1.2探究动量守恒定律测试
- 格式:doc
- 大小:69.50 KB
- 文档页数:4
高中物理动量守恒定律解题技巧(超强)及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.牛顿的《自然哲学的数学原理》中记载,A、B两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B对A的速度,接近速度是指碰撞前A对B的速度.若上述过程是质量为2m的玻璃球A以速度v0碰撞质量为m 的静止玻璃球B,且为对心碰撞,求碰撞后A、B的速度大小.【答案】v0v0【解析】设A、B球碰撞后速度分别为v1和v2由动量守恒定律得2mv0=2mv1+mv2且由题意知=解得v1=v0,v2=v0视频3.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。
选修1高中物理动量守恒定律试题(含答案)一、动量守恒定律选择题1.质量为m、半径为R的小球,放在半径为3R、质量为3m的大空心球内,大球开始静止在光滑水平面上。
当小球从如图所示的位置(两球心在同一水平面上)无初速度沿内壁滚到最低点时,大球移动的距离是()A.2RB.125RC.4RD.34R2.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m的小球以平行斜面向上的初速度1v,当小球回到出发点时速率为2v。
小球在运动过程中除重力和弹力外,另受阻力f(包含摩擦阻力),阻力f大小与速率成正比即f kv=。
则小球在斜面上运动总时间t为()A.12sinv vtgθ+=⋅B.12sinv vtgθ-=⋅C.1212sin2mv mvtv vmg kθ+=+⋅+D.1212sin2mv mvtv vmg kθ-=+⋅-3.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L,宽轨间距为2L。
轨道处于竖直向下的磁感应强度为B的匀强磁场中,质量分别为m、2m的金属棒a、b垂直于导轨静止放置,其电阻分别为R、2R,现给a棒一向右的初速度v0,经t时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b棒一直在宽轨上运动。
下列说法正确的是()A.a棒开始运动时的加速度大小为223B L vRmB .b 棒匀速运动的速度大小为03v C .整个过程中通过b 棒的电荷量为023mv BL D .整个过程中b 棒产生的热量为203mv 4.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 5.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m6.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 223E mED.在A离开竖直墙后,弹簧的弹性势能最大值为37.3个质量分别为m1、m2、m3的小球,半径相同,并排悬挂在长度相同的3根竖直绳上,彼此恰好相互接触.现把质量为m1的小球拉开一些,如图中虚线所示,然后释放,经球1与球2、球2与球3相碰之后,3个球的动量相等.若各球间碰撞时均为弹性碰撞,且碰撞时间极短,不计空气阻力,则m1:m2:m3为()A.6:3:1 B.2:3:1 C.2:1:1 D.3:2:18.如图所示,足够长的光滑水平面上有一质量为2kg的木板B,质量为1kg的木块C叠放在B的右端点,B、C均处于静止状态且B、C之间的动摩擦因数为μ = 0.1。
动量守恒定律试题(含答案)一、动量守恒定律 选择题1.如图所示,足够长的光滑水平面上有一质量为2kg 的木板B ,质量为1kg 的木块C 叠放在B 的右端点,B 、C 均处于静止状态且B 、C 之间的动摩擦因数为μ = 0.1。
质量为1kg 的木块A 以初速度v 1 = 12m/s 向右滑动,与木板B 在极短时间内发生碰撞,碰后与B 粘在一起。
在运动过程中C 不从B 上滑下,已知g = 10m/s 2,那么下列说法中正确的是( )A .A 与B 碰撞后A 的瞬时速度大小为3m/sB .A 与B 碰撞时B 对A 的冲量大小为8N∙sC .C 与B 之间的相对位移大小为6mD .整个过程中系统损失的机械能为54J2.如图所示,小车的上面是由中间凸起的两个对称曲面组成,整个小车的质量为m ,原来静止在光滑的水平面上。
今有一个可以看做质点的小球质量也为m ,以水平速度v 从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。
关于这个过程,下列说法正确的是( )A .小球滑离小车时,小车又回到了原来的位置B .小球滑到小车最高点时,小球和小车的动量不相等C .小球和小车相互作用的过程中,小车和小球系统动量始终守恒D .车上曲面的竖直高度若高于24v g,则小球一定从小车左端滑下 3.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。
下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落C .若032a v gL μ≤,则ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落4.如图,固定的光滑斜面倾角θ=30°,一质量1kg 的小滑块静止在底端A 点.在恒力F 作用下从沿斜面向上作匀加速运动,经过时间t =2s ,运动到B 点,此时速度大小为v 1,到B 点时撤去F 再经过2s 的时间,物体运动到AB 的中点C ,此时速度大小为v 2,则以下正确的是A .v 2=2v 1B .B 点到C 点的过程中,物体动量改变量为2kg·m/sC .F =7ND .运动过程中F 对小滑块做功28J5.如图所示,一质量为0.5 kg 的一块橡皮泥自距小车上表面1.25 m 高处由静止下落,恰好落入质量为2 kg 、速度为2.5 m/s 沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取210m/s g =,不计空气阻力,下列说法正确的是A .橡皮泥下落的时间为0.3 sB .橡皮泥与小车一起在水平地面上运动的速度大小为2 m/sC .橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D .整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5 J6.