非线性振动_绪论
- 格式:ppt
- 大小:854.00 KB
- 文档页数:29
非线性振动非线性振动§0.1非线性振动的研究对象在自然界、工程技术、日常生活和社会生活中,普遍存在着物体的往复运动或状态的循环变化。
这类现象称为振荡。
例如大海的波涛起伏、花的日开夜闭、钟摆的摆动、心脏的跳动、经济发展的高涨和萧条等形形色色的现象都具有明显的振荡特性。
振动是一种特殊的振荡,即平衡位置四周微小或有限的振荡。
如声波和超声波、工程技术中的机器和结构物的机械振动、无线电和光学中的电磁振荡等。
从最小的初等粒子到巨大的天体,从简单的摆到复杂的生物体,无处不存在振动现象。
有时人们力图防止或减小振动,有时又力图制造和利用振动。
尽管振动现象的形式多种多样,但有着共同的客观规律和同一的数学表达形式。
因此有可能建立同一的理论来进行研究,即振动力学。
振动力学是力学、声学、无线电电子学、自动控制理论等学科,以及机械、航空、土木、水利等工程学科的理论基础之一。
它应用数学分析、实验量测和数值计算等方法,探讨振动现象的机理和基本规律,为解决与振动有关的实际题目提供理论依据。
根据描述振动的数学模型的不同,振动理论区分为线性振动理论和非线性振动理论。
线性振动理论适用于线性系统,即质量不变、弹性力和阻尼力与运动参数成线性关系的系统,其数学描述为线性常系数常微分方程。
不能简化为线性系统的系统为非线性系统,研究非线性系统的振动理论就是非线性振动理论。
线性振动理论是对振动现象的近似描述,在振幅足够小的大多数情况下,线性振动理论可以足够正确地反映振动的客观规律。
频率、振幅、相位、激励、响应、模态等都是在线性理论中建立起来的基本概念。
实际机械系统中广泛存在着各种非线性因素,如电场力、磁场力、万有引力等作用力非线性,法向加速度、哥氏加速度等运动学非线性,非线性本构关系等材料非线性,弹性大变形等几何非线性等。
因此工程实际中的振动系统尽大多数都是非线性系统。
由于非线性微分方程尚无普遍有效的精确求解方法,而线性常微分方程的数学理论已十分完善,因此将非线性系统以线性系统代替是工程中常用的有效方法,但仅限于一定的范围。
第一章 非线性振动初步第一节 无阻尼单摆的自由振荡1 小角度无阻尼单摆 椭圆点单摆,一个由摆线l 联着的重量为mg 的摆锤所组成的力学系统,是力学教科书中通常都要进行讨论的一个简单的动力学模型。
其实我们将会看到,它具有非常复杂的动力学行为,是一个复杂系统。
我们研究一个理想的单摆,即忽略摆线l 质量,认为整个系统的质量都集中在摆锤上,是一个具有集中参数的数学摆,如图1-1所示。
因为如果把摆线与摆锤的质量一起计算,单摆就是一个具有分布参数的摆,与此相应的数学模型是偏微分方程,处理起来很复杂。
理想单摆的数学表达是常微分方程,研究起来就要容易得多了。
图1-1 数学摆首先忽略一切阻尼,例如忽略摆锤在运动中受到的空气阻力、摆线与悬挂点之间的摩擦力等等。
由牛顿第二运动定律,摆锤质量为m 的单摆的运动方程为:(1-1-1)式中θ为摆角,g 为重力加速度。
将等式右边项移到到左边,并以ml 相除后有:设 ,它是以单位时间的弧度为单位的角频率,则式(1-1-1)可写为:(1-1-2)由于正弦函数是非线性的,因此这是一个二阶非线性微分方程。
用级数展开正弦函数:(1-1-3)如果x 很小,则可以忽略三次以上的高次项,即。
这就是说当单摆的摆角很小时,式(1-1-2)变为线性微分方程:ml d dtmg 22θθ=−sin 0sin 22=+θθl g dt d l g /0=ω0ω0sin 2022=+θωθdt d L +−+−=!7!5!3sin 753x x x x x x x ≈sin(1-1-4)方程(1-1-4)的解可以通过如下的代换解获得:式中λ为常数。
代入方程(1-1-4)并消去因子后得特征方程:(1-1-5)方程(1-1-5)的特征根为:由此得到方程(1-1-4)的通解为:(1-1-6)式中,为复常数。
由于描述单摆振动的应为实函数,所以常数,必须满足条件:于是得条件:,。
将满足这样条件的系数,写成指数形式:, 其中P 为它们的模,为幅角,则(1-1-6)式写成如下形式:(1-1-7)(1-1-7)式是一个振幅为P ,角频率为的简谐振动表示式,表明单摆在摆角很小时的摆动为简谐振荡,其振动波形可以用正弦曲线来表示。
224第十一章 非线性振动11.1 引言振动系统的许多运动状态可以按线性系统来分析,解释,但这只能限于一定的范围之内,因为系统中某些元件的特性只在某一定范围之内才是线性的。
例如,一个弹簧被拉伸或压缩,其中将分别产生拉压恢复力,在一定范围之内,力与变形之间的关系是线性的,超过这一范围,恢复力增长的速率将大于变形增长的速率(硬弹簧)或小于变形增长的速率(软弹簧)。
因此,一个简单的弹簧—质量振子,如果工作于弹簧的线性范围之内,就可以看为一个线性系统;如果工作于这线性范围之外,就是一个非线性系统。
同理,一个单摆,如果振幅θ充分小以至可以假设sin θ就等于θ,则可看为线性系统。
但对于大幅振动,这种假设就不再正确。
