贵州省黔东南州2015年初中毕业升学统一考试数学试卷(word版试题+扫描答案)
- 格式:doc
- 大小:648.00 KB
- 文档页数:12
2015年贵州省黔南州中考数学试卷一、单项选择题(共13小题,每小题4分,满分52分) 的倒数是 2.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委( )5.(4分)(2015•黔南州)如图所示,该几何体的左视图是( )6.(4分)(2015•黔南州)如图,下列说法错误的是()8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是()≤39.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()=10.(4分)(2015•黔南州)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l 相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()12.(4分)(2015•黔南州)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()13.(4分)(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2015•黔南州)计算:2×﹣+.15.(4分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.16.(4分)(2015•黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).17.(4分)(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF 的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).18.(4分)(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.19.(4分)(2015•黔南州)如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x 的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.三、解答题(共7小题,满分74分)20.(10分)(2015•黔南州)(1)已知:x=2sin60°,先化简+,再求它的值.(2)已知m和n是方程3x2﹣8x+4=0的两根,求+.21.(6分)(2015•黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)22.(10分)(2015•黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形A ECF的面积是多少?23.(12分)(2015•黔南州)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数.(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B表示“去敬老院服务”;用C表示“法制宣传”)24.(12分)(2015•黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.25.(12分)(2015•黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.。
中考衣食住用行衣:中考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
黔东南州2015年初中毕业升学统一考试试卷数学(本试题满分150分,考试时间120分钟)一.选择题(每小题4分,10个小题共40分)1.52-的倒数是( ) A.52 B.25 C.52- D.25-2.下列运算正确的是( )A.222)(b a b a -=-B.ab ab ab 23=-C.22)(a a a a =-D.2283=3.如图,直线a 、b 与直线c 、d 相交,已知∠1=∠2,,3=110°,则 ∠4=( )A.70°B.80°C.110°D.100°4.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是( )A.4,4B.3,4C.4,3D.3,35.设21,x x 是一元二次方程0322=--x x 的两根,则2221x x +=( )A.6B.8C.10D.126.如图,四边形ABCD 是菱形,AC=8,DB=6,DH⊥AB 于H ,则DH=( ) A.524 B.512 C.12 D.24 7.一个几何体的三视图如图所示,则该几何体的形状可能是( )8.若0<ab ,则正比例函数ax y =与反比例函数xby =在同一坐标系的大致图象可能是( )9.如图,在△ABO 中,AB⊥OB,OB=3,AB=1.将△ABO 绕O 点旋转90°后得到△A 1B 1O ,则点A 1的坐标为( )A.)3,1(-B.)3,1(-或)3,1(-C.)3,1(--D.)3,1(--或)1,3(--10.如图,已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,给出下列四个结论:①0=abc ;②0>++c b a ;③b a >;④042<-b ac .其中正确的结论有( )A.1个B.2个C.3个D.4个二.填空题(每小题4分,6个小题共24分) 11.=÷26a a _________.2341dcb aBACHDA BOxy23-=x Oyx12.将数据201 500 000用科学计数法表示为_________.13.如图,在四边形ABCD 中,AB//CD ,连接BD.请添加一个适当的条件_______________,使得△ABD≌△CDB.(只需写一个)14.如图,某渔船在海面上朝正东方向匀速航行,在A 处观测到灯塔M 在北偏东60°方向上,且AM=100海里.那么该船继续航行__________海里可使渔船到达离灯塔最近的位置.15.如图,AD 是☉O 的直径,弦BC⊥AD 于E ,AB=BC=12,则OC=_________.16.将全体正整数排成一个三角形数阵:根据上述排列规律,数阵中第10行从左到右的第5个数是________.三.解答题(8个小题,共86分)17.(本题共8分)计算|12|60sin 4)32015()31(01-︒+--+--18.(本题共8分)解不等式组⎪⎩⎪⎨⎧-≥->+22133)2(2x x x ,并将它的解集在数轴上表示出来.19.(本题共10分)先化简,后求值:)252(6332--+÷--m m m m m ,其中m 是方程0322=-+x x 的根.20.(本题共12分)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数字为每次所得的数(若指针指在分界线时重转);当两次所得的数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时,返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果; (2)某顾客参加一次抽奖,能获得返还现金的概率是多少?21.(本题共12分)如图,已知PC 平分∠MPN,点O 是PC 上一点,PM 与☉O 相切于点E ,交PC 于A 、B 两点.(1)求证:PN 与☉O 相切; (2)如果∠MPC=30°,PE=32,求劣弧⌒BE 的长.DC BA 北东︒60AM22.(本题12分)如图,已知反比例函数xky =与一次函数b x y +=的图像在第一象限相交于点A (1,4+-k ). (1)试确定这两个函数的表达式;(2)求出这两个函数的另一个交点B 的坐标,并求出△AOB 的面积.23.(本题12分)今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,凯里某单位给该地区某中学捐献一批饮用水和蔬菜共120件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种型号的货车共8量,一次性将这批饮用水和蔬菜全部运往受灾地区某中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件.则凯里某单位安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元.凯里每某单位应选择哪种方案可使运费最少?最少运费是多少?24.(本题12分)如图,已知二次函数c x x y ++-=41321的图像与x 轴的一个交点为A (4,0),与y 轴的交点为B ,过A 、B 的直线为b kx y +=2.(1)求二次函数1y 的解析式及点B 的坐标;(2)由图像写出满足21y y <的自变量x 的取值范围;(3)在两坐标轴上是否存在点P ,使得△ABP 是以AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.。
2015 年贵州省黔南州中考数学试卷一、单项选择题(共13 小题,每题 4 分,满分52 分)1.( 4 分)(2015?黔南州)以下说法错误的选项是()A.﹣ 2 的相反数是 2B. 3 的倒数是C.(﹣3)﹣(﹣ 5) =2D.﹣ 11, 0, 4 这三个数中最小的数是02.(4 分)(2015?黔南州)在“青春脉动 ?唱响黔南校园青年歌手大赛”总决赛中,7 位评委对某位选手评分为(单位:分):9、8、9、7、8、9、7.这组数据的众数和均匀数分别是()A.9、8B. 9、7C.8、7D. 8、83.( 4 分)(2015?黔南州)以下各数表示正确的选项是()6A. =57×10B.(用四舍五入法精准到) =C.(用四舍五入法精准到十分位) =D. =×10﹣44.( 4 分)(2015?黔南州)以下运算正确()A.a ?a5=a5B.a7÷a5=a3C.( 2a)3=6a3D. 10 ab3÷(﹣ 5ab) =﹣2b25.( 4 分)(2015?黔南州)如下图,该几何体的左视图是()A.B.C.D.6.( 4 分)( 2015?黔南州)如图,以下说法错误的选项是()A.若a ∥,∥,则∥cB.若∠ 1=∠2,则a∥c b b c aC.若∠ 3=∠2,则∥c D.若∠ 3+∠5=180°,则∥cb a 7.( 4 分)(2015?黔南州)以下说法正确的选项是()A.为了检测一批电池使用时间的长短,应当采纳全面检查的方法B.方差反应了一组数据的颠簸大小,方差越大,颠簸越大C.翻开电视正在播放新闻节目是必定事件D.为了认识某县初中学生的身体状况,从八年级学生中随机抽取50 名学生作为整体的一个样本8.( 4 分)(2015?黔南州)函数y=+的自变量x 的取值范围是()A.x ≤3B.x ≠4C.x ≥3且x≠4D.x≤3或x≠4E,则以下9.( 4 分)(2015?黔南州)如图,AB是⊙O的直径,CD为弦, CD⊥ AB且订交于点结论中不建立的是()A.∠A=∠D B. =C.∠ACB=90°D.∠COB=3∠D10.( 4 分)(2015?黔南州)同时投掷两枚质地均匀的硬币,则以下事件发生的概率最大的是()A.