体运动过程中总动量的守恒。
动量守恒定律的应用广泛,并在科学和工程领域中有着重要的意义。
例如,在交通工程中,研究车辆碰撞时的动量守恒可以帮助设计安全的汽车结构和防护设施。
在天体力学中,动量守恒定律用于解释行星间的相互作用和天体运动的轨迹。
此外,在核物理学和高能物理学中,动量守恒定律被广泛应用于粒子加速器中的粒子碰撞实验和粒子物理过程的研究。
总结起来,动量守恒定律是描述质点系列运动中动量守恒的基本物理定律。
它指出在一个孤立系统中,当系统内部没有外力作用或外力合成为零时,系统的总动量保持不变。
一、动量与冲量1.动量按定义, 物体的质量和速度的乘积叫做动量:p=m v(1)动量是描述物体运动状态的一个状态量, 它与时刻相对应.(2)动量是矢量, 它的方向和速度的方向相同.(3)动量与动能的区别和联系:动量、动能和速度都是描述物体运动的状态量;动量是矢量, 动能是标量;动量和动能的关系是E k=p 22m2、动量的变化量Δp=p t-p0.动量的变化量是矢量, 其方向与速度变化的方向相同, 与合外力冲量的方向相同, 跟动量的方向无关.求动量变化量的方法:Δp=p t-p0=mv2-mv1, Δp=Ft3.冲量(1)定义:力和力的作用时间的乘积, 叫做该力的冲量, I=F t, I=ΣF i t i(2)冲量表示力在一段时间内的累积作用效果, 是矢量, 其方向由力的方向决定, 如果在作用时间内力的方向不变, 冲量的方向就和力的方向相同.(3)冲量的计算高中阶段只讨论恒力的冲量:直接用定义式I=F t计算.恒力F的方向与位移S的方向一致时:W=FS.4.动量定理及其应用(1)内容:物体所受合外力的冲量, 等于这个物体动量的变化量.Ft=p′-p或Ft=mv′-mv.(2)适用条件:直线与曲线问题、恒力与变力问题都可以用动量定理处理.(3)用动量定理解题的基本思路①确定研究对象.②对物体进行受力分析.可以先求每个力的冲量, 再求各力冲量的矢量和—合力的冲量;或先求合力, 再求其冲量.③抓住过程的初、末状态, 选好正方向, 确定各动量和冲量的正、负号.④根据动量定理列方程, 如有必要, 还需要其他补充方程式, 最后代入数据求解.5.动量守恒的条件及简单应用(1)动量守恒定律:一个系统不受外力或者所受外力之和为零, 这个系统的总动量保持不变.p=p′或m1v1+m2v2=m1v1′+m2v2′或Δp1+Δp2=0.(2)动量守恒定律的适用条件:①系统不受外力或系统所受外力之和为零.②系统所受的外力之和虽不为零, 但比系统内力小得多, 如碰撞问题中的摩擦力, 爆炸过程中的重力等外力, 这些外力相比相互作用的内力来小得多, 可以忽略不计.③系统所受的合外力不为零, 但系统在某一方向不受外力或所受外力的矢量和为零, 或外力远小于内力, 则系统在该方向上动量守恒.二、几种常见的模型1.爆炸类问题(反冲)爆炸问题:(初态, 两个物体均静止)爆炸损失的能量为E:两个小球向反方向运动的动量相等:m1v1= m2v2 E1=m2m1+ m2·E12m1v12 + 12m2v22 = E E2=m1m1+ m2·EE1E2= m2m1两个物体分配的能量与质量的比值成反比eg:打拳击、打枪.反冲问题:在某些情况下, 原来系统内物体具有相同的速度, 发生相互作用后各部分的末速度不再相同而分开. 这类问题相互作用过程中系统的动能增大, 有其它能向动能转化. 可以把这类问题统称为反冲.例:人船模型:mv1=Mv2v1=x/t, v2=y/t;mx=My, 其中x+y=L.2.碰撞类问题碰撞:两个物体在极短时间内发生相互作用, 这种情况称为碰撞. 由于作用时间极短, 一般都满足内力远大于外力, 所以可以认为系统的动量守恒. 碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种.(1)碰撞过程:设光滑水平面上, 质量为m1的物体A以速度v1向质量为m2的静止物体B运动, B的左端连有轻弹簧.①在Ⅰ位置A、B刚好接触, 弹簧开始被压缩, A开始减速, B开始加速;②到Ⅱ位置A、B速度刚好相等(设为v), 弹簧被压缩到最短;再往后A、B开始远离, 弹簧开始恢复原长,③到Ⅲ位置弹簧刚好为原长, A、B分开, 这时A、B的速度分别为v1和v2.全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了.(2)碰撞类问题要遵循碰撞三原则:①动量守恒;②动能不增;p102+p202≥p12+p22③真实场景原则.(3)完全弹性碰撞(碰撞过程动能不损失):①Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,②Ⅱ状态系统动能最小而弹性势能最大;③Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等.