J-2000-基于粗糙集理论的图像增强方法
- 格式:pdf
- 大小:212.28 KB
- 文档页数:5
基于最优评价方法的我国能源结构低碳评价研究许珊;范德成;王韶华【摘要】根据广义距离最小原理构建最优评价方法选择模型,并据此认为粗糙集理论相对于熵值法更加适用于2000-2013年我国能源结构低碳的评价.粗糙集理论的评价结果显示,我国能源结构低碳水平主要由二氧化硫排放、二氧化碳排放、人均GDP增长率、化学需氧量、能源消费量等具体指标综合反映;“先污染后治理”的环境思想以及能源规划与经济发展的脱节使得近年来我国能源结构低碳水平起伏较大.因此,我国能源结构低碳调整应以社会经济效益为重心,以能源规划效益为手段,兼顾环境效益的提高,逐渐由“又快又好发展”向“又好又快发展”的经济发展方式转变.【期刊名称】《科技管理研究》【年(卷),期】2016(036)005【总页数】7页(P186-192)【关键词】我国;能源结构低碳调整;评价;最优评价方法【作者】许珊;范德成;王韶华【作者单位】哈尔滨工程大学经济管理学院,黑龙江哈尔滨150001;哈尔滨工程大学经济管理学院,黑龙江哈尔滨150001;燕山大学经济管理学院,河北秦皇岛066004【正文语种】中文【中图分类】F206;F113.3我国的经济发展依然表现出粗放式特征,对能源消费的依赖性较强,2000年以来能源消费的年均增长速度约达7.34%,2013年为375000万吨标准煤。
我国能源消费结构极其不合理,煤炭消费占消费总量的比重长期稳定在70%左右,使得能源消费对经济增长的贡献率不断下降,而能源消费导致的碳排放量却迅速上升,不合理的能源结构抑制了我国低碳经济的发展。
因此,优化能源结构对实现我国低碳经济目标的贡献潜力较大。
关于能源结构优化,宋家树[1],Toshihiko Nakata[2],李嘉,张宝生等[3]通过分析能源结构变化对经济增长、产业结构、进出口贸易、环境等的影响,认为能源结构优化应考虑宏观经济系统的制约。
随着低碳经济发展模式的践行,S. Jebaraj 和S. Iniyan[4]、林伯强,姚昕等[5]、王迪,聂锐等[6]综合考虑节能减排等约束条件,运用目标规划方法构建能源结构优化模型,设计能源结构优化方案。
粗糙集理论的使用方法与步骤详解引言:粗糙集理论是一种用来处理不确定性和模糊性问题的数学工具,它在数据分析和决策支持系统中得到了广泛的应用。
本文将详细介绍粗糙集理论的使用方法与步骤,帮助读者更好地理解和应用这一理论。
一、粗糙集理论概述粗糙集理论是由波兰学者Pawlak于1982年提出的,它是一种基于近似和粗糙程度的数学理论。
粗糙集理论的核心思想是通过对属性间的关系进行分析,识别出数据集中的重要特征和规律。
它主要包括近似集、正域、决策表等概念。
二、粗糙集理论的使用方法1. 数据预处理在使用粗糙集理论之前,首先需要对原始数据进行预处理。
这包括数据清洗、数据变换和数据归一化等步骤,以确保数据的准确性和一致性。
2. 构建决策表决策表是粗糙集理论中的重要概念,它由属性和决策构成。
构建决策表时,需要确定属性集和决策集,并将其表示为一个矩阵。
属性集包括原始数据中的各个属性,而决策集则是属性的决策结果。
3. 确定正域正域是指满足某一条件的样本集合,它是粗糙集理论中的关键概念。
通过对决策表进行分析,可以确定正域,即满足给定条件的样本集合。
正域的确定可以通过计算属性的约简度或者使用启发式算法等方法。
4. 近似集的计算近似集是粗糙集理论中的核心概念,它是指属性集在正域中的近似表示。
通过计算属性集在正域中的近似集,可以确定属性之间的关系和重要程度。
近似集的计算可以使用不同的算法,如基于粒计算、基于覆盖算法等。
5. 属性约简属性约简是粗糙集理论中的一个重要问题,它是指从属性集中选择出最小的子集,保持属性集在正域中的近似表示不变。
属性约简的目标是减少属性集的复杂性,提高数据分析和决策的效率。
属性约简可以通过计算属性的重要度、使用启发式算法或者遗传算法等方法实现。
6. 决策规则的提取决策规则是粗糙集理论中的重要结果,它是从决策表中提取出来的一组条件和决策的组合。
决策规则可以帮助我们理解数据集中的规律和特征,从而做出更好的决策。
第二章文本预处理研究图2,1信息过滤中的文本预处理过程当文本的内容被简单地看成是它含有的基本语言单位(字、词、词组或短语等)所组成的集合时,这些基本的语言单位统称为项,也就是说文本D可以用项集(TermList)来表示,即D(T,,T2.…,兀),其中砟是项,1≤女≤H。
本文中,在不引起混淆的情况下,将使用“词”代替“项”这个术语。
定义2.3特征词特征词又称关键词.是指能够较好反映文本内容的项,是文本内容的简约表示。
文本D可以进一步用特征词集表示,即D僻,,膨,…,Km),其中膨是特征词,1≤f≤卅,m≤月。
定义2.4词的权重对于含有H个词的文本D(乃,T2,…,死),词n常常被赋予一定的权重%(1≤女≤”),表示它们在文本中的重要程度,即D(Tj,%;T2.盼:…;L,%)。
有时在特征词条确定时.常简记为D=-D(%.%.…,%)。
定义2.5向量空间模型(VectorSpaceModel,VSM)给定一文本D=D(乃,%;T2,W2;…:L,%),由于死在文本中既可以重复出现又应该有先后次序的关系,分析起来仍有一定的难度。
为了简化分析,可以暂不考虑孔在文本中的先后顺序并要求n互异(即没有重复)。
这时可以把乃,乃,…,瓦看成一个盯维的坐标系,而%,%.…,%为相应的坐标值,因而D(WI,%,…,%)被看成是”维空间中一个向量。
我们称D(%,%.…,%)为文本D的向量表示。
VSM是60年代末由GerardSalton等人提出的,是近几年来应用较多且效果较好的文本表示方法之一。
若非特别说明,本文中的文本均采用VSM表示。