水上飞行运动使用的是一种叫“喷射式悬浮飞行器”的装置,也称为“喷水飞行背包”,它通过向下喷射高压水柱的方式将操控者托举在水面 上空,利用脚上喷水装置产生的反冲动力,让你可以在水面之上腾空而起,另外配备有手动控 制的喷嘴,用于稳定空中飞行姿态.如图所示运动员在水上做飞行运动表演.他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中.已知运动员与装备的总质量为100 kg ,两个圆管喷嘴的直径均为10cm ,已知重力加速度大小g =10m/s 2,水的密度ρ=1.0×103kg/cm 3,则喷嘴处喷水的速度大约为A .3.0 m/sB .5.4 m/sC .8.0 m/sD .10.2 m/s7.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为03v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A .若m 0=3m ,则能够射穿木块B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 28.3个质量分别为m 1、m 2、m 3的小球,半径相同,并排悬挂在长度相同的3根竖直绳上,彼此恰好相互接触.现把质量为m 1的小球拉开一些,如图中虚线所示,然后释放,经球1与球2、球2与球3相碰之后,3个球的动量相等.若各球间碰撞时均为弹性碰撞,且碰撞时间极短,不计空气阻力,则m 1:m 2:m 3为( )A .6:3:1B .2:3:1C .2:1:1D .3:2:19.有一宇宙飞船,它的正对面积S =2 m 2,以v =3×103 m/s 的相对速度飞入一宇宙微粒区.此微粒区1 m 3空间中有一个微粒,每一个微粒的平均质量为m =2×10-7kg .设微粒与飞船外壳碰撞后附着于飞船上,要使飞船速度不变,飞船的牵引力应增加A .3.6×103 NB .3.6 NC .1.2×103 ND .1.2 N10.如图所示,质量均为1.0kg 的木板A 和半径为0.2m 的14光滑圆弧槽B 静置在光滑水平面上,A 和B 接触但不粘连,B 左端与A 相切。
恒口高中2013-2014高二物理学案乘风破浪会有时,直挂云帆济沧海沪科3-5 编号:№ 22课题:1.2探究动量守恒定律主编:史胜波审稿:丁义浩时间: *实授课时:2班级:姓名:组号:组评:学习目标1.知道动量守恒定律的内容,掌握动量守恒定律成立的条件,并在具体问题中判断动量是否守恒。
2.学会沿同一直线相互作用的两个物体的动量守恒定律的推导。
3.知道动量守恒定律是自然界普遍适用的基本规律之一。
重点动量守恒定律的推导及其守恒条件的分析。
难点动量守恒定律的理解和守恒条件的分析。
学法指导探究、实验、讲授、讨论自主一、探究物体碰撞时动量的变化规律用气垫导轨作碰撞实验探究目的:探究物体碰撞时动量的变化规律探究过程:①实验必须保证碰撞是一维的,即两个物体在碰撞之前沿运动,碰撞之后还沿同一直线运动;②用测量物体的质量;测量两个物体在碰撞前后的速度。
速度的测量:(光电门测速原理)如图所示,图中滑块上红色部分为挡光板,挡光板有一定的宽度,设为L.气垫导轨上黄色框架上安装有光控开关,并与计时装置相连,构成光电计时装置.当挡光板穿入时,将光挡住开始计时,穿过后不再挡光则停止计时,设记录的时间为t,则滑块相当于在L 的位移上运动了时间t,所以滑块匀速运动的速度v= 。
二、动量守恒定律1、动量守恒定律的内容。
学习2、动量守恒定律的表达式。
3、系统:。
内力:。
外力:。
4、动量守恒的条件:①系统内的任何物体都不受外力作用,这是一种理想化的情形,如天空中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。
②系统虽然受到了外力作用,但所受外力之和为零。
像光滑水平面上两物体的碰撞就是这种情形,两物体所受的重力和支持力的合力为零。
③系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。
抛出去的手榴弹在空中爆炸的瞬间,火药的内力远大于其重力,重力完全可以忽略不计,动量近似守恒。
两节火车车厢在铁轨上相碰时,在碰撞瞬间,车厢间的作用力远大于铁轨给车厢的摩擦力,动量近似守恒。
1.如图所示,以质量m=1kg 的小物块(可视为质点),放置在质量为M=4kg 的长木板,左侧长木板放置在光滑的水平地面上,初始时长木板与木块一起,以水平速度v ₀=2m/s 向左匀速运动。
在长木板的左侧上方固定着一个障碍物A ,当物块运动到障碍物A 处时与A 发生弹性碰撞(碰撞时间极短,无机械能损失),而长木板可继续向左运动,重力加速度g=10m/s ²。
(1)设长木板足够长,求物块与障碍物第1次碰撞后,物块与长木板速度相同时的共同速率 1.2m/s(2)设长木板足够长,物块与障碍物发生第1次碰撞后,物块儿向右运动能到达的最大距离,s=0.4m ,求物块与长木板间的动摩擦因数以及此过程中长木板运动的加速度的大小.1.25m/s2(3)要使物块不会从长木板上滑落,长木板至少为多长?2m2.如图所示为一根直杆弯曲成斜面和平面连接在一起的轨道,转折点为C,斜面部分倾角为30度,平面部分足够长,滑块A,B 放在斜面上,开始时A,B 之间的距离为1米,B 与C 的距离为0.6米,现将A B 同时由静止释放.已知A 、B 与轨道的动摩擦因数分别为√3/5和√3/2 ,A 、B 质量均为m ,g 取10m/s²,设最大静摩擦力等于滑动摩擦力,A 、B 发生碰撞时为弹性碰撞。
物体A,B 可以看作是质点,不计在斜面与平面转弯处的机械能损失,则(1)经过多长时间滑块A,B 第1次发生碰撞. 1s(2)滑块B 停在水平轨道上的位置与C 点儿的距离是多少?m 1033.如图所示,光滑的轨道固定在竖直平面内,其O 点左边为水平轨道,O 点右边的曲面轨道高度h 等于0.45米,左右两段轨道在O 点平滑连接.质量m=0.10kg 的小滑块a 由静止开始从曲面轨道的顶端沿轨道下滑,到达水平段后与处于静止状态的质量M=0.30kg 的小滑块b 发生碰撞,碰撞后现小滑块a 恰好停止运动,取重力加速度g=10m/s²,求(1)小滑块a 通过O 点时的速度大小3m/s (2)碰撞后小滑块b 的速度大小1m/s(3)碰撞后碰撞过程中小滑块a 、b 组成的系统损失的机械能。
绝密★启用前2019鲁科版高中物理选修3-5第1章《动量守恒定律研究》章节测试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。