这种碰撞叫做弹性碰撞.由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:v 1=m 1-m 2m 1+m 2·v 10+2m 2m 1+ m 2v 20v 2=m 2-m 1m 1+m 2·v 20+2m 1m 1+ m 2v 10 (4)完全非弹性碰撞(碰撞后两物体共速, 动能损失最大):①Ⅰ→Ⅱ系统动能减少全部转化为内能, Ⅱ状态系统动能仍和(1)相同, 但没有弹性势能;②由于没有弹性, A 、B 不再分开, 而是共同运动, 不再有Ⅱ→Ⅲ过程.这种碰撞叫完全非弹性碰撞. 可以证明, A 、B 最终的共同速度为:v=m 1v 10+m 2v 20m 1+m 2在完全非弹性碰撞过程中, 系统的动能损失最大, 为:ΔE k =12·m 1·m 2m 1+m 2·(v 10-v 20)2 (双动) ΔE k =12·m 1v 102·m 2m 1+m 2· (一动一静)(5)非完全弹性碰撞(碰撞后两物体不共速, 且有动能损失):①Ⅰ→Ⅱ系统动能减少, 一部分转化为弹性势能, 一部分转化为内能,②Ⅱ状态系统动能仍和弹性碰撞相同, 弹性势能仍最大, 但比弹性碰撞小;③Ⅱ→Ⅲ弹性势能减少, 部分转化为动能, 部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能). 这种碰撞叫非完全弹性碰撞.1、动量和冲量1.下列关于动量的论述中正确的是( ).A、质量大的物体动量一定大B、速度大的物体动量一定大C、两物体动能相等, 动量不一定相等D、两物体动能相等, 动量一定相等2.两个具有相等动量的物体A、B, 质量分别为m A和m B, 且m A>m B, 比较它们的动能, 则( ).A、B的动能较大B、A的动能较大C、动能相等D、不能确定3.放在水平桌面上的物体质量为m, 用一个水平推力F推它, 作用时间为t, 物体始终不动, 那么在t时间内, 推力对物体的冲量应为______.4.甲、乙两物体的质量之比为m甲: m乙=1: 4, 若它们在运动过程中的动能相等, 则它们动量大小之比p甲: p乙是( ).A、1: 1B、1: 2C、1: 4D、2: 15.以初速度v0=40m/s竖直向上抛出物体, 质量为4kg,则第2秒末的动量为____kg·m/s, 第5秒末动量为____kg·m/s, 从第2秒末到第5秒末动量的变化量为____kg·m/s(g取10m/s2).6.如图所示, 物体质量m=2kg, 放在光滑水平桌面上, 在恒定的牵引力F作用下由位置A运动到位置B, 速度由2m/s增加到4m/s, 力F与水平面成60°角, 求在此过程中力F的冲量.2、动量定理7.质量为m的小球, 从沙坑上方自由下落, 经过时间t1到达沙坑表面, 又经过时间t2停在沙坑里.求:(1)沙对小球的平均阻力F;(2)小球在沙坑里下落过程所受的总冲量I.8.如图所示, 把重物G压在纸带上, 若用一水平力迅速拉动纸带, 纸带将会从重物下抽出;若缓慢拉动纸带, 纸带也从重物下抽山, 但重物跟着纸带一起运动一段距离. 下列解释上述现象的说法中正确的是( ). A、在缓慢拉动纸带时, 纸带给重物的摩擦力大B、在迅速拉动纸带时, 纸带给重物的摩擦力小C、在缓慢拉动纸带时, 纸带给重物的冲量大D、在迅速拉动纸带时, 纸带给重物的冲量小9.质量为0.2kg的球, 从5.0m高处自由下落到水平钢板上又被竖直弹起, 弹起后能达到的最大高度为4.05m, 如果球从开始下落到弹起达到最大高度所用时间为1.95s, 不考虑空气阻力(g取10m/s2), 求小球对钢板的作用力.10.以2m/s的速度作水平匀速运动的质量为0.1kg的物体, 从某一时刻起受到一个始终与速度方向垂直、大小为2N的力的作用, 在作用0. 1π(s)后, 物体的速度大小是_______m/s, 这0.1π(s)内, 力对物体的冲量大小为______N·s.3、动量守恒定律11.质量相等的甲乙两球在光滑水平面上沿同一直线运动. 甲以7kgm/s的动量追上前方以5kgm/s的动量同向运动的乙球发生正碰, 则碰后甲乙两球动量不可能的是( )A. 5kgm/s, 7kgm/sB. 6kgm/s, 6kgm/sC. 5.5kgm/s, 6.5kgm/sD. 4kgm/s, 8kgm/s12.在光滑水平直路上停着一辆较长的木板车, 车的左端站立一个大人, 车的右端站立一个小孩. 如果大人向右走, 小孩(质量比大人小)向左走, 他们的速度大小相同, 则在他们走动过程中( ).A、车可能向右运动B、车一定向左运动C、车可能保持静止D、无法确定13.