南开人学博士学位论文图2.3利用概念推理网的词组自动识别过程(虚线部分表明实际并不存在)2.3文本潜在特征词(词组)的挖掘近些年,Internet尤其是www(WorldWideWeb)得到了飞速的发展,在线文本信息急剧增加。
人们一方面可以轻松地享有互联网所提供的丰富信息,但另一方面,网络信息安全问题也随之而生,人们越来越容易受到色情、反动、暴力、迷信等不健康信息的侵袭。
基于智能方法的电机故障诊断技术综述秦凯;边莉;张宁【摘要】With the rapid development of artificial intelligence technology, more and more scholars constantly proposed motor fault diagnosis technology based on intelligent methods, including expert sys-tems, artificial neural network, rough set theory, Bayesian networks, support vector machines and so on. In this paper, theoretical concepts of these methods, their advantages and disadvantages, and the re-search results were made by a simple analysis, and finally discusses the development trends in the field of motor fault diagnosis.%随着人工智能技术的快速发展,越来越多的国内外学者不断提出了基于智能方法的电机故障诊断技术,主要包括专家系统、人工神经网络、粗糙集理论、贝叶斯网络、支持向量机等. 该文对这些方法的理论概念、各自的优缺点和研究成果分别作了简单分析,最后探讨了电机故障诊断领域的发展趋势.【期刊名称】《工业仪表与自动化装置》【年(卷),期】2016(000)001【总页数】4页(P19-22)【关键词】电机故障诊断;智能方法;研究现状;发展趋势【作者】秦凯;边莉;张宁【作者单位】黑龙江科技大学电气与控制工程学院,哈尔滨150022;黑龙江科技大学电气与控制工程学院,哈尔滨150022;黑龙江科技大学电气与控制工程学院,哈尔滨150022【正文语种】中文【中图分类】TM307随着现代工农业与科学技术的飞速发展,电机已被广泛应用到工农业生产的各个领域。
粗糙集理论及其应用综述3韩祯祥 张 琦 文福拴(浙江大学电机系・杭州,310027) 摘要:粗糙集理论是一种较新的软计算方法,可以有效地分析和处理不完备信息.该理论近年日益受到国际学术届的重视,已经在模式识别、机器学习、决策支持、过程控制、预测建模等许多科学与工程领域得到成功的应用.本文介绍了粗糙集理论的基本概念,对其在各领域的应用情况进行了综述.关键词:粗糙集;不确定性;数据分析;软计算;粗糙控制A Survey on R ough Set Theory and Its ApplicationHan Zhenxiang , Zhang Qi and Wen Fushuan(Department of E lectrical Engineering ,Zhejiang University ・Hangzhou ,310027,P.R.China )Abstract :R ough set theory is a relatively new s oft com putingtool to deal with vagueness and uncertainty.I t has received much attention of the researchers around the w orld.R ough set theory has been applied to many areas success fully including pattern recognition ,machine learning ,decision support ,process control and predictive m odeling.This paper introduces the basic concepts of rough set.A survey on its applicatoins is als o given.K ey w ords :rough set ;uncertainty ;data analysis ;s oft com puting ;rough control1 引言(Introduction )粗糙集(R ougn Set ,RS )理论是一种刻划不完整性和不确定性的数学工具,能有效地分析和处理不精确、不一致、不完整等各种不完备信息,并从中发现隐含的知识,揭示潜在的规律[1].RS 理论是由波兰学者Pawlak Z 在1982年[2]提出的.1991年Pawlak Z 出版了专著[3],系统全面地阐述了RS 理论,奠定了严密的数学基础.该书与1992年出版的RS 理论应用专集[4]较好地总结了这一时期RS 理论与实践的研究成果,促进了它的进一步发展,现已成为学习和应用RS 理论的重要文献.从1992年至今,每年都召开以RS 为主题的国际会议,推动了RS 理论的拓展和应用.国际上成立了粗糙集学术研究会,参加的成员来自波兰、美国、加拿大、日本、挪威、俄罗斯、乌克兰和印度等国家.目前RS 理论已成为人工智能领域中一个较新的学术热点,引起了越来越多的科研人员的关注.2 粗糙集理论的基本概念(Basic concepts of rough settheory )2.1 知识与不可分辨关系(K nowledge and indiscernibility rela 2tion )在RS 理论中,“知识”被认为一种将现实或抽象的对象进行分类的能力[3].