两正面都向上B.两反面都向上C.一个正面向上,另一个反面向上D.三种状况发生的概率同样大11.( 4 分)(2015?黔南州)如图,直线l外不重合的两点A、 B,在直线l上求作一点C,B 对于直线l的对称点B′;②连结AB′与直线l 使得AC+BC的长度最短,作法为:①作点订交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转变思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的随意一个内角12.( 4 分)(2015?黔南州)如图 1,在矩形MNPQ中,动点R从点 N出发,沿 N→ P→Q→ M 方向运动至点M处停止.设点R运动的行程为x,△ MNR的面积为 y,假如 y 对于 x 的函数图象如图 2 所示,则当x=9时,点 R应运动到()A.M处B.N处C.P处D.Q处13.( 4 分)(2015?黔南州)二次函数y=x2﹣2x﹣3的图象如下图,以下说法中错误的选项是()A.函数象与y 的交点坐是(0, 3)B.点坐是(1,3)C.函数象与x 的交点坐是(3, 0)、( 1, 0)D.当x< 0 ,y随x的增大而减小二、填空(共 6 小,每小 4 分,分 24 分)14.( 4 分)(2015?黔南州)算: 2× +.15.( 4 分)(2015?黔南州)如是一个古代的碎片,小明求其外半径,接外上的两点 A、 B,并使 AB与内相切于点D,半径 OC⊥AB交外于点C.得CD=10cm, AB=60cm,个的外半径是.16.( 4分)(2015?黔南州)如是小明用手来量都匀南沙州古城高度的表示,点P 放一水平的平面,光从点A出平面反射后好射到古城的CD端 C,已知 AB⊥ BD, CD⊥ BD,且得 AB=米, BP=米, PD=12米,那么古城的高度是米(平面的厚度忽视不).17.( 4 分)(2015?黔南州)如, 1 的菱形ABCD的两个点B、C恰巧落在扇形AEF 的弧 EF上.若∠ BAD=120°,弧BC的度等于(果保存π).18.( 4 分)(2015?黔南州)甲、乙、丙、丁四位同学成一圈挨次循数,定:①甲、乙、丙、丁初次出的数挨次1、 2、3、 4,接着甲5,乙 6⋯,后一位同学出的数比前一位同学出的数大1,按此律,当到的数是50 ,数束;②若出的数 3 的倍数,数的同学需拍手一次,在此程中,甲同学需要拍手的次数.19.( 4 分)(2015?黔南州)如,函数y=x 的象是二、四象限的角均分,将y=x 的象以点O中心旋90°与函数y=的象交于点A,再将 y=x 的象向右平移至点 A,与 x 交于点 B,点 B的坐.三、解答(共7 小,分74 分)20.( 10 分)(2015?黔南州)( 1)已知:x=2sin 60°,先化简 +,再求它的值.( 2)已知m和n是方程 3x2﹣8x+4=0 的两根,求 +.21.( 6 分)(2015?黔南州)如图是一座人行天桥的表示图,天桥的高度是10 米,CB⊥DB,45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 坡面AC的倾斜角为的坡度为i =:3.若新坡角下需留 3 米宽的人行道,问离原坡角( A 点处)10米的建筑物是否需要拆掉?(参照数据:≈,≈)22.( 10 分)(2015?黔南州)如图,已知△,直线垂直均分,与边AB 交于,连ABC PQ AC E接 CE,过点 C作 CF平行于 BA交 PQ于点 F,连结AF.( 1)求证:△AED≌△CFD;( 2)求证:四边形AECF是菱形.( 3)若AD=3,AE=5,则菱形AECF的面积是多少?23.( 12 分)(2015?黔南州)今年 3 月 5 日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如下图的直方图和扇形统计图.请依据统计图供给的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有 400 名学生,预计该年级去打扫街道的人数.(4)九( 1)班计划在 3 月 5 日这日达成“青年志愿者”活动中的三项,请用列表或画树状图求恰巧是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用 A 表示“打扫街道”;用 B 表示“去敬老院服务”;用C表示“法制宣传”)24.( 12 分)(2015?黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与 AB边相切于点 D,与 AC、BC边分别交于点 E、F、G,连结 OD,已知 BD=2,AE=3,tan ∠ BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分暗影面积的和.25.(12 分)(2015?黔南州)为认识都匀市交通拥挤状况,经统计剖析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220 辆/千米时,造成拥塞,此时车流速度为0 千米 / 小时;当车流密度为20 辆 / 千米时,车流速度为 80 千米 / 小时.研究表示:当20≤x≤220时,车流速度v 是车流密度x 的一次函数.( 1)求彩虹桥上车流密度为100 辆 / 千米时的车流速度;( 2)在交通顶峰时段,为使彩虹桥上车流速度大于40 千米 / 小时且小于60 千米 / 小时,应控制彩虹桥上的车流密度在什么范围内?( 3)当车流量(辆/ 小时)是单位时间内经过桥上某观察点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220 时,求彩虹桥上车流量y 的最大值.26.( 12 分)(2015?黔南州)如图,在平面直角坐标系xOy 中,抛物线y=﹣x2++过点Abx c( 0,4)和C( 8, 0),P(t, 0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点 P顺时针旋转90°得线段 PB,过点 B 作 x 轴的垂线,过点 A作 y 轴的垂线,两直线交于点 D.(1)求b、c的值;(2)当t为什么值时,点D落在抛物线上;( 3)能否存在t ,使得以 A, B, D为极点的三角形与△AOP相像?若存在,求此时t 的值;若不存在,请说明原因.。
中考衣食住用行衣:中考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
黔西南州2015年初中毕业生学业暨升学统一考试试卷数 学考生注意:1.一律用黑色笔或2B 铅笔将答案填写或填涂在答题卷指定位置内。
2.本试卷共4页,满分150分,答题时间120分钟。
一、选择题(每小题4分,共40分) 1.下列各数是无理数的是 A .4 B .31-C .πD .1-2.分式11-x 有意义,则x 的取值范围是 A .1>x B .1≠xC .1<xD .一切实数 3.如图1,在菱形ABCD 中,AC 与BD 相交于点O ,AC=8,BD=6,则菱形的边长AB 等于A .10B .7C .6D .54.已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是A .1B .34C .0D .25.已知△ABC ∽△C B A '''且21=''B A AB ,则C B A ABC S S '''∆∆:为A .1:2B .2:1C .1:4D .4:1 6.如图2,点P 在⊙O 外,PA 、PB 分别与⊙O 相切于A 、B 两点,∠P=50°,则∠AOB 等于 A .150° B .130° C .155° D .135° 7.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x 米,则可列方程为 A .180)11(=-x x B .180)11(22=-+x x C .180)11(=+x x D .180)11(22=++x x 8.下面几个几何体,主视图是圆的是A B C D9.如图3,在Rt △ABC 中,∠C=90°,AC=4cm,BC=6cm,动点P 从点C 沿CA 以1cm/s 的速度向A 点运动,同时动点Q 从C 点沿CB 以2cm/s 的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ 的面积y(cm ²)与运动时间x(s)之间的函数图像大致是10.在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图4①;将AB 折成正三角形,使点A 、B 重合于点P ,如图4②;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 的延长线与x 轴交于点N(n ,0),如图4③,当m=3时,n 的值为 A .423-B .432-C .332-D .332二、填空题(每小题3分,共30分) 11.32a a ⋅= .12.42500000用科学记数法表示为 .13.如图5,四边形ABCD 是平行四边形,AC 与BD 相交于点O ,添加一个条件: ,可使它成为菱形.14.如图6,AB 是⊙O的直径,BC 是⊙O的弦,若∠AOC=80°,则∠B= . 15.分解因式:4842++x x = . 16.如图7,点A 是反比例函数xky =图像上的一个动点,过点A 作AB ⊥x 轴,AC ⊥y 轴,垂足点分别为B 、C ,矩形ABOC 的面积为4,则k = .17.已知圆锥的底面圆半径为3,母线长为5,则圆锥的侧面积是 . 18.已知215-=x ,则12++x x = . 19.如图8,AB 是⊙O的直径,CD 为⊙O的一条弦,CD ⊥AB 于点E ,已知CD=4,AE=1,则⊙O的半径为 . 20.已知23A =3×2=6,35A =5×4×3=60,25A =5×4×3×2=120,36A =6×5×4×3=360,依此规律47A = .三、(本题共12分)21.(1)计算:8)21(45tan )20143(1+-︒-+-- (2)解方程:31112=-+-xx x . 四、(本题共12分)22.如图9所示,点O 在∠APB 的平分线上,⊙O与PA 相切于点C. (1)求证:直线PB 与⊙O相切(2)PO 的延长线与⊙O交于点E ,若⊙O的半径为3,PC=4.求弦CE 的长.五、(本题共14分)23.为了提高中学生身体素质,学校开设了A :篮球、B :足球、C :跳绳、D :羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图10(未画完整). (1)这次调查中,一共调查了 名学生; (2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.六、(本题共14分)24.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元? 七、阅读材料题(本题共12分)25.求不等式0)3)(12(>+-x x 的解集.解:根据“同号两数相乘,积为正”可得:①⎩⎨⎧>+>-03012x x 或 ②⎩⎨⎧<+<-03012x x .解①得21>x ;解②得3-<x . ∴不等式的解集为21>x 或3-<x .请你仿照上述方法解决下列问题: (1)求不等式0)1)(32(<+-x x 的解集.