第Ⅰ卷一、单选题(共20小题,每小题3.0分,共60分)1.关于物体的动量,下列说法中正确的是()A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的加速度不变,其动量一定不变C.动量越大的物体,其速度一定越大D.动量越大的物体,其质量一定越大2.如图所示,质量为M的物体P静止在光滑的水平桌面上,另有一质量为m(M>m)的物体Q以速度v0正对P滑行,则它们相碰后(设桌面足够大)()A.Q物体一定被弹回,因为M>mB.Q物体可能继续向前C.Q物体的速度不可能为零D.若相碰后两物体分离,则过一段时间可能再碰3.试管开口向上,管内底部有一小昆虫,试管自由下落时,当昆虫停在管底和沿管壁加速上爬的两种情况下,试管在相等时间内获得的动量大小是()A.小昆虫停在管底时大B.小昆虫向上加速上爬时大C.两种情况一样大D.小昆虫加速度大小未知,无法确定4.如图所示,质量相等的A、B两个球,原来在光滑水平面上沿同一直线相向做匀速直线运动,A 球的速度是6 m/s,B球的速度是-2 m/s,不久A、B两球发生了对心碰撞.对于该碰撞之后的A、B两球的速度可能值,某实验小组的同学们做了很多种猜测,下面的猜测结果一定无法实现的是()A.v A′=-2 m/s,vB′=6 m/sB.v A′=2 m/s,vB′=2 m/sC.v A′=1 m/s,vB′=3 m/sD.v A′=-3 m/s,vB′=7 m/s5.光子的能量为hν,动量大小为,如果一个静止的放射性元素的原子核在发生γ衰变时只放出一个γ光子,则衰变后的原子核()A.仍然静止B.沿着与光子运动方向相同的方向运动C.沿着与光子运动方向相反的方向运动D.可能向任何方向运动6.如图所示,a、b、c三个相同的小球,a从光滑斜面顶端由静止开始自由下滑,同时b、c从同一高度分别开始做自由下落和平抛运动.它们从开始到到达地面,下列说法正确的有()A.它们同时到达地面B.重力对它们的冲量相同C.它们的末动能相同D.它们动量变化的大小相同7.如图所示,质量为M的斜劈置于光滑的水平地面上,一质量为m的滑块以初速度v0沿斜劈向上滑行,它们在相互作用的过程中,当斜劈的速度达到最大值时,对应的是下列情况中的()A.滑块在到达斜劈的最高位置时B.滑块从斜劈上开始下滑时C.滑块与斜劈速度相等时D.滑块与斜劈开始分离时8.一同学在地面上立定跳远的最好成绩是x(m),假设他站在车的A端,如图所示,想要跳上距离为l(m)远的站台上,不计车与地面的摩擦阻力,则()A.只要l<x,他一定能跳上站台B.只要l<x,他有可能跳上站台C.只要l=x,他一定能跳上站台D.只要l=x,他有可能跳上站台9.物体沿粗糙的斜面上滑,到最高点后又滑回原处,则()A.上滑时重力的冲量比下滑时小B.上滑时摩擦力冲量比下滑时大C.支持力的冲量为0D.整个过程中合外力的冲量为零10.下列关于动量的说法中,正确的是()A.物体的动量改变,其速度大小一定改变B.物体的动量改变,其速度方向一定改变C.物体运动速度的大小不变,其动量一定不变D.物体的运动状态改变,其动量一定改变11.如图所示,游乐场上,两位同学各驾着一辆碰碰车迎面相撞,此后,两车以共同的速度运动;设甲同学和他的车的总质量为150 kg,碰撞前向右运动,速度的大小为4.5 m/s;乙同学和他的车的总质量为200 kg,碰撞前向左运动,速度的大小为 4.25 m/s,则碰撞后两车共同的运动速度为(取向右为正方向)()A. 1 m/sB. 0.5 m/sC.-1 m/sD.-0.5 m/s12.手持铁球的跳远运动员起跳后,欲提高跳远成绩,可在运动到最高点时,将手中的铁球() A.竖直向上抛出B.向前方抛出C.向后方抛出D.向左方抛出13.一炮艇在湖面上匀速行驶,突然从船头和船尾同时水平向前和向后各发射一发炮弹,设两炮弹质量相同,相对于地的速率相同,船的牵引力和阻力均不变,则船的速度的变化情况是 ()A.速度不变B.速度减小C.速度增大D.无法确定14.如图所示,自行火炮连同炮弹的总质量为M,当炮管水平,火炮车在水平路面上以v1的速度向右匀速行驶中,发射一枚质量为m的炮弹后,自行火炮的速度变为v2,仍向右行驶.则炮弹相对炮筒的发射速度v0为()A.B.C.D.15.“娱乐风洞”是一项将科技与惊险相结合的娱乐项目,它能在一个特定的空间内把表演者“吹”起来.假设风洞内向上的风量和风速保持不变,表演者调整身体的姿态,通过改变受风面积(表演者在垂直风力方向的投影面积),来改变所受向上风力的大小.已知人体所受风力大小与受风面积成正比,人水平横躺时受风面积最大,设为S0,站立时受风面积为S0;当受风面积为S0时,表演者恰好可以静止或匀速漂移.如图所示,某次表演中,人体可上下移动的空间总高度为H,表演者由静止以站立身姿从A位置下落,经过B位置时调整为水平横躺身姿(不计调整过程的时间和速度变化),运动到C位置速度恰好减为零.关于表演者下落的过程,下列说法中正确的是()A.B点距C点的高度是HB.从A至B过程表演者克服风力所做的功是从B至C过程表演者克服风力所做的功的C.从A至B过程表演者所受风力的冲量是从A至C过程表演者所受风力的冲量的D.从A至B过程表演者所受风力的平均功率是从B至C过程表演者所受风力平均功率的16.两个具有相等动能的物体,质量分别为m1和m2,且m1>m2,比较它们动量的大小,则有()A.m2的动量大一些B.m1的动量大一些C.m1和m2的动量大小相等D.哪个的动量大不一定17.在距地面高为h处,同时以相同速率v0分别平抛、竖直上抛、竖直下抛质量相等的物体m,当它们落地时,比较它们的动量的增量Δp,有()A.平抛过程较大B.竖直上抛过程较大C.竖直下抛过程较大D.三者一样大18.质量分别为2m和m的A、B两个质点,初速度相同,均为v1.若他们分别受到相同的冲量I作用后,A的速度为v2,B的动量为p.已知A、B都做直线运动,则动量p可以表示为( )A.m(v2-v1)B. 2m(2v2-v1)C. 4m(v2-v1)D.m(2v2-v1)19.质量为m的小球A,在光滑水平面以初动能E k与质量为2m的静止小球B发生正碰,碰撞后A 球停下,则撞后B球的动能为()A. 0B.C.D.E k20.如图所示,两个质量相等的小球从同一高度沿倾角不同的两个光滑斜面由静止自由滑下,下滑到达斜面底端的过程中()A.两物体所受重力做功相同B.两物体所受合外力冲量相同C.两物体到达斜面底端时时间相同D.两物体到达斜面底端时动能不同第II卷二、计算题(共4小题,每小题10.0分,共40分)21.如图所示,质量为m的子弹,以速度v水平射入用轻绳悬挂在空中的木块,木块的质量为M,绳长为L,子弹停留在木块中,求子弹射入木块后的瞬间绳子张力的大小.22.