量子行为粒子群优化算法-中文版
- 格式:ppt
- 大小:844.50 KB
- 文档页数:37
粒子群优化算法
粒子群优化算法(PSO)是一种基于群智能的算法,它将仿生学、计算机图形学和优化理论相结合,可以解决复杂的优化问题。
该算法在近年来的应用中受到了广泛关注,并在实际工程中取得了显著的效果,特别是在互联网领域,它能够和其他优化算法一起很好地完成复杂的任务。
粒子群优化算法能够有效地解决多种问题,如:分布式搜索、优化路径规划、模式识别、多优化器混合等等。
该算法利用社会群体同化规律,将算法中的粒子模型作为一种有效的解决优化问题的一种算法,将周期性更新过程中的位置信息和最大值更新来确定粒子的最优位置。
因此,粒子群优化算法在很大程度上可以利用群体行为来最大化和最小化优化目标函数。
此外,粒子群优化算法在互联网领域的应用也得到了很广泛的应用,如入侵检测系统的参数调整、负载均衡的实现以及文本挖掘等技术,都可以利用粒子群优化算法进行优化。
如果把这些参数看做一系列棘手的问题,那么粒子群优化算法就能够有效地帮助解决它们。
作为一种有效的优化算法,粒子群优化技术的发展不断增强,它的应用范围也在快速扩大,特别是在互联网领域,它将能够发挥出更大的作用。
一般来说,粒子群优化算法有较低的时间复杂度,能够尽快找到最优解。
此外,由于粒子群优化可以识别全局最优解,这种技术具有抗噪声能力强、能够适应不断变化的技术参数等特点,值得引起关注。
一种具有自我更新机制的量子粒子群优化算法奚茂龙;吴小俊;方伟;孙俊【摘要】Life body has limited life in nature;it will be aging and die with time. The aging mechanism is very important to keep swarm diversity during evolutionary process. For the phenomenon that Quantum-behaved Particle Swarm Optimi-zation(QPSO)is often premature convergence, self-renewal mechanism is proposed into QPSO, and a leading particle and challengers are introduced. When the leading power of leading particle is exhausted, one challenger will select to be the new leading particle and continues keeping the diversity of swarm with a certain renewal mechanism. Furthermore, global convergence of the proposed algorithm is proved. Finally, the comparison and analysis of results with the proposed method and classical improved QPSO algorithm based on twelve CEC2005 benchmark function is given, the simulation results show stronger global searching ability of the modified algorithm. Especially in the seven multi-model test func-tions, the comprehensive performance is optimal.%自然界中生命体都存在着有限的生命周期,随着时间的推移生命体会出现老化并死亡的现象,这种老化机制对于生命群体进化并保持多样性有重要影响。
高斯量子行为粒子裙优化(GQPSO)算法是一种基于量子行为的进化优化算法,它结合了粒子裙优化(PSO)算法和量子计算的特点,能够有效地解决复杂优化问题。
本文将从以下几个方面介绍GQPSO算法的原理、特点和应用,希望能够为读者提供深入的了解。
一、GQPSO算法的原理GQPSO算法是基于粒子裙优化算法和量子计算的原理而提出的,它采用了一种全新的粒子编码和演化方式,通过模拟粒子在量子力学中的行为进行搜索和优化。
GQPSO算法的原理如下:1. 量子位表示在GQPSO算法中,每个粒子被表示为一个量子位,根据其在搜索空间中的位置,每个粒子的量子位可以被编码为一个二进制字符串。
这种量子位表示方式能够更好地描述粒子的位置和速度,从而更好地指导搜索过程。
2. 高斯量子演化GQPSO算法通过高斯量子演化来更新粒子的量子位和速度,其中包括量子位的变换和速度的更新。
在高斯量子演化过程中,粒子会受到适应性函数的约束,从而导致不断演化、搜索和优化。
3. 适应性函数GQPSO算法中使用的适应性函数通常是目标函数或者问题的评价函数,它能够帮助粒子判断当前位置的优劣,并指导其向更优的位置演化。
适应性函数的选择对于算法的性能至关重要。
二、GQPSO算法的特点GQPSO算法相比于传统的优化算法有着独特的特点和优势,主要表现在以下几个方面:1. 全局搜索能力强GQPSO算法通过量子位表示和高斯量子演化,能够有效地克服传统算法在全局搜索能力上的不足,更好地发挥粒子裙优化算法的优势,从而在复杂优化问题中取得更好的效果。