(2)求不等式02131≥+-x x 的解集. 八、(本题共16分)26.如图11,在平面直角坐标系中,平行四边形ABOC 如图放置,将此平行四边形绕点O 顺时针旋转90°得到平行四边形C O B A '''.抛物线322++-=x x y 经过点A 、C 、A ′三点.(1)求A 、A ′、C 三点的坐标;(2)求平行四边形ABOC 和平行四边形C O B A '''重叠部分OD C '∆的面积;(3)点M 是第一象限内抛物线上的一动点,问点M 在何处时,A AM '∆的面积最大?最大面积是多少?并写出此时M 的坐标.黔西南州2015年初中毕业生学业暨升学统一考试试卷数学参考答案及评分标准一、选择题(每小题4分,共40分)1.C 2.B 3. D 4.A 5. C 6. B 7. C 8. B 9. C10. A二、填空题(每小题3分,共30分) 11.5a12. 4.25×10713. AC ⊥BD 14. 40° 15. 2)1(4+x16. -4 17. π15 18. 2 19. 2520. 840 三、21.题(本题共两个小题,每小题6分,共12分)(1)解:原式=1+1-2+22……………………………………………………………(4分) =22…………………………………………………………………(6分) (2)解:去分母得:213(1)x x -=- ……………………………………………(2分) 2x -=- ………………………………………………………………………(3分) 2=x ………………………………………………………………………(4分) 检验:把2=x 代入(1-x )≠0,∴2=x 是原分式方程的解 ………………(6分) 四、22题(每小题6分,共12分)(1)证明:过点O 作OD ⊥PB,连接OC. …………(2分) ∵AP 与⊙O 相切, ∴OC ⊥AP. ……………………(3分) 又∵OP 平分∠APB, ∴OD=OC.……………………(4分) ∴PB 是⊙O 的切线. …………………………………(6分)(2)解:过C 作CF ⊥PE 于点F.……………………………………………………(1分)在Rt △OCP 中,OP=522=+CP OP ……………………………………………(2分)∵CF OP CP OC S OCP ⋅=⋅=∆2121 ∴512=CF ……………………………………………………………………(3分)在Rt△COF中,2295OF CO CF=-=∴524593=+=FE在Rt△CFE中,551222=+=EFCFCE………………………………………(6分)五、23题(3+4+7分,共14分)(1)200…………………………………………………………………………………(3分)(2)如图………………………………………………………………………………(4分)(3)用321、C、CC表示喜欢跳绳的学生,用B表示喜欢足球的学生,列表如下C1 C2 C3 BC1(C2,C1) (C3,C1)(B, C1)C2(C1,C2) (C3,C2) (B, C2)C3(C1,C3) (C2,C3)(B, C3)B (C1,B) (C2,B)(C3,B)……………………………………………………………………(4分)∴P(一人是喜欢跳绳,一人是喜欢足球的学生)=21126=………………………………(7分)六、24题(本题5+5+4共14分)解:(1)设每吨水的政府补贴优惠价和市场调节价分别为x元,y元.依题意得………(1分)第一人第二人⎩⎨⎧=+=+32812421212y x y x ……………………………………………………………(3分)解方程组得:⎩⎨⎧==5.21y x ………………………………………………………(4分)答:每吨水的政府补贴优惠价1元, 市场调节价2.5元 …………………(5分)(2)当x ≤12时,y=x; ………………………………………………………………(2分)当x>12时,y=12+2.5(x-12)即y=2.5x-18. …………………………………………………………………(5分)(3)当x=26时,y=2.5×26-18=65-18=47(元) ……………………………(3分) 答:小黄家三月份应交水费47元. …………………………………(4分)七、25题(每小题6分,共12分)(1)根据“异号两数相乘,积为负”可得 ①⎩⎨⎧<+>-01032x x 或 ② ⎩⎨⎧>+<-01032x x ……………………………(3分)解不等式组①得无解,解不等式组②得231<<-x ………………………………(4分) ∴原不等式的解集为231<<-x ……………………………………………(6分) (2)依题意可得①⎪⎩⎪⎨⎧>+≥-020131x x 或 ②⎪⎩⎪⎨⎧<+≤-020131x x ……………………………(3分)解①得x ≥3,解②得x<-2………………………………………………………(4分)∴原不等式的解集为x ≥3或x<-2……………………………………………(6分) 八、26题(本题4+6+6分,共16分)(1)解:(1)当0=y 时,0322=++-x x ……………………………………… (1分)解得1,321-==x x ……………………………………………………………(3分)∴C (-1,0),A ′(3,0).当x=0时,y=3.∴A(0,3) ……………………………(4分)(2)∵C (-1,0),A(0,3) , ∴B(1,3)∴101322=+=OB ………………………………………………………………(1分) ∴△AOB 的面积为131322S =⨯⨯= ………………………………………………(2分) 又∵平行四边形ABOC 旋转ο90得平行四边形A ′B ′OC ′,∴∠ACO=∠OC ′D又∵∠ACO=∠ABO ,∴∠ABO=∠OC ′D.又∵∠C ′OD=∠AOB ,∴△ C ′OD ∽△BOA …………………………………………………………(4分) ∴22)101()(='=∆'∆OB C O S S BOA OD C ……………………………………………………(5分)∴203='∆OD C S ………………………………………………………………(6分) (3)设M 点的坐标为(32,2++-m m m ),连接OM ……………………(1分)3321321)32(3212⨯⨯-⨯⨯+++-⨯⨯='∆m m m s A AM ……………(3分) =)30.(29232<<+-m m m …………………………………………(4分)当23=m 时,A AM S ''∆取到最大值为827 ………………………………(5分)∴M(415,23) ………………………………………………(6分)。
2015年贵州省黔南州中考数学试卷一、单项选择题(共13小题,每小题4分,满分52分) 的倒数是2.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对5.(4分)(2015•黔南州)如图所示,该几何体的左视图是( )B6.(4分)(2015•黔南州)如图,下列说法错误的是( )8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是()9.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()=10.(4分)(2015•黔南州)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()12.(4分)(2015•黔南州)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()13.(4分)(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2015•黔南州)计算:2×﹣+.15.(4分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.16.(4分)(2015•黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).17.(4分)(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).18.(4分)(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.19.(4分)(2015•黔南州)如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.三、解答题(共7小题,满分74分)20.(10分)(2015•黔南州)(1)已知:x=2sin60°,先化简+,再求它的值.(2)已知m和n是方程3x2﹣8x+4=0的两根,求+.21.(6分)(2015•黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)22.(10分)(2015•黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?23.(12分)(2015•黔南州)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数.(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B 表示“去敬老院服务”;用C表示“法制宣传”)24.(12分)(2015•黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.25.(12分)(2015•黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.2015年贵州省黔南州中考数学试卷参考答案与试题解析一、单项选择题(共13小题,每小题4分,满分52分)的倒数是的倒数是,2.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对≈5.(4分)(2015•黔南州)如图所示,该几何体的左视图是()B6.(4分)(2015•黔南州)如图,下列说法错误的是()8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是()+y=有意义,y=的自变量9.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()=,正确;10.(4分)(2015•黔南州)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的;两反面朝上的概率;一个正面朝上,另一个背面朝上=.11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()12.(4分)(2015•黔南州)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()13.(4分)(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2015•黔南州)计算:2×﹣+.××﹣=.15.(4分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是50cm.AB=30cm16.