如图所示,质量为m的摆球用长为l的轻质细绳系于O点,O点正下方的粗糙水平地面上静止着一质量为M的钢块.现将摆球向左拉起,使细线水平,由静止释放摆球,摆球摆动至最低点时与钢块发生正碰,碰撞时间极短,碰后摆球反弹上升至最高点时与最低点的竖直高度差为l.已知钢块与水平面间的动摩擦因数为μ,摆球和钢块均可视为质点,不计空气阻力,水平面足够长.求:钢块与摆球碰后在地面上滑行的距离.23.质量为60 kg的人,不慎从高空支架上跌落,由于弹性安全带的保护,使他悬挂在空中.已知安全带长5 m,其缓冲时间是1.2 s,求安全带受到的平均冲力大小为多少?(取g=10 m/s2)24.如图所示是某游乐场过山车的娱乐装置原理图,弧形轨道末端与一个半径为R的光滑圆轨道平滑连接,两辆质量均为m的相同小车(大小可忽略),中间夹住一轻弹簧后连接在一起,两车从光滑弧形轨道上的某一高度由静止滑下,当两车刚滑入圆环最低点时连接两车的挂钩突然断开,弹簧将两车弹开,其中后车刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最高点,求:(1)前车被弹出时的速度;(2)前车被弹出的过程中弹簧释放的弹性势能;(3)两车从静止下滑时距最低点的高度h.答案解析1.【答案】A【解析】动量具有瞬时性,任一时刻物体动量的方向,即为该时刻的速度方向,A正确;加速度不变,物体的速度均匀变化,故其动量也均匀变化,B错误;物体动量的大小由物体质量及速度的大小共同决定,物体的动量大,其速度不一定大,动量大,其质量也并不一定越大,C、D错误.2.【答案】B【解析】因为相碰后Q、P有获得相同速度的可能,所以A错.只有M=m且M、m发生了弹性正碰时,m才可能将动量全部传给M.若M、m发生非弹性碰撞,尽管M>m,但碰后速度仍有可能为零,所以C错.若Q被反向弹回,则Q、P不再相碰,所以D错.3.【答案】B【解析】选试管为研究对象,昆虫停在管中时整体做自由落体运动,试管只受重力,由动量定理mgt=p1-0.当昆虫加速上爬时,对管底产生一个向下的作用力F,根据动量定理得(mg+F)t=p2-0,所以p2>p1,故B正确.4.【答案】D【解析】两球碰撞前后应满足动量守恒定律并且碰后两球的动能之和不大于碰前两球的动能之和.即满足:mA v A+mB v B=mA v A′+mB v B′,①mA v+mB v≥mA v A′2+mB v B′2,②答案D中满足①式,但不满足②式,所以D选项错误.5.【答案】C【解析】原子核在放出γ光子的过程中,系统动量守恒,而系统在开始时总动量为零,因此衰变后的原子核的运动方向与γ光子运动方向相反.6.【答案】D【解析】球b做自由落体运动,球c的竖直分运动是自由落体运动,故b、c两个球的运动时间相同且加速度均为g,为t=;球a受重力和支持力,加速度为g sinθ<g,故a球运动时间长,A错误;由于重力相同,而重力的作用时间不同,故重力的冲量不同,B错误;初动能不全相同,而合力做功相同,根据动能定理,得末动能不全相同,C错误;b、c球合力相同,运动时间相同,故合力的冲量相同,根据动量定理,动量变化量也相同;a、b球机械能守恒,末速度相等,故末动量大小相等,初动量为零,故动量增加量的大小相等,D正确.7.【答案】D【解析】滑块和斜劈组成的系统,在水平方向上所受的合力为零,水平方向上动量守恒,根据动量守恒定律知,当滑块的速度沿斜劈向下达到最大时,斜劈向右的速度最大,此时滑块与斜劈开始分离.故D正确,A、B、C错误.8.【答案】B【解析】人起跳的同时,小车要做反冲运动,所以人跳的距离小于x,故l<x时,才有可能跳上站台.9.【答案】A【解析】上滑过程中mg sinθ+F f=ma1,下滑过程中mg sinθ-F f=ma2,a1>a2可知上滑运动时间较短,重力冲量较小,A对;同理可知上滑时摩擦力冲量比下滑时小,上滑时支持力冲量比下滑时小, B、C错;合外力不为零,合外力的冲量不为零,D错.10.【答案】D【解析】动量是矢量,有大小也有方向.动量改变是指动量大小或方向的改变,而动量的大小与质量和速度两个因素有关,其方向与速度的方向相同.质量一定的物体,当速度的大小或方向有一个因素发生变化时,动量就发生变化,故A、B、C错;物体运动状态改变是指速度大小或方向的改变,因此物体的动量一定发生变化,故D正确.11.【答案】D【解析】两车碰撞过程动量守恒,m1v1-m2v2=(m1+m2)v得v==m/s=-0.5 m/s.12.【答案】C【解析】欲提高跳远成绩,则应增大水平速度,即增大水平方向的动量,所以可将铁球向后抛出,人和铁球水平方向的总动量守恒,因为铁球的动量向后,所以人向前的动量增加.13.【答案】C【解析】因船受到的牵引力及阻力不变,且开始时船匀速运动,故整个系统动量守恒;设炮弹质量为m,船(不包括两炮弹)的质量为M,则由动量守恒可得:Mv+mv1-mv1=(M+2m)v0,可得发射炮弹后船(不含炮弹)的动量增大,速度增大,C正确.14.【答案】B【解析】将自行火炮和炮弹看做一个系统,自行火炮水平匀速行驶时,牵引力与阻力平衡,系统动量守恒设向右为正方向,发射前系统动量之和为Mv1,发射后系统的动量之和为(M-m)v2+m(v0+v2).由Mv1=(M-m)v2+m(v0+v2)解得v0=.15.【答案】B【解析】设人水平横躺时受到的风力大小为F m,由于人体受风力大小与正对面积成正比,故人站立时风力为F m.由于受风力有效面积是最大值的一半时,恰好可以静止或匀速漂移,故可以求得人的重力G=F m,即有F m=2G.从A至B过程表演者的加速度大小为a1===0.75g从B至C过程表演者的加速度大小为a2===g,由速度位移公式得:从A至B过程表演者的位移x1=,从B至C过程表演者的位移x2=,故x1∶x2=4∶3,x2=H,A错误;表演者从A至B克服风力所做的功为W1=F m·H=F m H;从B至C过程克服风力所做的功为W2=F m·H=F m H,得=,B正确;设B点的速度为v,则从A至B过程表演者的运动时间t1==.从B至C过程表演者的运动时间t2==,根据动量定理,I1=F m t1=mv,I2=F m t2=2mv,=,C错误;根据P=,又=,=,联立解得=,D错误.16.【答案】B【解析】动能E k=mv2,动量p=mv,则p=,因为初动能相等,m1>m2,则动量p1>p2,B正确.17.【答案】B【解析】物体在空中只受重力作用,三种情况下从抛出到落地竖直上抛时间最长,竖直下抛时间最短,由动量定理:I=mgt=Δp得竖直上抛过程动量增量最大,B正确.18.【答案】D【解析】对A由动量定理:I=2m(v2-v1),对B由动量定理:I=p-mv1,则p=I+mv1=m(2v2-v1),D正确.19.