假定我们具有关于论域的某种知识,并使用属性(attribute )及其值(value )来描述论域中的对象.例如:空间物体集合U 具有“颜色”、“形状”这两种属性,“颜色”的属性值取为红、黄、绿,“形状”的属性值取为方、圆、三角形.从离散数学的观点看,“颜色”、“形状”构成了U 上的一族等效关系(equivalent relation ).U 中的物体,按照“颜色”这一等效关系,可以划分为“红色的物体”、“黄色的物体”、“绿色的物体”等集合;按照“形状”这一等效关系,可以划分为“方的物体”、“圆的物体”、“三角形的物体”等集合;按照“颜色+形状”这一合成等效关系,又可以划分为“红色的圆物体”、“黄色的方物体”、“绿色的三角形物体”…等集合.如果两个物体同属于“红色的圆物体”这一集合,它们之间是不可分辨关系(indiscernibility relation ),因为描述它们的属性都是“红”和“圆”.不可分辨关系的概念是RS 理论的基石,它揭示出论域知识的颗粒状结构.2.2 粗糙集合的下逼近、上逼近、边界区和粗糙隶属函数(Lower and upper approximation of rough set ,boundary region and rough membership function )给定一个有限的非空集合U 称为论域,R 为U 上的一族等效关系.R 将U 划分为互不相交的基本等效类,二元对K=(U ,R )构成一个近似空间(approximation space ).设X 为U的一个子集,a 为U 中的一个对象,[a ]R 表示所有与a 不可分辨的对象所组成的集合,即由a 决定的等效类.当集合X 能表示成基本等效类组成的并集时,则称集合X 是可以精确定义的;否则,集合X 只能通过逼近的方式来刻划.集合X 关于R 的下逼近(lower approximation )定义为:R 3(X )={a ∈U :[a ]R ΑX}.(1)R 3(X )实际上是由那些根据已有知识判断肯定属于X 的对象所组成的最大的集合,也称为X 的正区(positive region ),记 3国家自然科学基金资助项目(59777011).本文于1997年9月3日收到.1998年11月18日收到修改稿.第16卷第2期1999年4月控制理论与应用CONTROL THEORY AND APPLICATIONS Vol.16,No.2Apr.,1999作POS (X ).由根据已有知识判断肯定不属于X 的对象组成的集合称为X 的负区(negative region ).记作NEG (X ).集合X 关于R 的上逼近(upper approximation )定义为R 3(X )={a∈U :[a ]R ∩X ≠ }.(2)R 3(X )是由所有与X 相交非空的等效类[a ]R 的并集,是那些可能属于X 的对象组成的最小集合.显然,R 3(X )+NEG (X )=论域U.集合X 的边界区(boundary region )定义为:BN (X )=R 3(X )-R 3(X ).(3)BN (X )为集合X 的上逼近与下逼近之差.如果BN (X )是空集,则称X 关于R 是清晰的(crisp );反之如果BN (X )不是空集,则称集合X 为关于R 的粗糙集(rough set ).图1为粗糙集概念的示意图.下逼近、上逼近及边界区等概念刻划了一个不能精确定义的集合的逼近特性.逼近精度定义为αR (X )=|R 3(X )||R 3(X )|.(4)式中|R 3(X )|表示集合R 3(X )的基数或势(cardinality ),对有限集合来说表示集合中所包含元素的个数.显然,0≤αR (X )≤1,如果αR (X )=1,则称集合X 相对于R 是清晰的;αR (X )<1,则称集合X 相对于R 是粗糙的.αR (X )可认为是在等效关系R 下逼近集合X 的精度.RS 理论中定义了粗糙隶属函数(rough membership func 2tion ).通过使用不可分辨关系,定义元素a 对集合X 的粗糙隶属函数如下μRX (a )=|X ∩[a ]R ||[a ]R |.(5)显然0≤μRX ≤1,粗糙隶属函数也可以用来定义集合X 的上、下逼近和边界区.现举例说明粗糙集的概念.论域U 及等效关系R ={R 1,R 2}采用如下定义:U ={x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,x 9,x 10},U/R 1={{x 1,x 2,x 3,x 4},{x 5,x 6,x 7,x 8,x 9,x 10}},U/R 2={{x 1,x 2,x 3},{x 4,x 5,x 6,x 7},{x 8,x 9,x 10}},U/R ={{x 2,x 3},{x 4},{x 5,x 6,x 7},{x 8,x 9,x 10}}.则关于集合X ={x 1,x 2,x 3,x 4,x 5}的逼近为POS (X )={x 4},NEG (X )={x 8,x 9,x 10},BN (X )={x 1,x 2,x 3,x 5,x 6,x 7}.{x 4}是集合X 的正区,因为x 4肯定属于X ;{x 8,x 9,x 10}肯定不属于X ,因此为X 的负区;{x 1,x 2,x 3,x 5,x 6,x 7}是否属于X 在等效关系R 下无法确定,构成了X 的边界区.2.3 决策表、约简与核(Decision table ,reduct and core )RS 理论中应用决策表来描述论域中对象.它是一张二维表格,每一行描述一个对象,每一列描述对象的一种属性.属性分为条件属性和决策属性,论域中的对象根据条件属性的不同,被划分到具有不同决策属性的决策类.