粗糙集理论 PPT课件
- 格式:ppt
- 大小:1.14 MB
- 文档页数:89
绪论●20世纪80年代,波兰数学家Z.Pawlak提出粗糙集理论概率论(Probabilistic Theory)刻画概念发生的随机性(Stochastic),模糊集理论(Fuzzy Set Theory)刻画概念的模糊性(Vagueness),刻画概念的粗糙性(Coarseness),即分类能力(Classification Ability)。
粗糙集理论简称为粗集理论,粗糙集,或粗集。
●一个概念越粗糙,其分类能力越差,分类得到的对象组的颗粒(granularity)越大(越粗),对象之间的可辨识性(discernibility)越差。
相反地,一个概念越精细(fine),其分类能力越强,分类所得的对象组的颗粒越小,对象之间的可辨识性越好。
●例子图像的分辨率刻画了图像质量的粗糙程度,类似粗糙集刻画了知识或概念的粗糙程度。
图像中的分辨率越高,图像的可辨识性就越好,反之就越差。
像素灰度刻画了图像黑白的不同程度,类似模糊集刻画了概念的模糊性。
而图像上的内容则反映了某个物体出现的随机性。
第一章 知识有关知识的理论已有长远和丰富的历史,Pawlak 提议把粗集理论作为讨论知识的理论框架,特别在关注不精确知识的时候。
本章对“知识”这一术语给出形式化的定义,并讨论了它的一些基本特性。
粗集理论对知识的基本看法:知识是人类关于事物之分类能力的深层次刻画。
论域(universe of discourse ):真实世界或抽象世界被称为论域.定义1.1 设论域U 是非空有限集合,U 中元素是论域中感兴趣的对象。
对∀X ⊆ U ,称其为U 的一个概念或范畴(category )。
称U 的任意概念簇为U 的抽象知识或知识。
为便于形式推理,允许空集 ∅ 作为一个概念。
本书我们的主要兴趣在于形成某论域的一个划分(partition )或分类(classification )的概念。
(在本书中有:划分分类,划分与分类是两个等价的概念)定义1.2 U 为论域,若概念簇C = {X i | X i ⊆U ,X i ≠ ∅,i = 1,2,…,n} 满足:⑴ 对于i ,j = 1,2,…,n ,i≠j ,X i ∩X j = ∅⑵ 1 ni i X U == 则称C 为U 的一个划分或分类。