2. 收敛速度快GQPSO算法利用了量子行为的特性,能够更快地收敛到全局最优解,从而大大提高了算法的搜索效率和优化能力。
在实际应用中,GQPSO 算法往往能够在较短的时间内找到较优的解。
3. 对高维问题有较好的适应性GQPSO算法对于高维优化问题的适应性较强,能够有效地应对复杂的实际问题,从而满足实际应用的需求。
这一特点使得GQPSO算法在实际工程和科研中有着广泛的应用前景。
摘要在智能领域,大部分问题都可以归结为优化问题。
常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。
本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。
根据分析结果,研究了一种基于量子的粒子群优化算法。
在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。
本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。
最后,对本文进行了简单的总结和展望。
关键词:粒子群优化算法最小二乘支持向量机参数优化适应度目录摘要 (I)目录 (II)1.概述 (1)1.1引言 (1)1.2研究背景 (1)1.2.1人工生命计算 (1)1.2.2 群集智能理论 (2)1.3算法比较 (2)1.3.1粒子群算法与遗传算法(GA)比较 (2)1.3.2粒子群算法与蚁群算法(ACO)比较 (3)1.4粒子群优化算法的研究现状 (4)1.4.1理论研究现状 (4)1.4.2应用研究现状 (5)1.5粒子群优化算法的应用 (5)1.5.1神经网络训练 (6)1.5.2函数优化 (6)1.5.3其他应用 (6)1.5.4粒子群优化算法的工程应用概述 (6)2.粒子群优化算法 (8)2.1基本粒子群优化算法 (8)2.1.1基本理论 (8)2.1.2算法流程 (9)2.2标准粒子群优化算法 (10)2.2.1惯性权重 (10)2.2.2压缩因子 (11)2.3算法分析 (12)2.3.1参数分析 (12)2.3.2粒子群优化算法的特点 (14)3.粒子群优化算法的改进 (15)3.1粒子群优化算法存在的问题 (15)3.2粒子群优化算法的改进分析 (15)3.3基于量子粒子群优化(QPSO)算法 (17)3.3.1 QPSO算法的优点 (17)3.3.2 基于MATLAB的仿真 (18)3.4 PSO仿真 (19)3.4.1 标准测试函数 (19)3.4.2 试验参数设置 (20)3.5试验结果与分析 (21)4.粒子群优化算法在支持向量机的参数优化中的应用 (22)4.1支持向量机 (22)4.2最小二乘支持向量机原理 (22)4.3基于粒子群算法的最小二乘支持向量机的参数优化方法 (23)4.4 仿真 (24)4.4.1仿真设定 (24)4.4.2仿真结果 (24)4.4.3结果分析 (25)5.总结与展望 (26)5.1 总结 (26)5.2展望 (26)致谢 (28)参考文献 (29)Abstract (30)附录 (31)PSO程序 (31)LSSVM程序 (35)1.概述1.1引言最优化问题是在满足一定约束条件下,寻找一组参数值,使得系统的某些性能指标达到最大或者最小。
粒子群算法原文及解释粒子群优化算法(Particle Swarm Optimization,PSO)是一种模拟鸟群、鱼群等动物社会行为的优化算法。
通过模拟鸟群、鱼群等动物群体中的个体行为,粒子群优化算法能够有效地求解各种优化问题。
本文将从算法原理、算法流程、参数设置、优化问题、实现方式、改进策略、应用领域和性能评价等方面对粒子群优化算法进行详细的介绍。
一、算法原理粒子群优化算法基于群体智能理论,通过模拟鸟群、鱼群等动物群体中的个体行为来寻找最优解。
每个个体被称为一个粒子,它通过跟踪其自身的最优位置和群体的最优位置来更新自己的速度和位置。
粒子的速度和位置更新公式如下:v[i][j] = w * v[i][j] + c1 * rand() * (pbest[i][j] - x[i][j]) + c2 * rand() * (gbest - x[i][j])x[i][j] = x[i][j] + v[i][j]其中,v[i][j]表示粒子i在第j维上的速度,x[i][j]表示粒子i 在第j维上的位置,pbest[i][j]表示粒子i的个体最优位置,gbest 表示全局最优位置,w表示惯性权重,c1和c2表示加速因子,rand()表示随机函数。
二、算法流程粒子群优化算法的基本流程如下:1. 初始化粒子群,随机生成粒子的初始位置和初始速度。
2. 计算每个粒子的适应度值,记录粒子的个体最优位置和全局最优位置。
3. 根据粒子的适应度值更新粒子的速度和位置。
4. 重复步骤2和步骤3,直到满足终止条件(如达到预设的最大迭代次数或全局最优解的变化小于预设阈值)。
三、参数设置粒子群优化算法的参数包括惯性权重w、加速因子c1和c2等。
这些参数对算法的性能和收敛速度有着重要的影响,需要根据具体问题进行调整和优化。
通常需要通过实验来找到合适的参数设置。
四、优化问题粒子群优化算法适用于求解连续的、离散的优化问题。
对于不同的优化问题,需要根据问题的特性和要求来设计合适的粒子和适应度函数。
粒子群优化法-概述说明以及解释1.引言1.1 概述粒子群优化法(Particle Swarm Optimization,简称PSO)是一种用于求解优化问题的启发式算法。
它模拟了鸟群或鱼群中的群体协作行为,通过不断更新粒子的位置和速度,逐步逼近最优解。