表1为一张决策表,论域U 有5个对象,编号1~5,{a ,b ,c}是条件属性集,d 为决策属性.对于分类来说,并非所有的条件属性都是必要的,有些是多余的,去除这些属性不会影响原来的分类效果.约简(reduct )定义为不含多余属性并保证分类正确的最小条件属性集.一个决策表可能同时存在几个约简,这些约简的交集定义为决策表的核(core ),核中的属性是影响分类的重要属性.表1化简后得到了两个约简:{a ,c}和{b ,c},见表2和表3.它们维持了与原有条件属性集{a ,b ,c}相同的分类能力.{c}是核,表明c 是影响分类的重要属性.表1 决策表T able 1 Decision tableUabcd110212210232123412215123表2 约简{a ,c}T able 2 Reduct {a ,c}Uacd112122023223513表3 约简{b ,c}T able 3 Reduct {b ,c}Ubcd10312102312342215203 从另一个角度看,决策表中每一个对象都蕴含着一条分类规则,决策表实际上也是一组逻辑规则的集合.例如表1中的对象1蕴含的规则是a 1b 0c 2]d 1.化简决策表的过程也就是抽取分类规则的过程.表2中对象4在去掉属性b 后154 控制理论与应用16卷 与对象1蕴含相同的分类规则,为避免重复而被除去.约简中的规则还可进一步化简,删除那些与分类无关的次要属性.表3第一行中的“3”表示属性c的取值不重要,即只要b =0,d一定为1(b0]d1).“约简”和“核”这两个概念很重要,是RS方法的精华. RS理论提供了搜索约简和核的方法.计算约简的复杂性随着决策表的增大呈指数增长,是一个典型的NP完全问题,当然实际中没有必要求出所有的约简.引入启发式的搜索方法如遗传算法[10]有助于找到较优的约简,即所含条件属性最少的约简.3 粗糙集理论的特点(Features of rough set theory)1)RS不需要先验知识.模糊集和概率统计方法是处理不确定信息的常用方法,但这些方法需要一些数据的附加信息或先验知识,如模糊隶属函数和概率分布等,这些信息有时并不容易得到.RS分析方法仅利用数据本身提供的信息,无须任何先验知识.2)RS是一个强大的数据分析工具.它能表达和处理不完备信息;能在保留关键信息的前提下对数据进行化简并求得知识的最小表达;能识别并评估数据之间的依赖关系,揭示出概念简单的模式;能从经验数据中获取易于证实的规则知识,特别适于智能控制.3)RS与模糊集分别刻划了不完备信息的两个方面[5]: RS以不可分辨关系为基础,侧重分类,模糊集基于元素对集合隶属程度的不同,强调集合本身的含混性(vagueness).从RS的观点看,粗糙集合不能清晰定义的原因是缺乏足够的论域知识,但可以用一对清晰集合逼近.有关RS和模糊集内在联系的阐述及模糊粗糙集(fuzzy2rough set)的概念,请参见文[6~8].RS和证据理论也有一些相互交叠之处[9],在实际应用中可以相互补充.4 粗糙集理论的应用(Applications of rough set theo2 ry)RS理论的生命力在于它具有较强的实用性,从诞生到现在虽然只有十几年的时间,但已经在许多领域取得了令人鼓舞的成果.1)股票数据分析.文[11]应用RS方法分析了十年间股票的历史数据,研究了股票价格与经济指数之间的依赖关系,获得的预测规则得到了华尔街证券交易专家的认可.2)模式识别.文[12]应用RS方法研究了手写字符识别问题,提取出了特征属性.3)地震预报.文[13]研究了地震前的地质和气象数据与里氏地震级别的依赖关系.4)冲突分析.文[14]应用RS方法建立了反映以色列、巴勒斯坦、约旦、埃及、叙利亚和沙特阿拉伯等六国关于中东和平问题各自立场的谈判模型.5)从数据库中知识发现(knowledge discovery in database, K DD)[15,16].K DD又称数据发掘(data mining),是当前人工智能和数据库技术交叉学科的研究热点之一.RS方法现已成为K DD的一种重要方法,其导出的知识精练且更便于存储和使用.6)粗糙控制(rough control)[17~23].RS根据观测数据获得控制策略的方法被称为从范例中学习(learning from exam2 ples),属于智能控制的范畴.基本步骤是:把控制过程中的一些有代表性的状态以及操作人员在这些状态下所采取的控制策略都记录下来,形成决策表,然后对其分析化简,总结出控制规则[17,18].形式为:IF C ondition=N满足THE N采取De2 cision=M.RS方法是一类符号化分析方法,需要将连续的控制变量离散化,为此Pawlak Z提出了粗糙函数(rough func2 tion)的概念[19],为粗糙控制打下了理论基础.文[20,21]应用粗糙控制研究了“小车—倒立摆系统”这一经典控制问题,取得了较好的结果.在过程控制领域,文[22]应用RS方法成功地提取出了水泥窑炉的控制规则.粗糙控制的优点是简单迅速、实现容易,不需要象Fuzzy控制那样进行模糊化和去模糊化.因此在特别要求控制器结构与算法简单的场合,采取粗糙控制较为合适.另外,由于控制算法完全来自观测数据本身,其决策和推理过程可以很容易被检验和证实.一种新的有吸引力的控制策略“模糊2粗糙控制(fuzzy2rough control)”正悄然兴起,其主要思路是利用RS获取模糊控制规则.7)医疗诊断.RS方法根据以往的病例归纳出诊断规则,用来指导新的病例.现有的人工预测早产的准确率只有17%~38%,应用粗糙集理论则可提高到68%~90%[1].8)专家系统(ES).RS抽取规则的特点,为构造ES知识库提供了一条崭新的途径[24].9)人工神经元网络(ANN).训练时间过于漫长的固有缺点是制约ANN实用化的因素之一.