【答案】B【解析】两球碰撞过程动量守恒,有mv A=2mv B,所以由动量和能量的关系有=,故E kB=,B项正确.20.【答案】A【解析】从光滑的斜面下滑,设斜面倾角为θ,高h,则有加速度a=g sinθ,位移x=,根据匀变速直线运动则有x==at2=g sinθt2,运动时间t=,两个斜面高度相同而倾角不同所以运动时间不同,选项C错;沿斜面运动合力为mg sinθ,所以合力的冲量I=mg sinθt=mg,虽然大小相等,但是倾角不同,合力方向不同,合外力冲量不同,B错;下滑过程重力做功mgh相等,A对;根据动能定理,下滑过程只有重力做功,而且做功相等,所以到达斜面底端时动能相同,选项D错.21.【答案】(m+M)g+【解析】子弹射入木块的瞬间,子弹和木块组成的系统动量守恒.取水平向左为正方向,由动量守恒定律得0+mv=(m+M)v1解得v1=.随后子弹和木块整体以此初速度向左摆动做圆周运动.由牛顿第二定律得(取向上为正方向)F-(m+M)g=(m+M)将v1代入解得F=(m+M)g+22.【答案】【解析】摆球从下落过程机械能守恒,设下落到最低点速度大小为v1,则由动能定理得:mgl=mv摆球与钢块碰撞极短,设碰撞后摆球速度大小为v2,钢块速度大小为v3,以水平向右为正方向,由动量守恒得:mv1=-mv2+Mv3由于碰撞后小球反弹至l高处,则小球上升过程由动能定理得:-mg×l=0-mv碰撞后钢块沿水平面做匀减速运动,由动能定理得:-μMgs=0-Mv得s=.23.【答案】1100 N【解析】人自由下落5 m,由运动学公式v2=2gh,则v==m/s=10 m/s.人和安全带作用时,人受到向上的拉力和向下的重力,设向下为正,由动量定理(mg-F)t=0-mv得F=mg+=(60×10+) N=1100 N.24.【答案】(1)(2)mgR(3)【解析】(1)设前车在最高点速度为v2,依题意有mg=①设前车在最低位置与后车分离后速度为v1,根据机械能守恒mv+mg·2R=mv②由①②得:v1=(2)设两车分离前速度为v0,由动量守恒定律2mv0=mv1得v0==设分离前弹簧弹性势能为E p,根据系统机械能守恒定律得E p=mv-·2mv=mgR (3)两车从h高处运动到最低处机械能守恒,有2mgh=·2mv,解得:h=.。
高考物理新力学知识点之动量经典测试题附答案解析(4)一、选择题1.用如图所示实验能验证动量守恒定律,两块小木块A 和B 中间夹着一轻质弹簧,用细线捆在一起,放在光滑的水平台面上,将细线烧断,木块A 、B 被弹簧弹出,最后落在水平地面上落地点与平台边缘的水平距离分别为1m A l =,2m B l =.实验结果表明下列说法正确的是A .木块A 、B 离开弹簧时的速度大小之比:1:4A B v v = B .木块A 、B 的质量之比:1:2A B m m =C .弹簧对木块A 、B 做功之比:1:1A B W W =D .木块A 、B 离开弹簧时的动能之比:1:2A BE E =2.质量为m 的质点作匀变速直线运动,取开始运动的方向为正方向,经时间t 速度由v 变为-v ,则在时间t 内 A .质点的加速度为2v tB .质点所受合力为2mvt-C .合力对质点做的功为2mvD .合力对质点的冲量为03.如图所示,一个质量为M 的滑块放置在光滑水平面上,滑块的一侧是一个四分之一圆弧EF ,圆弧半径为R =1m .E 点切线水平.另有一个质量为m 的小球以初速度v 0从E 点冲上滑块,若小球刚好没跃出圆弧的上端,已知M =4m ,g 取10m/s 2,不计摩擦.则小球的初速度v 0的大小为( )A .v 0=4m/sB .v 0=6m/sC .v 0=5m/sD .v 0=7m/s4.如图所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A 点的正上方从静止开始下落,与半圆槽相切并从A 点进入槽内,则下列说法正确的是( )A.小球离开右侧槽口以后,将做竖直上抛运动B.小球在槽内运动的全过程中,只有重力对小球做功C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量守恒5.有人设想在遥远的宇宙探测时,给探测器安上反射率极高(可认为100%)的薄膜,并让它正对太阳,用光压为动力推动探测器加速。
高考物理动量守恒定律真题汇编(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
一、选择题1.(0分)[ID:127089]盆景是中华民族独有的,具有浓厚的中国文化特色。
如图所示,一“黄山松”盆景放在水平桌面上,下列关于桌子对盆景作用力的说法正确的是()A.方向竖直向上,大小等于盆景的重力B.方向斜向左上方,大小大于盆景的重力C.方向斜向右上方,大小大于盆景的重力D.无论时间长短,该力的冲量始终为02.(0分)[ID:127085]木块放在光滑水平面上,一颗子弹水平射入木块中,子弹受到的平均阻力为f,射入深度为d,此过程中木块位移为s,则()A.子弹损失的动能为fs B.木块增加的动能为fsC.子弹动能的减少等于木块动能的增加D.子弹、木块系统产生的热量为f(s+d)3.(0分)[ID:127080]如图所示,体积相同的匀质小球A和B并排悬挂,静止时悬线平行,两球刚好接触,悬点到球心的距离均为L,B球悬线右侧有一固定的光滑小铁钉P,O2P=34L。
现将A向左拉开60°角后由静止释放,A到达最低点时与B发生弹性正碰,碰后B做圆周运动恰能通过P点的正上方。
已知A的质量为m,取3=1.73,5=2.24,则B 的质量约为()A.0.3m B.0.8mC.m D.1.4m4.(0分)[ID:127073]一水龙头的出水口竖直向下,横截面积为S,且离地面高度为h。
水从出水口均匀流出时的速度大小为v0,在水落到水平地面后,在竖直方向的速度变为零,并沿水平方向朝四周均匀散开。
已知水的密度为ρ,重力加速度大小为g。
水和地面的冲击时间很短,重力影响可忽略。
不计空气阻力和水的粘滞阻力。
则( )A .单位时间内流出水的质量为2S gh ρB .单位时间内流出水的质量为202S v gh ρ+C .地面受到水的冲击力大小为02Sv gh ρD .地面受到水的冲击力大小为2002Sv v gh ρ+5.(0分)[ID :127060]光滑的水平桌面上,质量为0.2kg ,速度为3m/s 的A 球跟质量为0.2kg 的静止B 球发生正碰,则碰撞后B 球的速度可能为( )A .3.6m/sB .2.4m/sC .1.2m/sD .0.6m/s6.(0分)[ID :127055]如图所示,竖直平面内有水平向左的匀强电场E ,M 点与N 点在同一电场线上,两个质量相等的带正电荷的粒子,以相同的速度0v 分别从M 点和N 点同时垂直进入电场,不计两粒子的重力和粒子间的库仑力。