(4分)(2015•黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是8米(平面镜的厚度忽略不计).,根据相似三角形的性质可得=817.(4分)(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).的圆心角的度数,然后利用弧长公式即可求解.的长是:=,故答案是:.18.(4分)(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为4.19.(4分)(2015•黔南州)如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为(2,0).,得.三、解答题(共7小题,满分74分)20.(10分)(2015•黔南州)(1)已知:x=2sin60°,先化简+,再求它的值.(2)已知m和n是方程3x2﹣8x+4=0的两根,求+.==+==,,=21.(6分)(2015•黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)i=:=10米,1022.(10分)(2015•黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?23.(12分)(2015•黔南州)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数.(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B 表示“去敬老院服务”;用C表示“法制宣传”)××的概率为:=.24.(12分)(2015•黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.BOD===,即=××﹣﹣.25.(12分)(2015•黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.,x+88﹣(﹣(26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.x,且相似比为=落在抛物线上时,有﹣+t((负值舍去)2+28+4。
2015年贵州省黔南州中考数学试卷一、单项选择题共13小题,每小题4分,满分52分1. 4分 2015 黔南州下列说法错误的是A.﹣2的相反数是2B.3的倒数是C.﹣3 ﹣﹣5 =2D.﹣11,0,4这三个数中最小的数是02. 4分 2015 黔南州在“青春脉动唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手评分为单位:分:9、8、9、7、8、9、7.这组数据的众数和平均数分别是A. 9、8 B. 9、7 C. 8、7 D.8、83. 4分 2015 黔南州下列各数表示正确的是A.6B.0.0158 用四舍五入法精确到0.001 =0.015C.1.804 用四舍五入法精确到十分位 =1.8D.0.0000257=2.57×10﹣44. 4分 2015 黔南州下列运算正确A. a a5=a5B.a7÷a5=a3C. 2a3=6a3D. 10ab3÷ ﹣5ab =﹣2b25. 4分 2015 黔南州如图所示,该几何体的左视图是A.B.C.D.6. 4分 2015 黔南州如图,下列说法错误的是A.若a∥b,b∥c, 则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c7. 4分 2015 黔南州下列说法正确的是A.为了检测一批电池使用时间的长短,应该采用全面调查的方法B.方差反映了一组数据的波动大小,方差越大,波动越大C.打开电视正在播放新闻节目是必然事件D.为了了解某县初中学生的身体情况,从八年级学生中随机抽取50名学生作为总体的一个样本8. 4分 2015 黔南州函数y=+的自变量x的取值范围是A. x≤3B. x≠4C. x≥3且x≠4D.x≤3或x≠49. 4分 2015 黔南州如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D10. 4分 2015 黔南州同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大11. 4分 2015 黔南州如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC 的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角12. 4分 2015 黔南州如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到A. M处B. N处C. P处D.Q处13. 4分 2015 黔南州二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是A.函数图象与y轴的交点坐标是 0,﹣3B.顶点坐标是 1,﹣3C.函数图象与x轴的交点坐标是 3,0 、﹣1,0D.当x<0时,y随x的增大而减小二、填空题共6小题,每小题4分,满分24分14. 4分 2015 黔南州计算:2×﹣+.15. 4分 2015 黔南州如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.16. 4分 2015 黔南州如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米平面镜的厚度忽略不计.17. 4分 2015 黔南州如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于结果保留π.18. 4分 2015 黔南州甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.19. 4分 2015 黔南州如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.三、解答题共7小题,满分74分20. 10分 2015 黔南州 1 已知:x=2sin60°,先化简+,再求它的值.2 已知m和n是方程3x2﹣8x+4=0的两根,求+.21. 6分 2015 黔南州如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角A点处 10米的建筑物是否需要拆除参考数据:≈1.414,≈1.73222. 10分 2015 黔南州如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.1 求证:△AED≌△CFD;2 求证:四边形AECF是菱形.3 若AD=3,AE=5,则菱形AECF的面积是多少23. 12分 2015 黔南州今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:1 抽取的部分同学的人数是多少2 补全直方图的空缺部分.3 若九年级有400名学生,估计该年级去打扫街道的人数.4 九 1 班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.用A表示“打扫街道”;用B表示“去敬老院服务”;用C表示“法制宣传”24. 12分 2015 黔南州如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.1 求⊙O的半径OD;2 求证:AE是⊙O的切线;3 求图中两部分阴影面积的和.25. 12分 2015 黔南州为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v千米/小时是车流密度x辆/千米的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.1 求彩虹桥上车流密度为100辆/千米时的车流速度;2 在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内3 当车流量辆/小时是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.26. 12分 2015 黔南州如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A0,4 和C 8,0 ,P t,0 是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.1 求b、c的值;2 当t为何值时,点D落在抛物线上;3 是否存在t,使得以A,B,D为顶点的三角形与△AOP相似若存在,求此时t的值;若不存在,请说明理由.。
2015年贵州省黔南州中考数学试卷一、单项选择题(共13小题,每小题4分,满分52分) 的倒数是2.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对5.(4分)(2015•黔南州)如图所示,该几何体的左视图是( )CD6.(4分)(2015•黔南州)如图,下列说法错误的是( )8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是()9.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()=C10.(4分)(2015•黔南州)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()12.(4分)(2015•黔南州)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()13.(4分)(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2015•黔南州)计算:2×﹣+.15.(4分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.16.(4分)(2015•黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).17.(4分)(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).18.(4分)(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.19.(4分)(2015•黔南州)如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.三、解答题(共7小题,满分74分)20.(10分)(2015•黔南州)(1)已知:x=2sin60°,先化简+,再求它的值.(2)已知m和n是方程3x2﹣8x+4=0的两根,求+.21.(6分)(2015•黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)22.(10分)(2015•黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?23.(12分)(2015•黔南州)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数.