文[25]应用RS化简神经网络训练样本数据集,在保留重要信息的前提下消除了多余的数据,使训练速度提高了4177倍,获得了较好的效果.文[26,27]将RS与ANN结合起来,充分利用RS处理不确定性的特长以增强ANN的信息处理能力.10)决策分析[28~30].RS的决策规则是在分析以往经验数据的基础上得到的.RS允许决策对象中存在一些不太明确、不太完整的属性,弥补了常规决策方法的不足.希腊工业发展银行ETE VA应用RS理论协助制订信贷政策,是RS多准测决策方法的一个成功范例.RS理论的应用领域还包括:近似推理[31,32]、软件工程数据分析[33]、图象处理[34]、材料科学中的晶体结构分析[35]、预测建模[36,37]、结构建模[38]、投票分析[39]、电力系统[40,42]等. RS在我国的研究刚刚起步,有关文献还不多[43~44].5 结束语(C onclusion)虽然RS至今只有十几年的发展历史,但取得的研究成果是令人瞩目的.它是一种较有前途的软计算方法,为处理不确定性信息提供了有力的分析手段[45].我们相信RS具有广阔的发展空间,今后会在更多的实际领域中发挥作用.致谢 波兰华沙工业大学计算机科学研究所(Institute of C om puter Science,Warsaw University of T echnology)的Zdzislaw Pawlak教授和Bozena Skalska博士赠送了部分研究报告,在此向他们表示感谢. 1期粗糙集理论及其应用综述155参考文献(References)1 Pawlak Z et al.R ough sets.C ommunications of AC M,1995,38(11):89 -952 Pawlak Z.R ough sets.International Journal of In formation and C om puter Science,1982,(11):341-3563 Pawlak Z.R ough set-theoretical aspects of reas oning about data.D or2 drecht:K luwer Academ ic Publishers,19914 S lowinski R.Intelligent decision support-handbook of applications and advances of the rough sets theory.D ordrecht:K luwer Academ ic Publish2 ers,19925 Pawlak Z.Vagueness and uncertainty-a rough set perspective.C om puta2 tional Intelligence,1995,11(2):227-2326 W ygralak M.R ough sets and fuzzy sets-s ome remarks on interrelations.Fuzzy Sets and Systems,1989,29(3):241-2437 Nanda S et al.Fuzzy rough sets.Fuzzy Sets and Systems,1992,45(2): 157-1608 Banerjee M and Pal S K.R oughness of a fuzzy set.In formation Sciences, 1996,93(3,4):235-2469 Skowton A et al.From rough set theory to evidence theory.Advances in the Dem pster Shafer Theory of Evidence.New Y ork:John W iley&S ons Inc.,1994,193-23610 Jakub W.Finding m inimal reducts using genetic alg orithm.Institute ofC om puter Science Reports,W arsaw University of T echnology,W arsaw,199511 G olan R and Z iarko W.M ethodology for stock market analysis utilizing rough set theory.Proc.of IEEE/IAFE C on ference on C om putational In2 telligence for Financial Engineering,New Jersey,1995,32-4012 Nejman D.A rough set based method of handwritten numerals classifica2 tion.Institutc of C om puter Science Reports,W arsaw University of T ech2 nology,W arsaw,199413 T eghem J et e of rough sets method to draw prem onitory factors for earthquakes by em phasizing gas geochem istry.In:Intelligent Decision Support-Handbook of applications and Advances of the R ough Sets Theory.D ordrecht:K luwer Academ ic Publishers,1992,165-17914 Deja R.C on flict m odel with neg otiations.In:Institute of C om puter