PSO算法最早由Russell Eberhart和James Kennedy于1995年提出,并在之后的二十多年里得到了广泛应用和研究。
PSO算法是一种简单但高效的优化算法,其灵感源于群体智能中的群体行为。
它通过模拟从鸟群和鱼群等自然界中观察到的协同行为,将搜索空间中的解表示为“粒子”,每个粒子根据自己当前的位置和速度信息动态调整,并通过与其他粒子的互动来引导搜索过程。
在PSO算法中,每个粒子都有自己的位置和速度,并且能够记忆并更新自己及其他粒子的最优解。
通过不断地根据历史最优值和邻域最优值进行位置和速度的更新,粒子能够在搜索空间中逐渐找到最优解。
PSO算法具有计算简单、易于实现、收敛速度较快等优点,能够应用于解决连续优化问题、离散优化问题以及多目标优化问题等多个领域。
总的来说,粒子群优化法是一种基于群体智能的优化算法,通过模拟自然界中群体的协同行为,实现了对复杂优化问题的求解。
在实际应用中,PSO算法已经在函数优化、图像处理、机器学习、工程设计等众多领域展现出了良好的性能和广阔的应用前景。
本文将详细介绍粒子群优化法的原理和应用领域,并探讨其优势和发展前景。
1.2文章结构1.2 文章结构本文将按以下顺序展开对粒子群优化法的深入研究和讨论:1.2.1 粒子群优化法的概述首先,我们将介绍粒子群优化法的概念以及其基本原理。
我们将讨论其运作方式,了解粒子群如何模拟鸟群在搜索问题中寻找全局最优解的行为。
1.2.2 粒子群优化法的应用领域接下来,我们将探讨粒子群优化法在不同领域中的广泛应用。
粒子群优化法已被应用于许多问题领域,包括函数优化、图像处理、数据挖掘等。
扬州大学物理科学与技术学院本科生毕业设计论文课题:粒子群优化算法作者:张雷学号: 050702156 专业:电子信息科学与技术指导教师:朱海梅二零零九年五月十五日摘要近年来,智能优化算法—粒子群算法(particle swarm optimization,简称PSO)越来越受到学者的关注。
粒子群算法是美国社会心理学家JamesKennedy 和电气工程师Russell Eberhart在1995年共同提出的,它是受到鸟群社会行为的启发并利用了生物学家Frank Heppner的生物群体模型而提出的。
它用无质量无体积的粒子作为个体,并为每个粒子规定简单的社会行为规则,通过种群间个体协作来实现对问题最优解的搜索。
由于算法收敛速度快,设置参数少,容易实现,能有效地解决复杂优化问题,在函数优化、神经网络训练、图解处理、模式识别以及一些工程领域都得到了广泛的应用。
PSO是首先由基于不受约束的最小化问题所提出的基于最优化技术。
在一个PSO系统中,多元化解决方案共存且立即返回。
每种方案被称作“微粒”,寻找空间的问题的微粒运动着寻找目标位置。
一个微粒,在他寻找的时间里面,根据他自己的以及周围微粒的经验来调整他的位置。
追踪记忆最佳位置,遇到构建微粒的经验。
因为那个原因,PSO占有一个存储单元(例如,每个微粒记得在过去到达时的最佳位置)。
PSO系统通过全局搜索方法(通过)搜索局部搜索方法(经过自身的经验),试图平衡探索和开发。
粒子群优化算法是一种基于群体的自适应搜索优化算法,存在后期收敛慢、搜索精度低、容易陷入局部极小等缺点,为此提出了一种改进的粒子群优化算法,从初始解和搜索精度两个方面进行了改进,提高了算法的计算精度,改善了算法收敛性,很大程度上避免了算法陷入局部极小.对经典函数测试计算,验证了算法的有效性。
关键词:粒子群优化算法;粒子群;优化技术;最佳位置;全局搜索;搜索精度Particle swarm optimization (PSO) algorithm is a novel evolutionary algorithm. It is a kind of stochastic global optimization technique. PSO finds optimal regions of complex search spaces through the interaction of individuals in a population of particles. The advantages of PSO lie in simple and powerful function. In this paper , classical particle swarm optimization algorithm , the present condition and some applications of the algorithms are introduced , and the possible research contents in future are also discussed.PSO is a population-based optimization technique proposed firstly for the aboveunconstrained minimization problem. In a PSO system, multiple candidate solutions coexist and collaborate simultaneously. Each solution called a ‘‘particle’’, flies in the problem search space looking for the optimal position to land. A particle, as time passe s through its quest, adjusts its position according