(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B 表示“去敬老院服务”;用C表示“法制宣传”)24.(12分)(2015•黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.25.(12分)(2015•黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.2015年贵州省黔南州中考数学试卷参考答案与试题解析一、单项选择题(共13小题,每小题4分,满分52分)的倒数是的倒数是,2.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对≈5.(4分)(2015•黔南州)如图所示,该几何体的左视图是()C D6.(4分)(2015•黔南州)如图,下列说法错误的是()8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是()y=的自变量y=有意义,+9.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()=C、10.(4分)(2015•黔南州)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的===11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()12.(4分)(2015•黔南州)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()13.(4分)(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2015•黔南州)计算:2×﹣+.××2=.15.(4分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是50cm.AD=16.(4分)(2015•黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是8米(平面镜的厚度忽略不计).,根据相似三角形的性质可得CD=17.(4分)(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).是等边三角形,即可求得的长是:=,故答案是:.18.(4分)(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为4.19.(4分)(2015•黔南州)如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为(2,0).,得.三、解答题(共7小题,满分74分)20.(10分)(2015•黔南州)(1)已知:x=2sin60°,先化简+,再求它的值.(2)已知m和n是方程3x2﹣8x+4=0的两根,求+.,++==,,21.(6分)(2015•黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)i=BD==101022.(10分)(2015•黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?23.(12分)(2015•黔南州)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数.(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B 表示“去敬老院服务”;用C表示“法制宣传”)×的概率为:.24.(12分)(2015•黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.BOD==,=,即=,OEC××﹣.25.(12分)(2015•黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.解得:﹣×(﹣﹣26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.xx.的值为且相似比为=落在抛物线上时,有﹣t(负值舍去)t42+28+4。
2015年贵州省黔南州中考数学试卷一、单项选择题(共13小题,每小题4分,满分52分)的倒数是.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手25.(4分)(2015•黔南州)如图所示,该几何体的左视图是()6.(4分)(2015•黔南州)如图,下列说法错误的是()8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是()9.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()=)11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()12.(4分)(2015•黔南州)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()13.(4分)(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2015•黔南州)计算:2×﹣+.15.(4分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.16.(4分)(2015•黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).17.(4分)(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).18.(4分)(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.19.(4分)(2015•黔南州)如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O 为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.三、解答题(共7小题,满分74分)20.(10分)(2015•黔南州)(1)已知:x=2sin60°,先化简+,再求它的值.(2)已知m和n是方程3x2﹣8x+4=0的两根,求+.21.(6分)(2015•黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)22.(10分)(2015•黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C 作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?23.(12分)(2015•黔南州)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数.(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B表示“去敬老院服务”;用C表示“法制宣传”)24.(12分)(2015•黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.25.(12分)(2015•黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.2015年贵州省黔南州中考数学试卷参考答案与试题解析一、单项选择题(共13小题,每小题4分,满分52分)的倒数是的倒数是,2.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手这组数据的平均数=≈8.(4)此题还考查了整式的除法,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.5.(4分)(2015•黔南州)如图所示,该几何体的左视图是()A .B.C.D.考点:简单组合体的三视图.分析:找到从左边看所得到的图形即可.解答:解:从左边看分成两列,左边一列有3个小正方形,右边有1个小正方形,故选:B.点评:此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.6.(4分)(2015•黔南州)如图,下列说法错误的是()A .若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC .若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c考点:平行线的判定.分析:根据平行线的判定进行判断即可.解答:解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.点评:此题考查平行线的判定,关键是根据几种平行线判定的方法进行分析.7.(4分)(2015•黔南州)下列说法正确的是()8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是()+解:要使函数y=+有意义,即函数y=+的自变量x的取值范围是:x≤3.9.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()=,正确;);两反面朝上的概率=上的概率==.11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()12.(4分)(2015•黔南州)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()点评:本题考查了动点函数图象,利用三角型面积的变化确定R的位置是解题关键.13.(4分)(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小考点:二次函数的性质;二次函数的图象.分析:A、将x=0代入y=x2﹣2x﹣3,求出y=﹣3,得出函数图象与y轴的交点坐标,即可判断;B、将一般式化为顶点式,求出顶点坐标,即可判断;C、将y=0代入y=x2﹣2x﹣3,求出x的值,得到函数图象与x轴的交点坐标,即可判断;D、利用二次函数的增减性即可判断.解答:解:A、∵y=x2﹣2x﹣3,∴x=0时,y=﹣3,∴函数图象与y轴的交点坐标是(0,﹣3),故本选项说法正确;B、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标是(1,﹣4),故本选项说法错误;C、∵y=x2﹣2x﹣3,∴y=0时,x2﹣2x﹣3=0,解得x=3或﹣1,∴函数图象与x轴的交点坐标是(3,0)、(﹣1,0),故本选项说法正确;D、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为直线x=1,又∵a=1>0,开口向上,∴x<1时,y随x的增大而减小,∴x<0时,y随x的增大而减小,故本选项说法正确;故选B.点评:本题考查了二次函数的性质,抛物线与坐标轴的交点坐标,掌握二次函数的性质是解决本题的关键.二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2015•黔南州)计算:2×﹣+.