Sci2 ence Reports.W arsaw University of T echnlolgy,W arsaw,199515 Hu X iaohua et al.M ining knowledge rules from databases-a rough set approach.Proc.of IEEE International C on ference on Data Engineering, Los Alam itos,1996,96-10516 Tsum oto Sh et al.Extraction of domain knowledge from databases based on rough set theory.IEEE International C on ference on Fuzzy Systems, New Jersey,1996,748-75417 S ienkiewicz J.R ough set and rough function approaches to the control al2g orithm reconstruction.Institute of C om puter Science Reports,W arsaw U2niversity of T echnology,W arsaw,199618 Mrozek A et al.M ethodology of rough controller synthesis.Proc.of IEEE International C on ference on Fuzzy Systems,New Jersey,1996,1135-113919 Pawlak Z.R ough sets,rough relations and rough functions.Fundamenta In formaticae,1996,27(2,3):103-10820 Plonka L and Mrozek A.Rule2based stabilization of the inverted pendu2lum.C om putational Intelligence,1995,11(2):348-35621 C z ogala E et al.Idea of a rough fuzzy controller and its application to the stabilization of a pendulum2car system.Fuzzy Sets and systems,1995,72(1):6127322 Mrozek A.R ough sets and dependency analysis am ong attributes in com2 puter im plementations of expert’s in ference m odels.International Journal of M an2M achine S tudies,1989,30(4):457-47323 Arima M et al.Fuzzy logic and rough sets controller for HVAC systems.Proc.of IEEE WESCANEX C ommunications,P ower,and C om puting, New Y ork,1995,133-13824 Tsum oto S et al.Automated discovery of medical expert system rules from clinical databases based on rough sets.Proc.of Second InternationalC on f.on K nowledge Discovery and Data M ining,US A,1996,63-7225 Jelonek J et al.R ough set reduction of attributes and their domains for neural netw orks.C om putational Intelligence,1995,11(2):339-34726 Peng C et al.Multi2valued neural netw ork and the knowledge acquisition method by the rough sets for ambiguous recognition problem.Proc.of the IEEE International C on ference on Systems,M an and Cybernetics,Bei2 jing,1996,736-74027 Y asdi R.C ombining rough sets learning and neural learning2method to deal with uncertain and im precise in formation.Neurocom puting,1995,7(1):61-8428 S lowinski R.R ough set approach to decision analysis.AI Expert,M arch 1995,19-2529 Pawlak Z.R ough set approach to knowledge2based decision support.In2 stitute of C om puter Science Reports,W arsaw University of T echnology, W arsaw,199530 S lowinski R et al.R ough set s orting of firms