to its own ‘‘experience’’ as well as the experience of neighboring particles. Tracking and memorizing the best position encountered build particle_s experience. For that reason, PSO possesses a memory (i.e. every particle remembers the best position it reached during the past). PSO system combines local search method(through self experience) with global search methods (through neighboring experience), attempting to balance exploration and exploitation.Abstract Particle Swarm Optimization Algorithm is a kind of auto-adapted search optimization based on community.But the standard particle swarm optimization is used resulting in slow after convergence, low search precision and easily leading to local minimum. A new Particle Swarm Optimization algorithm is proposed to improve from the initial solution and the search precision. The obtained results showed the algorithm computation precision and the astringency are improved, and local minimum is avoided. The experimental results of classic functions show that the improved PSO is efficientand feasible.Key words :particle swarm optimization algorithms ; unconstrained minimization problem;the bestposition;global search methods; the search precision目录一.引言二.PSO算法的基本原理和描述(一)概述(二)粒子群优化算法(三)一种改进型PSO算法——基于遗传交叉因子的粒子群优化算法简介1 自适应变化惯性权重2 交叉因子法(四) PSO与GA算法的比较1 PSO算法与GA算法2 PSO算法与GA算法的相同点3 PSO算法与GA算法的不同点三.PSO算法的实现及实验结果和仿真(一)基本PSO算法(二)算法步骤(三)伪代码描述(四)算法流程图(五)六个测试函数的运行结果及与GA算法结果的比较四结论五. 致谢六.参考文献一、引言混沌是一种有特点的非线形系统,它是一种初始时存在于不稳定的动态状态而且包含着无限不稳定时期动作的被束缚的行为。
粒子群优化算法(PSO)介绍在频谱资源日趋紧张的今天,想要通过增加频谱宽度来提高系统容量的方式已经很难实现;同时,想在时域、频域或码域进一步提高系统容量已经十分困难。
在这种情形下,人们把目光投向了空域,期望能够从中寻觅新的源泉。
随着人们对于无线移动通信的要求愈来愈高,专门是对高速多媒体传输的迫切需求,与之相关能够提高系统容量的技术也开始受到人们的特别重视。
20世纪90年代以来,对于群体智能的研究逐渐兴起。
Eberhart和Kennedy于1995年提出的粒子群优化算法(PSO),作为一种简单有效的优化算法迅速在各个领域取得了普遍的应用。
PSO算法的思想来源是鸟群在觅食进程中表现的群体智慧。
通常单个自然生物并非是智能的,可是整个生物群体却表现出处置复杂问题的能力,这就是群体智能。
各类生物聚集成生物种群,都有其内在行为规律,而人类作为高级生物,研究并掌握了这种规律,模拟设计出各类优化算法并运用于各类问题。
类似的还有按照生物繁衍特性产生的遗传算法,对蚂蚁群落食物收集进程的模拟产生的蚁群算法。
PSO算法目前已经普遍用于函数优化、神经网络训练、模糊系统控制和其他遗传算法涉及到的应用领域。
PSO算法较之其他的优化算法实现简单,也没有许多参数需要调整。
可是它也有着收敛过快、易收敛于局部极值的现象,专门是面对高维复杂的问题时如阵列天线方向图综合问题。
人们提出了很多的改良算法,来提高PSO算法的性能。
惯性权重和紧缩因子是目前应用比较普遍的对大体粒子群算法的改良,能够改善优化性能可是收敛较慢。
文献中将粒子群算法和遗传算法在方向图综合上的应用做了比较,能够看出粒子群算法较之遗传算法有计算量小易于实现等特点,但也能够看到大体的PSO算法和遗传算法的收敛速度都不快或往往在某个局部极值停滞太久很难跳出。
粒子群优化算法(PSO粒子群优化(PSO:Particle Swarm Optimization))是一种进化计算技术(evolutionary computation)是一种有效的全局优化技术,有Eberhart 博士和kennedy博士发明。