×3﹣2=.15.(4分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是50cm .∴AD=AB=30cm,16.(4分)(2015•黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是8 米(平面镜的厚度忽略不计).,解答即可.析:∴CD==8(米).17.(4分)(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).上,即是等边三角形,即可求得的长是:=故答案是:.18.(4分)(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为 4 .甲同学需报到:9,21,33,45这4个数时,应拍手4次.故答案为:4.点评:此题主要考查了数字规律,得出甲的报数次数以及分别报数的数据是解决问题的关键.19.(4分)(2015•黔南州)如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x的图象以点O 为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为(2,0).考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换.分析:根据旋转,可得AO的解析式,根据解方程组,可得A点坐标,根据平移,可得AB 的解析式,根据自变量与函数值得对应关系,可得答案.解答:解:AO的解析式为y=x,联立AO与y=,得,解得.A点坐标为(1,1)AB的解析式为y=﹣x+2,当y=0时,﹣x+2=0.解得x=2,B(2,0).故答案为:(2,0).点评:本题考查了反比例函数与一次函数的交点问题,利用了直线的旋转,直线的平移,自变量与函数值得对应关系.三、解答题(共7小题,满分74分)20.(10分)(2015•黔南州)(1)已知:x=2sin60°,先化简+,再求它的值.(2)已知m和n是方程3x2﹣8x+4=0的两根,求+.考点:分式的化简求值;根与系数的关系.专题:计算题.分析:(1)原式第一项约分后利用同分母分式的加法法则计算得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值;,++==∴m+n=mn=,21.(6分)(2015•黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732):=10米,22.(10分)(2015•黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C 作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?23.(12分)(2015•黔南州)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数.(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B表示“去敬老院服务”;用C表示“法制宣传”))根据题意得:400×=.24.(12分)(2015•黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.=,=,即=×2×3+×3×4.5﹣﹣=.25.(12分)(2015•黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.函数的性质就可以求出结论.,解得:∴当20≤x≤220时,v=﹣x+88,(﹣﹣26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.xx.故所求b的值为,c的值为4;=((t﹣2±2tt=8±4(负值舍去)或时,以。
黔东南州2015年初中毕业升学统一考试检测卷数学(本试题满分150分,考试时间120分钟)注意事项:1.答题时,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试卷和答题卡一并收回。
一、选择题(共10小题,每小题4分,满分40分) 1.2)4(-=( )A.4-B.2C.-4D.4 2.如图所示是某几何体的三视图,则该几何体的侧面展开图为( )3.下列运算正确的是( )A.232a a a =+B.222)(b a b a -=-C.532)(a a =D.224a a a =÷ 4.如图,直线a ,b 被c 所截,b a //,若︒=∠351,则2∠的大小为( )A.35°B. 55°C.125°D.145°5.已知一次函数y=2x+m 的图象经过第一、三、四象限,则m 的值可以是( )A.0B.-2C.1D.26.一月是黔东南州最冷的月份,据报道,今年一月凯里连续六天的日最低气温分别为2,0,2,3,4,5(单位℃),这组数据的中位数和众数分别是( )A.2,2B.2.5,2C.3,2D.2,2.57.如图,A 、B 、C 、D 均在⊙O 上,BC 为⊙O 的直径,∠ACB =50°,则∠D =( ) A.30° B.40°C.45°D.50°8.如图,四边形ABCD 为菱形,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,若AC =4,BD =8,则四边形EFGH 的面积为( ) A.4B.6C.8D.549.已知二次函数c bx ax y ++=2的图象如图所示,对称轴为直线x =1,与x 轴的一个交点坐标为(3,0),以下四个结论错误的是( )A.关于x 的方程02=++c bx ax 的两根是-1,3B.当x <0时,y 随x 的增大而减小C.2a -b =0D.ac <010.如图,矩形ABCD 中,AB =5,BC =10,将△ABD 沿BD 翻折,折叠后点A 落在点E 处,连接CE ,则CE =( )A.53B.54C.255-D.155-二、填空题(共6小题,每小题4分,满分24分) 11.分解因式:=-234ab a .12.如图,Rt △ABC 中,∠C =90°,AC =3,AB =5,将△ABC 绕着点B 顺时针旋转90°得到△EBD ,则cos ∠E = .13.若x 1,x 2是一元二次方程0422=-+x x 的两根,则221)(x x -= . 14.一等腰三角形的两边长分别为4,2,则此三角形的面积为 . 15.反比例函数xk y 1=的图象与正比例函数x k y 2=的图象相交于A 、B 两点,若点A 的坐标为(2,3),则点B 的坐标为 .16.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 (1)2345… 输出…2152 103 174 265…那么,当输入的数据是101时,输出的数据是 .三、解答题(共8小题,满分86分) 17.(10分,每小题5分))(1)计算:;12)21(60sin 431)π14.3(20--+︒+----(2)先化简再求值:122)1214322+-+÷---+x x x x x x (,其中x =3.18.(8分)解不等式组⎪⎩⎪⎨⎧>++-≥-,,021)2(2143)1(2x x x x 并把解集表示在如下所示的数轴上.19.(10分)凯里某中学为了解初中部800名学生上学的方式,在初中部学生中随机抽取了若干名进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一种,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整). (1)在这次调查中,一共抽取了多少名学生? (2)补全条形统计图;(3)估计学校初中部所有学生中有多少人乘坐公交车上学.20.(10分)甲、乙、丙三同学经常设计游戏复习知识.这天,他们这样游戏:从扑克牌中挑出数字点数的6张纸牌,将它们分成1张,2张,3张的3份,按一定顺序每人认领一份,由只有一张纸牌的同学分别抽取另外两个同学的纸牌一张,此时抽牌同学有三张纸牌,把纸牌上的数字看成是同样单位长度的线段,若这三条线段能组成三角形则抽牌同学获得2颗星,该三角形是等腰三角形或者直角三角形则还能获得下一轮的优先认领权,不能组成三角形抽牌同学没有星,其他两个同学每人1颗星. 其中一轮中,甲手中有一张纸牌,点数是4,乙手中有两张纸牌,点数分别为2,3;丙手中有三张纸牌,点数分别是5,6,7;(1)请用画树状图的方法,求该轮游戏中甲同学获得2颗星的概率;(2)求甲同学获得下一轮游戏优先认领权的概率.21.(10分)如图,AC是操场上直立的一根旗杆,从旗杆上的B点到旗杆顶端A点涂着银色的油漆,小浩想知道涂银色油漆AB部分的长度,借来测角仪在离旗杆6米处的D点进行测量,测得旗杆顶端A的仰角∠CDA=60°,B点的仰角∠CDB=45°.测角仪高度忽略不计,请帮小浩计算出涂银色油漆AB部分的长度.(结果保留根号)22.(12分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,∠CAD=∠B且点D在BC 的延长线上,过C作CE⊥AD于E;(1)求证:AD是⊙O的切线;(2)若⊙O的半径为9,CE=5,求CD的长.23.(12分)苏宁电器商城销售甲、乙两种型号的电视机,这两种电视机的进价和售价如下表所示:品牌型号甲种乙种进价(元/台)25003000售价(元/台)30003800商城计划购进两种电视机若干台,预计花费16万元,全部销售后获得毛利润3.6万元;(1)该商城计划购进甲、乙两种电视机各多少台?(2)通过市场调研,该商城决定在原计划的基础上,减少甲种电视机的购进数量,增加乙种电视机的购进数量,已知乙种电视机增加的数量是甲种电视机减少的数量的1.5倍,而且用于购进这两种电视机的总资金不超过17.6万元,设甲种电视机减少的数量为a (台),全部销售后获得的毛利润为W(元),写出W与a的函数关系式,并求出最大毛利润. 24.(14分)如图,在平面直角坐标系中,抛物线cbxxy++-=221经过B)40(,,C)02(,两点,A点为抛物线与x轴的一个交点.(1)求抛物线的解析式;(2)在x轴上方的抛物线上是否存在点M使△AOM与△BOM的面积相等?若存在,求出M的坐标,若不存在,请说明理由.(3)若点Q是抛物线上的一点,点P是x轴上的动点,判断有几个位置能够使得以点P、Q、A、B为顶点的四边形为平行四边形,直接写出相应的点P的坐标.。