质量分别为60kg和70kg的甲、乙两人, 分别同时从原来静止的在光滑水平面上的小车两端. 以3m/s的水平初速度沿相反方向跳到地面上. 若小车的质量为20㎏. 则当两人跳离小车后, 小车的运动速度为( ).A、19.5m/s. 方向与甲的初速度方向相同B、19.5m/s, 方向与乙的初速度方向相同C、1.5m/s, 方向与甲的初速度方向相同D、1.5m/s, 方向与乙的初速度方向相同14.质量相同的物体A、B静止在光滑的水平面上, 用质量和水平速度相同的子弹a、b分别射击A、B, 最终a子弹留在A物体内, b子弹穿过B, A、B速度大小分别为v A和v B, 则( ).A、v A>v BB、v A<v BC、v A=v BD、条件不足, 无法判定15. 如图所示, 在一个足够大的光滑平面内有A、B两个质量相同的木块, 中间用轻质弹簧相连, 今对B施以水平冲量FΔt(Δt极短), 此后A、B的情况是( ).A、在任意时刻, A、B的加速度大小相同B、弹簧伸长到最长时, A、B的速度相同C、弹簧恢复到原长时. A、B的动量相同D、弹簧压缩到最短时, 系统总动能最少16.质量为M的楔形物块上有圆弧轨道, 静止在水平面上. 质量为m的小球以速度v1向物块运动. 不计一切摩擦, 圆弧小于90°且足够长. 求小球能上升到的最大高度H和物块的最终速度v.17.设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块, 并留在木块中不再射出, 子弹钻入木块深度为D. 求木块对子弹的平均阻力的大小和该过程中木块前进的距离.18.如图所示, 有A、B两质量均为M的小车, 在光滑的水平面上以相同的速率v0在同一直线上相向运动, A车上有一质量为m的人, 他至少要以多大的速度(对地)从A车跳到B车上, 才能避免两车相撞?19.如图所示, 质量相同的木块A和B, 其间用一轻质弹簧相连, 置于光滑的水平桌面上, C为竖直坚硬挡板. 今将B压向A, 弹簧被压缩, 然后突然释放B, 若弹簧刚恢复原长时, B的速度大小为v, 那么当弹簧再次恢复原长时, B的速度大小应为( )A、0B、v/2C、vD、2 2v20.如图, (a)图表示光滑平台上, 物体A以初速度v0滑到上表面粗糙的水平小车上, 车与水平面间的动摩擦因数不汁, (b)图为物体A与小车的v-t图像, 由此可知( ).A、小车上表面至少的长度B、物体A与小车B的质量之比C、A与小车上B上表面的动摩擦因数D、小车B获得的动能21.平直的轨道上有一节车厢, 车厢以12m/s的速度作匀速直线运动. 某时刻与一质量为其一半的静止的平板车挂接时, 车厢顶边缘上一个小钢球向前滚出, 如图所示, 平板车与车厢顶高度差为1.8m, 设平板车足够长, 问钢球落在平板车上何处(g取10m/s2)?22.[2011·高考全国新课标卷, 35(2)]如图, A、B、C三个木块的质量均为m, 置于光滑的水平桌面上, B、C 之间有一轻质弹簧, 弹簧的两端与木块接触而不固连. 将弹簧压紧到不能再压缩时用细线把B和C紧连, 使弹簧不能伸展, 以至于B、C可视为一个整体. 现A以初速v0沿B、C的连线方向朝B运动, 与B相碰并粘合在一起. 以后细线突然断开, 弹簧伸展, 从而使C与A、B分离. 已知C离开弹簧后的速度恰为v0. 求弹簧释放的势能.23.质量为M的小车静止在光滑的水平面上, 小车的上表面是一光滑的曲面, 末端是水平的, 如图所示, 小车被挡板P挡住, 质量为m的物体从距地面高H处自由下落, 然后沿光滑的曲面继续下滑, 物体落地点与小车右端距离s0, 若撤去挡板P, 物体仍从原处自由落下, 求物体落地时落地点与小车右端距离是多少?23.如图所示, 在足够长的光滑水平轨道上有三个小木块A、B、C, 质量分别为m A、m B、m C, 且m A=m B=1.0kg, m C=2.0kg, 其中B与C用一个轻弹簧拴接在一起, 开始时整个装置处于静止状态. A和B之间有少许塑胶炸药, A的左边有一个弹性挡板. 现在引爆塑胶炸药, 若炸药爆炸产生的能量中有E=9.0J转化为A和B的动能, A和B分开后, A恰好在BC之间的弹簧第一次恢复到原长时追上B, 并且与B发生碰撞后粘在一起. 忽略小木块和弹性挡板碰撞过程中的能量损失. 求:(1)塑胶炸药爆炸后瞬间A与B的速度各为多大?(2)在A追上B之前弹簧弹性势能的最大值;(3)A与B相碰以后弹簧弹性势能的最大值.24.小球A和B的质量分别为m A和m B, 且m A>m B. 在某高度处将A和B先后从静止释放. 小球A与水平地面碰撞后向上弹回, 在释放处的下方与释放处距离为H的地方恰好与正在下落的小球B发生正碰. 设所有碰撞都是弹性的, 碰撞时间极短. 求小球A. B碰撞后B上升的最大高度.。