动量守恒定律测试题 一、动量守恒定律 选择题1.如图所示,一轻杆两端分别固定a 、b 两个半径相等的光滑金属球,a 球质量大于b 球质量.整个装置放在光滑的水平面上,将此装置从图示位置由静止释放,则( )A .在b 球落地前瞬间,a 球的速度方向向右B .在b 球落地前瞬间,a 球的速度方向向左C .在b 球落地前的整个过程中,轻杆对b 球的冲量为零D .在b 球落地前的整个过程中,轻杆对b 球做的功为零2.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )A .加速度大小为0t F F m -B .速度大小为()()021t F F t t m-- C .动量大小为()()0212tF F t t m -- D .动能大小为()()220218tF F t t m --3.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 24.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J5.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v g6.如图,质量分别为m A 、m B 的两个小球A 、B 静止在地面上方,B 球距地面的高度h =0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t =0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知m B =3m A ,重力加速度大小为g =10 m/s 2,忽略空气阻力及碰撞中的动能损失.下列说法正确的是( )A .B 球第一次到达地面时的速度为4m/sB .A 、B 球在B 球向上运动的过程中发生碰撞C .B 球与A 球碰撞后的速度为1m/sD .P 点距离地面的高度0.75m7.如图所示,一质量为0.5 kg 的一块橡皮泥自距小车上表面1.25 m 高处由静止下落,恰好落入质量为2 kg 、速度为2.5 m/s 沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取210m/s g =,不计空气阻力,下列说法正确的是A .橡皮泥下落的时间为0.3 sB .橡皮泥与小车一起在水平地面上运动的速度大小为2 m/sC .橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D .整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5 J8.如图所示,离地H 高处有一个质量为m 、带电量为q +的物体处于电场强度随时间变化规律为0E E kt =-(0E 、k 均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知0qE mg μ<.t=0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑4H 后脱离墙面,此时速度大小为gH ,物体最终落在地面上.则下列关于物体的运动说法正确的是A .当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动B .摩擦力对物体产生的冲量大小为202E q k μ C .摩擦力所做的功18W mgH = D .物体与墙壁脱离的时刻为gH t =9.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m l =,现有质量20.2kg m =可视为质点的物块,以水平向右的速度0v 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数0.5μ=,取2g=10m/s ,则( )A .物块滑上小车后,系统动量守恒和机械能守恒B .增大物块与车面间的动摩擦因数,摩擦生热不变C .若0 2.5m/s v =,则物块在车面上滑行的时间为0.24sD .若要保证物块不从小车右端滑出,则0v 不得大于5m/s10.如图所示,一木块静止在长木板的左端,长木板静止在水平面上,木块和长木板的质量相等均为M ,木块和长木板之间、长木板和地面之间的动摩擦因数都为μ。
验证动量守恒定律实验中减少误差的几种方法一、实验介绍1.1 动量守恒定律动量守恒定律是物理学中的一个基本定律,指的是在一个孤立系统中,当没有外力作用时,系统总动量保持不变。
即:对于任意两个物体,它们之间的相互作用力大小相等、方向相反,且作用时间相同,则它们的动量变化量大小相等、方向相反。
1.2 实验目的验证动量守恒定律,并探究减少误差的方法。
1.3 实验器材弹簧测力计、光电门、小球(两个)、直线轨道。
1.4 实验步骤① 将直线轨道固定在水平面上;② 将小球放置在轨道的一端;③ 用弹簧测力计将另一个小球拉到一定距离处;④ 松开另一个小球,使其沿着轨道滚动,并通过光电门测出滚动时间和滚动距离;⑤ 重复实验多次,并记录数据。
二、误差分析2.1 系统误差由于实验器材和环境等因素的影响,在实验中可能会产生系统误差。
例如:光电门的灵敏度不同、弹簧测力计的刻度误差等。
2.2 随机误差由于实验过程中人为操作、读数等因素的影响,可能会产生随机误差。
例如:小球滚动的起始位置不同、滚动速度不同等。
三、减少误差的方法3.1 减少系统误差① 选择合适的实验器材:选择精确度高、灵敏度稳定的光电门和弹簧测力计,可以减少系统误差;② 校正仪器:在实验前对仪器进行校正,调整光电门和弹簧测力计的灵敏度和刻度,可以减小系统误差;③ 控制环境:将实验室控制在相对稳定的环境中,例如温度、湿度等方面尽量保持一致。
3.2 减少随机误差① 重复实验多次:通过重复实验多次,可以减小随机误差;② 控制变量:尽量保持各项条件一致,例如小球滚动时起始位置和滚动速度尽量相同;③ 人为因素控制:操作人员应该专注于操作过程,并严格按照实验步骤进行操作,避免因为个人因素带来的误差。
四、实验结果通过多次实验,可以得到小球滚动的时间和距离数据,进而计算出小球的动量变化量。
根据动量守恒定律,可以得出两个小球之间的相互作用力大小和方向。
五、结论本实验验证了动量守恒定律,并探究了减少误差的方法。