according to bankruptcy risk.In:Applying Multiple Criteria aid for Decision to Environment M an2 agement,D ordrecht:K luwer Academ ic Publishers,1994,339-35731 S lowinski R et al.R ough set reas oning about uncertain data.Fundamenta In formaticae,1996,27(2,3):229-24332 Pars ons S et al.A rough set approach to reas oning under uncertainty.Journal of Exprimental and Theoretical AI,1995,7(2):175-19333 Ruhe Gand G esselschaft F.R ough set based data analysis in g oal2orient2 ed s oftware measurement.Proc.of IEEE International s oftware M etrics Sym posium,Los Alam itos,1996,10-1934 W ojcik Z et al.Application of rough sets for edge enhancing image fil2 ters.Proc.of IEEE International C on ference on Image Processing,Los Alam itos,1994,525-52935 Jacks on A et al.R ough sets applied to materials data.Acta M aterialia, 1996,44(11):4475-448436 C ollette T and S zladow e rough sets and spectral data for building predictive m odels of reaction rate constants.Applied S pectroscopy, 1994,48(11):1379-138637 Aijun A et al.Discovering rules for water demand prediction-an en2 hanced rough set approach.Engineering Applications of Artificial Intelli2 gence,1996,9(6):645-65338 W ojcik Z et al.S tructural m odeling using rough sets.Proc.of IEEE Inter2 national C on ference on Fuzzy Systems,New Jersey,1996,761-76639 Nurm i H et al.Probabilistic,fuzzy and rough concepts in s ocial choice.European Journal of Operational Research,1996,95(2):264-277156 控制理论与应用16卷 40 Lambert2T orres G et al.Data M ining into a C ontrol Center Database via R ough Set T echniques.Proc.of the International C on ference on Intelli2 gent Systems Applications to P ower Systems(IS AP’97),Seoul,1997, 246-25041 Zhang Q,Han Z X and W en F S.A new approach for fault diagnosis in power systems based on rough set theory.Proceedings of APSCOM’97,H ong K ong,1997,597-60242 张琦,韩祯祥,文福拴.一种基于粗糙集方法的电力系统故障诊断/警报处理的新方法.中国电力,1998,31(4):32-3843 王珏,苗夺谦,周育键.关于R ough Set理论与应用的综述.模式识别与人工智能,1996,9(4):337-34444 曾黄麟.粗集理论及其应用.重庆:重庆大学出版社,199845 E wa Orlowska(ed.).Incom plete in formation2rough set analysis.New Y ork:Physica2Verlag,1998本文作者简介韩祯祥 1930年生.浙江大学教授,博士生导师.研究领域为软计算方法及其在电力系统中的应用.张 琦 1971年生.浙江大学在读博士生.研究方向为粗糙集理论在电力系统中的应用.文福拴 1965年生.浙江大学教授,博士生导师.研究领域为软计算方法在电力系统中的应用. 1期粗糙集理论及其应用综述157。
粗糙集理论综述收藏进入网络信息时代,随着计算机技术和网络技术的飞速发展,使得各个行业领域的信息急剧增加,如何从大量的、杂乱无章的数据中发现潜在的、有价值的、简洁的知识呢?数据挖掘(Data Mining)和知识发现(KDD)技术应运而生。
粗糙集理论作为一种数据分析处理理论,在1982年由波兰科学家Z.Pawlak创立[1]。
最开始由于语言的问题,该理论创立之初只有东欧国家的一些学者研究和应用它,后来才受到国际上数学界和计算机界的重视。