2015年黔南州初中毕业生学业(升学)统一考试·数学(考试时间:120分钟 满分:150分)第Ⅰ卷一、单项选择题 (每小题4分,共13小题,满分52分.) 1. 下列说法错误..的是( ) A. -2的相反数是2 B. 3的倒数是13C. (-3)-(-5)=2D. -11,0,4这三个数中最小的数是02. 在“青春脉动·唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手评分为(单位:分):9,8,9,7,8,9,7.这组数据的众数和中位数分别是( )A. 9、8B. 9、7C. 8、7D. 8、8 3. 下列各数表示正确的是( )A. 57000000=57×106B. 0.0518(用四舍五入法精确到0.001)≈0.015C. 1.804(用四舍五入法精确到十分位)≈1.8D. 0.0000257=2.57×10-4 4. 下列运算正确的是( )A. a ·a 5=a 5B. a 7÷a 5=a 3C. (2a )3=6a 3D. 10ab 3÷(-5ab )=-2b 2 5. 如图所示,该几何体的左视图是( )第5题图6. 如图,下列说法错误..的是( ) A. 若a ∥b ,b ∥c ,则a ∥c. B. 若∠1=∠2,则a ∥c. C. 若∠3=∠2,则b ∥c.D. 若∠3+∠5=180°,则a ∥c. 第6题图 7. 下列说法正确的是( )A. 为了检测一批电池使用时间的长短,应该采用全面调查的方法B. 方差反映了一组数据的波动大小,方差越大,波动越大C. 打开电视正在播放新闻节目是必然事件D. 为了解某县初中学生的身高情况,从八年级学生中随机抽取50名学生作为总体的一个样本 8. 函数y =3-x +1x -4的自变量x 的取值范围是( )A. x ≤3B. x ≠4C. x ≥3且x ≠4D. x ≤3或x ≠49. 如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 且相交于点E ,则下列结论中不成立...的是( )A. ∠A =∠DB. CB ︵=BD ︵C. ∠ACB =90°D. ∠COB =3∠D 第9题图 10. 同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是( ) A. 两正面都朝上 B. 两背面都朝上C. 一个正面朝上,另一个背面朝上D. 三种情况发生的概率一样大11. 如图,直线l 外不重合的两点A 、B ,在直线l 上求作一点C ,使得AC +BC 的长度最短.作法为:①作点B 关于直线l 的对称点B ′;②连接AB ′与直线l 相交于点C ,则点C 为所求作的点.在解决这个问题时没有运用到的知识或思想方法是( )A. 转化思想B. 三角形的两边之和大于第三边C. 两点之间,线段最短D. 三角形的一个外角大于与它不相邻的任意一个内角 第11题图 12. 如图①,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②所示,则当x =9时,点R 应运动到( )A. M 处B. N 处C. P 处D. Q 处第12题图 第13题图13. 二次函数y =x 2-2x -3的图象如图所示,下列说法中错误..的是( ) A. 函数图象与y 轴的交点坐标是(0,-3) B. 顶点坐标是(1,-3)C. 函数图象与x 轴的交点坐标是(3,0),(-1,0)D. 当x <0时,y 随x 的增大而减小二、填空题(每小题4分,共6小题,满分24分)14. 计算:213×9-12+378-1=_______. 15. 如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A 、B ,并使AB 与车轮内圆相切于点D ,半径OC ⊥AB 相交外圆于点C.测得CD =10 cm ,AB =60 cm ,则这个车轮的外圆半径为______.16. 如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是_______米(平面镜的厚度忽略不计).第15题图 第16题图 第17题图17. 如图,边长为1的菱形ABCD 的两个顶点B 、C 恰好落在扇形AEF 的弧EF 上,若∠BAD =120°,则弧BC 的长等于_______(结果保留π).18. 甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……,后一位同学报出的比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为______.19. 如图,函数y =-x 的图象是二、四象限的角平分线,将y =-x 的图象以点O 为中心旋转90°与函数y =1x的图象交于点A ,再将y =-x 的图象向右平移至点A ,与x 轴交于点B ,则点B 的坐标为_________.第19题图三、解答题(本大题共7小题,满分74分) 20. (本小题共10分,每小题各5分)(1)已知:x =2sin 60°,先化简x 2-2x +1x 2-1+1x +1,再求它的值.(2)已知m 和n 是方程3x 2-8x +4=0的两根,求1m +1n .21. (本小题共6分)如图是一座人行天桥的示意图,天桥的高是10米,CB⊥DB,坡面AC的倾斜角为45°,为了方便行人推车过天桥市政府部门决定降低坡度,使新坡面DC的坡度为i= 3 ∶3,若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:2≈1.414,3≈1.732)第21题图22. (本小题共10分)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形;(3)若AD=3,AE=5,则菱形AECF的面积是多少?第22题图23. (本小题共12分)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如下直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:第23题图(1)抽取的部分同学的人数是多少? (2)补全直方图的空缺部分;(3)若九年级有400名学生,估计该年级去打扫街道的人数;(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”“去敬老院服务”和“法制宣传”的概率.(用A 表示“打扫街道”;用B 表示“去敬老院服务”;用C 表示“社区文艺演出”;用D 表示“法制宣传”)24. (本小题共12分)如图,在Rt △ABC 中,∠A =90°,O 是BC 边上一点,以点O 为圆心的半圆与AB 边相切于点D ,与AC ,BC 边分别交于点E ,F ,G ,连接OD ,已知BD =2,AE =3,tan ∠BOD =23.(1)求⊙O 的半径OD 的长; (2)求证:AE 是⊙O 的切线; (3)求图中两部分阴影面积的和.第24题图25. (本小题共12分)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流速度为20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v 是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上的车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.26. (本小题共12分)如图,在平面直角坐标系xOy 中,抛物线y =-16x 2+bx +c 过点A (0,4)和C (8,0),P (t ,0)是x 轴正半轴上的一个动点,M 是线段AP 的中点,将线段MP 绕点P 顺时针旋转90°得线段P B.过点B 作x 轴的垂线,过点A 作y 轴的垂线,两直线相交于点D.(1)求b ,c 的值;(2)当t 为何值时,点D 落在抛物线上;(3)是否存在t ,使得以A ,B ,D 为顶点的三角形与△AOP 相似?若存在,求此时t 的值;若不存在,请说明理由.第26题图2015贵州黔南州1. D 【解析】选项 逐项分析正误A -2的相反数是2,故正确B 3的倒数是13,故正确C (-3)-(-5)=-3+5=2,故正确 D∵-11<0<4,∴这三个数中最小的是-11√2. A 【解析】把9、8、9、7、8、9、7这七个数字按从小到大的顺序排列得:7、7、8、8、9、9、9,其中9出现的次数最多,则众数是9,8排在最中间,则中位数是8.3. C 【解析】选项 逐项分析正误A 57000000=5.7×107≠5.7×106,故A 错误B 0.0158用四舍五入法精确到0.001≈0.016≠0.015,故B 错误C 1.804用四舍五入法精确到十分位≈1.8,故C 正确 √D0.0000257=2.5×10-5≠2.5×10-4,故D 错误4. D 【解析】选项 逐项分析 正误A a ×a 5=a 6≠a 5B a 7÷a 5=a 2≠a 3C (2a )3=8a 3≠6a 3 D10ab 3÷(-5ab )=-2b 2√5. B 【解析】根据三视图的特点,左视图是从几何体的左侧看到的视图,该几何体从左侧看到是图形如选项B.6. C 【解析】对于C :若∠2=∠3,则d ∥e ,并不能判断出b ∥c ,∴错误的是C 选项.7. B 【解析】选项 逐项分析正误A 为了检测电池的使用时间的长短,应采用抽样调查,∴A 错误B 差反映数据的波动大小,方差越大,波动越大,∴B 正确√C 打开电视机播放新闻节目为随机事件,∴C 错误D样本不具有代表性,∴错误8. A 【解析】函数y =3-x +1x -4的自变量应满足:3-x ≥0且x -4≠0,解得x ≤3,故选A. 9. D 【解析】对于D ,同弧所对的圆心角等于圆周角的2倍,∴∠COB =2∠D ,故D 不成立.10. C 【解析】抛掷两枚质地均匀的硬币,两面都朝上或朝下的概率都是14,一面朝上,一面朝下的概率为12,∴概率最大的是C.11. D 【解析】在最短距离问题中,没有运用到一个外角大于与它不相邻的任意一个内角,故选D. 12. D 【解析】△MNR 的变化只是高的改变,底边并不改变,当R 运动到点P 时面积最大,从点P 到点Q ,面积不变,从点Q 到点M ,面积变小,∴当x =9时,点R 在点Q 处,故选D.13. B 【解析】选项 逐项分析正误A 令x =0,代入二次函数y =x 2-2x -3中,得y =-3,∴函数图象与y 轴的交点坐标是(0,-3),故正确B y =x 2-2x -3=(x -1)2-4,∴顶点坐标是(1,-4),故错误√C令x 2-2x -3=0,解得x 1=3,x 2=-1,∴函数图象与x 轴的交点坐标为(3,0),(-1,0),故正确D 当x <1时,y 随x 的增大而减小,∴当x <0时,y 随x 的增大而减小,故正确14. -12 【解析】原式=23-23+(-12)=-12.15. 50 cm 【解析】连接OB ,∵ OC ⊥AB ,∴点D 为AB 的中点,∴BD =30,设OB 为x ,则OD =x -10,根据勾股定理OB 2=OD 2+BD 2,即x 2=(x -10)2+302解得x =50,∴半径为50 cm .第15题解图16. 8 【解析】∵根据入射角等于反射角,∴∠APB =∠CPD ,∵AB ⊥BD ,CD ⊥BD ∴△ABP ∽△CDP ,∴AB BP =CDDP ,∴高度CD =8米. 17.π3【解析】∵四边形ABCD 为菱形,∴AD ∥BC , ∵∠BAD =120°,∠ABC =60°,∵AB =BC , △ABC 为等边三角形,∴∠BAC =60°,∴弧BC =60π×1180=π3.18. 4 【解析】甲报的数为1,5,9,13,17,21,25,29,33,37,41,45,49,这些数中是3的倍数的有9、21、33、45,总共有四个,∴拍手次数为4.19. (2,0) 【解析】∵y =-x 旋转90°得y =x ,∴y =x 与y =1x 的在第一象限的交点A (1,1),过点A作AC 垂直于x 轴于点C ,∵y =x 平分第一三象限,∴AC =OC =BC =1,∴OB =2,∴点B 的坐标为(2,0).第19题解图20.解:(1)∵x =2sin 60°=2×32=3, ∴x = 3.