高中物理动量守恒定律试题经典及解析一、高考物理精讲专题动量守恒定律1.如图所示,光滑水平直导轨上有三个质量均为m的物块A、B、C,物块B、C静止,物块B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C 碰撞过程时间极短.那么从A开始压缩弹簧直至与弹簧分离的过程中,求.(1)A、B第一次速度相同时的速度大小;(2)A、B第二次速度相同时的速度大小;(3)弹簧被压缩到最短时的弹性势能大小【答案】(1)v0(2)v0(3)【解析】试题分析:(1)对A、B接触的过程中,当第一次速度相同时,由动量守恒定律得,mv0=2mv1,解得v1=v0(2)设AB第二次速度相同时的速度大小v2,对ABC系统,根据动量守恒定律:mv0=3mv2解得v2=v0(3)B与C接触的瞬间,B、C组成的系统动量守恒,有:解得v3=v0系统损失的机械能为当A、B、C速度相同时,弹簧的弹性势能最大.此时v2=v0根据能量守恒定律得,弹簧的最大弹性势能.考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。
2.如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m 的1/4圆弧面.A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑.小滑块P1和P2的质量均为m.滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P2向左滑行距离:22222.25m2vsa'==所以P1、P2静止后距离:△S=L-S1-S2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.3.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解4.如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=600的位置自由释放,下摆后在最低点与金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于450.【答案】最多碰撞3次【解析】解:设小球m的摆线长度为l小球m在下落过程中与M相碰之前满足机械能守恒:①m和M碰撞过程是弹性碰撞,故满足:mv0=MV M+mv1 ②③联立②③得:④说明小球被反弹,且v1与v0成正比,而后小球又以反弹速度和小球M再次发生弹性碰撞,满足:mv1=MV M1+mv2 ⑤⑥解得:⑦整理得:⑧故可以得到发生n 次碰撞后的速度:⑨而偏离方向为450的临界速度满足:⑩联立①⑨⑩代入数据解得,当n=2时,v 2>v 临界 当n=3时,v 3<v 临界即发生3次碰撞后小球返回到最高点时与竖直方向的夹角将小于45°. 考点:动量守恒定律;机械能守恒定律. 专题:压轴题.分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞n 次后的速度表达式,再根据机械能守恒定律求出碰撞n 次后反弹的最大角度,结合题意讨论即可.点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大角度,然后对结果表达式进行讨论,得到第n 次反弹后的速度和最大角度,再结合题意求解.5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
高二物理动量守恒定律试题答案及解析1.(9分)如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等,方向相反的初速度v,使A开始向左运动,B开始向右运动,如果A不滑离B,求:(ⅰ)A、B最后的速度大小和方向;(ⅱ)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
【答案】(1)(2)【解析】(1)A刚好没有滑离B板,表示当A滑到B板的最左端时,A、B具有相同的速度,设此速度为v,A和B的初速度的大小为v,则据动量守恒定律可得:Mv0-mv=(M+m)v解得:,方向向右(2)从地面上看,小木块向左运动到离出发点最远处时,木块速度为零,平板车速度为v',由动量守恒定律得 Mv0-mv=Mv'这一过程平板向右运动S,μmgs=MV2−Mv′2解得【考点】动量守恒及能量守恒定律。
2.一条小船长3米,船上站有一人。
人的质量为60kg,船的质量(不包括人)为240kg,开始时船静止在水面上,当该人从船头走向船尾的过程中(不计水的阻力),小船将后退的距离为:()A.0.4m B.0.5m C.0.6m D.0.7m【答案】C【解析】设船的质量为M,人的质量为m,船长为d,据题,水对船的阻力略不计,船和人组成的系统,在水平方向上动量守恒,人在船上行进,船向右退,取人相对地的速度为正,人和船的速度大小分别为v和V.有:.人从船头走到船尾,设船后退的距离为x,则人相对于地面的距离为.则,,则有:解得:.带入数据可得,故C正确,【考点】考查了动量守恒定律的应用3.如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端.当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大【答案】C【解析】水平面光滑,把两个人和小车看做糸统,在水平方向不受外力,糸统动量守恒。
动量定理练习题含答案及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2上时的动能大小。
东莞市 最新动量守恒定律单元测试题 一、动量守恒定律 选择题1.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是A .最终小物块和木箱都将静止B .最终小物块和木箱组成的系统损失机械能为203Mv C .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 2.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C .小球第一次在半圆槽的最低点B 时对槽的压力为133mg D .物块最终的动能为15mgR 3.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg ,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB.碰撞过程A对B的冲量为-4 N·sC.碰撞前后A的动量变化为4kg·m/sD.碰撞过程A、B两球组成的系统损失的机械能为10 J4.如图甲所示,质量M=2kg的木板静止于光滑水平面上,质量m=1kg的物块(可视为质点)以水平初速度v0从左端冲上木板,物块与木板的v-t图象如图乙所示,重力加速度大小为10m/s2,下列说法正确的是()A.物块与木板相对静止时的速率为1m/sB.物块与木板间的动摩擦因数为0.3C.木板的长度至少为2mD.从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J5.如图所示,质量为m的小球从距离地面高度为H的A点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h的B点时速度减为零不计空气阻力,重力加速度为g。