1991年,Pawlak出版了《粗糙集—关于数据推理的理论》这本专著,从此粗糙集理论及其应用的研究进入了一个新的阶段,1992年关于粗糙集理论的第一届国际学术会议在波兰召开。
1995年ACM将粗糙集理论列为新兴的计算机科学的研究课题。
粗糙集理论作为一种处理不精确(imprecise)、不一致(inconsistent)、不完整(incomplete)等各种不完备的信息有效的工具,一方面得益于他的数学基础成熟、不需要先验知识;另一方面在于它的易用性。
由于粗糙集理论创建的目的和研究的出发点就是直接对数据进行分析和推理,从中发现隐含的知识,揭示潜在的规律,因此是一种天然的数据挖掘或者知识发现方法,它与基于概率论的数据挖掘方法、基于模糊理论的数据挖掘方法和基于证据理论的数据挖掘方法等其他处理不确定性问题理论的方法相比较,最显著的区别是它不需要提供问题所需处理的数据集合之外的任何先验知识,而且与处理其他不确定性问题的理论有很强的互补性(特别是模糊理论)。
目前,粗糙集理论的研究方向主要是三个方面:理论上,①利用抽象代数来研究粗糙集代数空间这种特殊的代数结构[2~7]。
②利用拓扑学描述粗糙空间[8]。
③还有就是研究粗糙集理论和其他软计算方法或者人工智能的方法相接合,例如和模糊理论、神经网络、支持向量机、遗传算法等[9~19]。
④针对经典粗糙集理论框架的局限性,拓宽粗糙集理论的框架,将建立在等价关系的经典粗糙集理论拓展到相似关系甚至一般关系上的粗糙集理论[20~23]。
第60卷第2期2024年3月地质与勘探GEOLOGY AND EXPLORATIONVol. 60 No. 2March,2024doi:10.12134/j.dzykt.2024.02.012我国城市地下空间开发适宜性评价研究现状与发展趋势刘鑫宇1,董杰2,3,王睿4,5,曾海燕2,3,徐美君2,3,秦升强2,3,于鹏2,3(1.中国海洋大学环境科学与工程学院,山东青岛266100;2.自然资源部滨海城市地下空间地质安全重点实验室,山东青岛266100;3.青岛地质工程勘察院(青岛地质勘查开发局),山东青岛266100;4.中国地质调查局南京地质调查中心,江苏南京210016;5.自然资源部城市地下空间探测评价工程技术创新中心,江苏南京210016)[摘要]城市地下空间是缓解用地饱和矛盾、改善城市生态的重要空间资源,也是开创城市高质量发展新局面的良策,科学高效地进行城市地下空间开发适宜性评价工作至关重要。
本文从评价指标体系、评价指标赋权、评价模型、三维建模与可视化、评价系统5个方面,系统梳理了城市地下空间开发适宜性评价研究现状与不足;对如何合理构建评价指标体系、提升三维地质建模精度、搭建地下空间综合系统三个关键问题进行探讨并给出相应对策;阐明了城市地下空间开发适宜性评价的发展趋势:全要素、全资源的统筹协调,需求导向的针对性评价模式,创新性、连续化的评价模型。
该研究成果可促进城市地下空间开发适宜性评价工作的深化,为城市地下空间的合理评价与有序开发提供参考。
[关键词]城市地下空间开发适宜性立体评价全要素协同规划地下空间综合系统[中图分类号]TU9;P642 [文献标识码]A [文章编号]0495-5331(2024)02-0348-08Liu Xinyu, Dong Jie, Wang Rui, Zeng Haiyan, Xu Meijun, Qin Shengqiang, Yu Peng.Current situation and development trend of urban underground space development suitability evaluation inChina[J]. Geology and Exploration,2024, 60(2): 0348-0355.0 引言1991年东京“城市地下空间利用”国际学术会议通过《东京宣言》,提出“21世纪是人类地下空间开发利用的世纪”。
计算机图像处理技术在中医皮肤病诊断中应用展望随着计算机技术的发展以及计算机技术在中医领域的应用,将中医研究带入了一个客观化、信息化研究的时代。
本文通过对计算机图像处理技术在中医舌诊研究中的应用以及计算机图像处理技术在医学领域的研究进展进行概述后,对计算机图像处理技术在中医皮肤病诊断中的应用进行了展望。
标签:图像处理中医皮肤病诊断【文献标识码】B【文章编号】1004-4949(2014)12-0557-02计算机技术在中医诊断中应用广泛,尤其是在舌诊、脉诊等方面应用较多,且较为成熟。
使中医四诊的研究朝着客观化、信息化的方向发展迅速。
但是计算机技术在中医皮肤病诊断中应用的研究极为罕见。
中医舌诊研究过程中,图像处理技术在其中起到了核心作用,本文要针对计算机图像处理技术在中医皮肤病诊断方面的应用进行探讨和展望。
1.计算机图像处理技术在中医舌诊研究中的应用始见于20世纪90年代,中国科大与安徽中医学院[1]较早提出了将计算机图像识别技术用于舌诊客观化的设想,随后北京中医院对舌色和苔色进行了客观的定量分析,提出了舌的局部象素点红[R]、绿[G]、蓝[B]值的统计[2]。
20多年来,中医诊断科学工作者携同数学、物理、生物等领域的同仁们从不同的角度对舌象特征做了不同程度的定量分析研究。
周氏等[3]认为提取舌体图像的2个依据是色彩和纹理,先将舌图的RGB空间转换到YCbCr色彩空间,将Cr二值化结合参考Cb、Cr2个分量提取舌体;赵氏等将舌图由RGB色度空间转化成HIS 色度空间后,把H值二值化,初步实现舌体的提取,再结合数学形态学将二值舌图像与原始彩色舌图像作逻辑与运算后得到细致的舌体边缘,并进一步采用样条Snakes模型及灰度投影与刚性模板相结合的方法初步实现舌体的自动分割,并提出基于彩色对消方法来实现精确的舌体分割。
随着图像分割技术的发展,舌象研究中的图像分割也经历了从人工分割逐渐向半自动、自动分割的过渡,但目前舌体分割的结果还不是非常令人满意。