(1分) x 2-2x +1x 2-1+1x +1=(x -1)2(x +1)(x -1)+1x +1(3分) =x -1x +1+1x +1 =xx +1.(4分) ∵x =3,∴原式=xx +1=3-32.(5分)(2)3x 2-8x +4=0, ∵a =3,b =-8,c =4, ∴m +n =83,mn =43,(2分)∴1m +1n =m +n mn =8343=2.(5分) 21.解:∵BC =10,∠CAB =45°,∠CBA =90°, ∴AB =10.(1分)∵tan ∠CDB =BC BD =33, 第21题解图∴BD =3BC3=3×10=17.32(米),(3分)∴DA =DB -AB =17.32-10=7.32(米).(4分) ∵7.32+3=10.32>10,(5分)∴离原坡角10米的建筑物需要拆除.(6分) 22.解:(1)∵PQ 为线段AC 的垂直平分线, ∴AD =CD ,∠ADE =∠CDF =90°(1分) ∵CF ∥AB ,∴∠EAD =∠FCD ,∠CFD =∠AED ,(2分)在△AED 与△CFD 中,⎩⎪⎨⎪⎧∠EAD =∠FCD AD =CD ∠CFD =∠AED,∴△AED ≌△CFD (ASA );(4分) 第22题解图(2)∵△AED ≌△CFD ,∴DE =DF ,AD =C D.(6分)又∵EF 为线段AC 的垂直平分线,∴EF ⊥AC ,∴四边形AECF 为菱形;(8分)(3)∵AD =3,AE =5,∴ED =4.(9分)∴AC =6,EF =8, ∴菱形的面积为12AC ×EF =12×6×8=24.(10分) 23.解:(1)50;(2分)【解法提示】15÷30%=50名.(2)社区文艺演出人数为10名;(2分)【解法提示】20÷50×100%=40%,50×(1-30%-10%-40%)=10(名).第23题解图①(3)估计该年级去打扫街道的人数是160名学生;(3分)【解法提示】打扫街道的人数所占比例为2050=25,九年级有400名学生,则打扫街道的人数为400×25=160(名).(4)P =624=14.(1分) 画树状图如解图:第23题解图②(画对一个树状图给1分,共4分)24.解:(1)∵AB 与⊙O 相切,∴OD ⊥A B.(2分)在Rt △OBD 中,BD =2,tan ∠BOD =BD OD =23, 第24题解图 ∴OD =3; (4分)(2)连接OE ,(5分)∵∠A =90°,则CA ⊥AB ,∴AE ∥O D.又∵AE =OD =3,∴四边形AEOD 是平行四边形,(7分)∴AD ∥EO ,∵∠A =90°,∴OE ⊥AC ,又∵OE 是⊙O 的半径,∴AE 是⊙O 的切线;(8分)(3)由(2)知AD =OE =3,∠DOE =∠A =90°.∵OD ∥AC ,∴BD AB =OD AC ,(9分) 即22+3=3AC, 解得AC =7.5.(10分)∴EC =AC -AE =7.5-3=4.5,∴S 阴影=S △BDO +S △OEC -(S 扇形OFD +S 扇形OEG )(11分)=12×2×3+12×3×4.5-90π×32360=39-9π4.(12分) 25.解:(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,(1分)由题意,得⎩⎪⎨⎪⎧80=20k +b 0=220k +b ,(2分) 解得⎩⎪⎨⎪⎧k =-25b =88,(3分)∴当20≤x ≤220时,v =-25x +88,(4分) 当x =100时,v =48(千米/小时);(5分)(2)由题意,得⎩⎨⎧-25x +88>40-25x +88<60,(6分) 解得70<x <120.(7分)∴应控制大桥上的车流密度在70<x <120范围内;(8分)(3)设车流量y 与x 之间的关系式为y =v x ,当20≤x ≤220时,y =(-25x +88)x =-25(x -110)2+4840,(9分) ∴当x =110时,y 最大=4840.(11分)∴当车流密度是110辆/千米,车流量y 取得最大值时4840辆/小时.(12分)26.解:(1)由抛物线y =-16x 2+bx +c 过点A (0,4)和C (8,0),(1分) 可得⎩⎪⎨⎪⎧c =4-16×64+8b +c =0, 解得⎩⎪⎨⎪⎧c =4b =56;(4分) 第26题解图 (2)∵∠AOP =∠PEB =90°,∠OAP =90°-∠APO =∠EPB ,∴△AOP ∽△PEB ,且相似比为AO PE =AP PB=2,(5分) ∵AO =4,∴PE =2,OE =OP +PE =t +2,又∵DE =OA =4,∴点D 的坐标为(t +2,4),(6分)∴点D 落在抛物线上时,有-16(t +2)2+56(t +2)+4=4, 解得t =3或t =-2.∵t >0,∴t =3,故当t 为3时,点D 落在抛物线上.(7分)(3)存在t ,能够使得以A ,B ,D 为顶点的三角形与△AOP 相似.理由:①当0<t <8时,若△POA ∽△ADB ,则PO AD =AO BD ,即t t +2=44-12t ,整理,得t2+16=0,∴t无解;(8分)若△POA∽△BDA,同理,解得t=-2+25(负值舍去);(9分)②当t>8时,若△POA∽△ADB,则POAD=AOBD,即tt+2=412t-4,解得t=8+45(负值舍去);(10分)若△POA∽△BDA,同理,解得t无解.(11分)综上所述,当t=-2+2 5 或t=8+4 5 时,以A,B,D为顶点的三角形与△AOP相似.(12分)。
黔东南州2015年初中毕业升学统一考试试卷
数学
(本试题满分150分,考试时间120分钟)
一.选择题(每小题4分,10个小题共40分)
1.52
-
的倒数是( ) A.52 B.25 C.52- D.2
5-
2.下列运算正确的是( )
A.222)(b a b a -=-
B.ab ab ab 23=-
C.22)(a a a a =-
D.2283= 3.如图,直线a 、b 与直线c 、d 相交,已知∠1=∠2,,3=110°,则 ∠4=( ) A.70° B.80° C.110° D.100°
4.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是( )
A.4,4
B.3,4
C.4,3
D.3,3
5.设21,x x 是一元二次方程0322
=--x x 的两根,则2
221x x +=( )
A.6
B.8
C.10
D.12 6.如图,四边形ABCD 是菱形,AC=8,DB=6,DH ⊥AB 于H ,则DH=( ) A.
524 B.5
12
C.12
D.24 7.一个几何体的三视图如图所示,则该几何体的形状可能是( )
8.若0<ab ,则正比例函数ax y =与反比例函数x
b
y =在同一坐标系的大致图象可能是( )
9.如图,在△ABO 中,AB ⊥OB ,OB=3,AB=1.将△ABO 绕O 点旋转90°后得到△A 1B 1O ,则点A 1的坐标 为( )
A.)3,1(-
B.)3,1(-或)3,1(-
23
4
1
d
c
b a B
A
C
H
D
A B
O
x
y
C.)3,1(--
D.)3,1(--或)1,3(--
10.如图,已知二次函数)0(2
≠++=a c bx ax y 的图像如图所示,给出下列四个
结论:①0=abc ;②0>++c b a ;③b a >;④042
<-b ac .其中正确的结论
有( )
A.1个
B.2个
C.3个
D.4个
二.填空题(每小题4分,6个小题共24分) 11.=÷2
6
a a _________.
12.将数据201 500 000用科学计数法表示为_________.
13.如图,在四边形ABCD 中,AB//CD ,连接BD.请添加一个适当的条件_______________,使得△ABD ≌△CDB.(只需写一个)
14.如图,某渔船在海面上朝正东方向匀速航行,在A 处观测到灯塔M 在北偏东60°方向上,且AM=100海里.
那么该船继续航行__________海里可使渔船到达离灯塔最近的位置. 15.如图,AD 是☉O 的直径,弦BC ⊥AD 于E ,AB=BC=12,则OC=_________.
16.将全体正整数排成一个三角形数阵:根据上述排列规律,数阵中第10行从左到右的第5个数是________.
三.解答题(8个小题,共86分)
17.(本题共8分)计算|12|60sin 4)32015()3
1(0
1-︒+--+--
18.(本题共8分)
解不等式组⎪⎩⎪
⎨⎧-≥->+22
133)2(2x x x ,并将它的解集在数轴上表示出来.
2
3-
=x O
y
x
D C
B
A 北东
︒
60A
M
19.(本题共10分)先化简,后求值:
)2
52(6332
--+÷--m m m m m ,其中m 是方程0322
=-+x x 的根.
20.(本题共12分)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一 次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数字为每次所得的数(若指针指在分界线时重转);当两次所得的数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时,返现金10元.
(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;
(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?
21.(本题共12分) 如图,已知PC 平分∠MPN ,点O 是PC 上一点,PM 与☉O 相切于点E ,交PC 于A 、B 两点.
(1)求证:PN 与☉O 相切; (2)如果∠MPC=30°,PE=32,求劣弧⌒BE
的长.
22.(本题12分)如图,已知反比例函数x
k
y =
与一次函数b x y +=的图像在第一象限相交于点A (1,4+-k ). (1)试确定这两个函数的表达式;
(2)求出这两个函数的另一个交点B 的坐标,并求出△AOB 的面积.
23.(本题12分)今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,凯里某单位给该地区某中学捐献一批饮用水和蔬菜共120件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种型号的货车共8量,一次性将这批饮用水和蔬菜全部运往受灾地区某中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件.则凯里某单位安排甲、乙两种货车时有几种方案?请你帮助设计出来.
(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元.凯里每某单位应选择哪种方案可使运费最少?最少运费是多少?
24.(本题12分)如图,已知二次函数c x x y ++-=4
13
2
1的图像与x 轴的一个交点为A (4,0),与y 轴的交点为B ,过A 、B 的直线为b kx y +=2.
(1)求二次函数
1y 的解析式及点B 的坐标; (2)由图像写出满足21y y <的自变量x 的取值范围;
(3)在两坐标轴上是否存在点P ,使得△ABP 是以AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.。