《动量守恒定律》单元测试题(含答案)(1)一、动量守恒定律选择题1.如图所示,A是不带电的球,质量0.5kgAm=,B是金属小球,带电量为2210Cq-=+⨯,质量为0.5kgBm=,两个小球大小相同且均可视为质点。
绝缘细线长0.25mL=,一端固定于O点,另一端和小球B相连接,细线能承受的最大拉力为276N。
整个装置处于竖直向下的匀强电场中,场强大小500N/CE=,小球B静止于最低点,小球A以水平速度0v和小球B瞬间正碰并粘在一起,不计空气阻力。
A和B整体能够做完整的圆周运动且绳不被拉断,210m/sg=。
则小球A碰前速度v的可能值为()A.27 m/s B.211 m/s C.215 m/s D.219 m/s2.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m的小球以平行斜面向上的初速度1v,当小球回到出发点时速率为2v。
小球在运动过程中除重力和弹力外,另受阻力f(包含摩擦阻力),阻力f大小与速率成正比即f kv=。
则小球在斜面上运动总时间t为()A.12sinv vtgθ+=⋅B.12sinv vtgθ-=⋅C.1212sin2mv mvtv vmg kθ+=+⋅+D.1212sin2mv mvtv vmg kθ-=+⋅-3.如图所示,小车的上面是由中间凸起的两个对称曲面组成,整个小车的质量为m,原来静止在光滑的水平面上。
今有一个可以看做质点的小球质量也为m,以水平速度v从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。
关于这个过程,下列说法正确的是()A .小球滑离小车时,小车又回到了原来的位置B .小球滑到小车最高点时,小球和小车的动量不相等C .小球和小车相互作用的过程中,小车和小球系统动量始终守恒D .车上曲面的竖直高度若高于24v g,则小球一定从小车左端滑下4.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。
轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。
1.2 探究动量守恒定律 测试
1.
如图所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短。
把子弹、木块和弹簧合在一起作为研究对象,则此系统在子弹开始射入木块到弹簧压缩至最短的整个过程中( )
A .动量守恒、机械能守恒
B .动量不守恒、机械能守恒
C .动量守恒、机械能不守恒
D .动量不守恒、机械能不守恒
2.
把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些? ( )
A .枪和子弹组成的系统动量守恒
B .枪和车组成的系统动量守恒
C .车、枪和子弹组成的系统动量守恒
D .车、枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小
3.
木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上,在b 上施加向左的水平力使弹簧压缩,如图1所示,当撤去外力后,下列说法中正确的是 ( )
v A B
A.a尚未离开墙壁前,a和b系统的动量守恒
B.a尚未离开墙壁前,a与b系统的动量不守恒
C.a离开墙后,a、b系统动量守恒
D.a离开墙后,a、b系统动量不守恒
4.分析下列情况中系统的动量是否守恒()
A.如图2所示,小车停在光滑水平面上,车上的人在车上走动时,对人与车组成的系统
B.子弹射入放在光滑水平面上的木块中对子弹与木块组成的系统(如图3)
C.子弹射入紧靠墙角的木块中,对子弹与木块组成的系统
D.斜向上抛出的手榴弹在空中炸开时
5.
如图4所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,若以两车及弹簧组成系统,则下列说法中正确的是( )
A.两手同时放开后,系统总量始终为零
B.先放开左手,后放开右手后动量不守恒
C.先放开左手,后放开右手,总动量向左
D.无论何时放手,只要两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零
6.
一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,
脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为( b )
7.
两辆质量相同的小车A和B,置于光滑水平面上,一人站在A车上,两车均静止.若这个人从A车跳到B车上,接着又跳回A车,仍与A车保持相对静止,则此时A车的速率( )
A.等于零B.小于B车的速率
C.大于B车的速率D.等于B车的速率
8.如图所示,在光滑的水平面上放着一个上部为半圆形光滑槽的木块,开始时木块是静止的,把一个小球放到槽边从静止开始释放,关于两个物体的运动情况,下列说法正确的是( )
A.当小球到达最低点时,木块有最大速率
B.当小球的速率最大时,木块有最大速率
C.当小球再次上升到最高点时,木块的速率为最大
D.当小球再次上升到最高点时,木块的速率为零
9.
一辆列车总质量为M,在平直轨道上以v速度匀速行驶,突然后一节质量为m的车厢脱钩,假设列车所受的阻力与质量成正比,牵引力不变,当后一节车厢刚好静止时,前面列车的速度多大?
10.甲、乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg.游戏时,甲推着一质量为m=15km的箱子,和他一起以大小为v0=2m/s的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免和乙相碰.
参考答案:1.D 2.C 3.BC 4.ABD 5.ACD 6.B 7.B 8.ABD
9. Mv/(M-m) 10. v=5.2m/s.。