本质上是非线性的系统如果简单当作线性系统来处理,则不仅所得结果在数量上的误差过大,更重要的是按照线性理论将无法预料或解释实际系统可能出现的某些重要的非线性现象。
对于线性系统,因果关系是线性的。
即载荷加倍,响应也就加倍;若同时作用有不同的载荷,总响应就是各个单独载荷的响应之和,因此可以应用叠加原理,对于非线性系统因果关系不再是线性的,叠加原理也就不再适用。
非线性系统至今没有一般的解法,只能采用一些特殊的研究方法来尽可能地揭示系统的某些重要的运动性态。
这些方法沿着定性的与定量的两个方向发展,二者相辅相成,法国物理学家邦加来(Poincare )在这两个方面都作出了奠基性的工作。
本章通过的一些典型的1自由度非线性系统介绍方法与定量方法的一些初步认识;揭示非线性系统所特有的某些重要的运动性态。
11.2相平面1自由度振动系统的运动微分方程一般形式为...,,0f x t xx ⎛⎫+= ⎪⎝⎭(11.2-1)其中.,,f x t x ⎛⎫ ⎪⎝⎭可以是x 与.x 的非线性函数。
如.,,f x t x ⎛⎫⎪⎝⎭不显含时间t ,则有...,0f x xx ⎛⎫+= ⎪⎝⎭(11.2-2)方程(11.2-1)所表示的系统称为非自治系统,而方程(11.2-2)可改写为两个联立的一阶方程如下..(,)x yy f x y ==- (11.2-3)如果把x 与y 都看为笛卡儿坐标,则x-y 平面成为相平面。
非线性振动现象振动是物体围绕平衡位置做周期性的来回运动,它是自然界中普遍存在的现象。
在很多实际问题中,我们会遇到非线性振动现象,即振动系统不满足线性的回复力定律。
非线性振动现象在物理学、工程学以及生物学等领域都有广泛的应用和重要的研究价值。
一、什么是非线性振动现象非线性振动现象是指振动系统的受力律不满足线性回复力定律,即系统力与位移之间的关系不是线性的。
与线性振动相比,非线性振动显示出更加丰富的运动特性和行为。
非线性振动现象的出现主要归结为以下几个方面的原因:1.回复力律的非线性:通常线性振动系统受到的回复力与振动的位移成正比,但在某些情况下,回复力可能随着位移的增加而变化速率不等,导致非线性振动现象的出现。
2.系统参数的非线性:振动系统的参数非线性,如刚度、阻尼系数、质量等的变化,也会导致系统的振动特性发生变化。
3.外部扰动的非线性:外界对振动系统的扰动如果不规律、不可逆,也会导致系统出现非线性振动现象。
二、非线性振动的种类非线性振动现象的种类繁多,下面介绍几种常见的非线性振动现象:1.硬度非线性:当振动系统的回复力不仅与位移的大小有关,还与位移的变化率有关时,就会出现硬度非线性。
硬度非线性表现为振动系统的频率与振幅的关系非线性,通常存在频率间跳变、倍频和次谐波等特点。
2.阻尼非线性:振动系统受到非线性阻尼时,会出现振幅的跃变、突变等非线性现象。
3.非线性共振:当振动系统的频率接近系统的特征频率时,振幅会出现非线性的迅速增大,达到共振峰值。
4.受迫非线性振动:当振动系统受到非线性外力激励时,振幅和频率会发生非线性变化。
三、非线性振动的应用非线性振动现象在各个领域都有广泛的应用和研究价值:1.物理学:非线性振动现象的研究在物理学领域中有重要的地位。
例如,非线性振动现象的研究为材料的性能评估和电磁波的传播提供了重要依据。
2.工程学:非线性振动的研究对于工程结构的设计和优化至关重要。
例如,建筑结构和桥梁的振动特性分析需要考虑非线性振动的影响。
非线性振动学习报告[1]《非线性振动》学习报告2010年3月至6月在北京学习期间,中科院并没有开设相同或者类似的课程,所以我只能以自学的方式完成课程。
我每周的学习时间保持在3小时左右,使用的课本是《非线性振动》(刘延柱陈立群编),根据绪论的内容,以及今后可能遇到的实际问题,我重点阅读的章节为前四章。
本文内容,尤其是前几章的内容,主要以我在看书时的勾画和笔记。
本文全部由我自己输入,在完成过程中,没有十分注意排版的问题,所以板式可能比较混乱希望老师谅解。
第一章非线性振动的定性分析方法 1.1 稳定性理论的基本概念特定的运动成为系统的未受干扰的运动,简称为稳态运动,而受扰运动则是偏离稳态运动的系统的运动。
李雅普诺夫关于稳定性的定义有:稳定的、渐进稳定、不稳定李雅普诺夫直接方法的理论基础由三个定理组成:(1)若能够早可谓征订函数V(x),使得沿扰动方程解曲线计算的全导数V为半负定或等于零,则系统的未扰运动稳定。
(2)若能构造可微正定函数V(x),使得沿扰动方程解曲线计算的全导数V为负定,则系统的未扰运动渐进稳定。
(3)若能构造可微正定、半正定函数V(x),使得沿扰动方程解曲线计算的全导数V为正定,则系统的未扰运动不稳定。
定理:若保守系统的势能在平衡状态处有孤立极小值,则平衡状态稳定。
对于复杂的非线性系统,可以以近似的线性系统代替可以根据一次近似方程的稳定性,判断原方程的稳定性:(1)若一次方程的所有本征实部均为负,则原方程的零解渐进稳定(2)若一次近似方程至少有一本征实部为正,则原方程的零解不稳定(3)若一次近似方程存在零实部的本征值,其余根的实部为负,则不能判断原方程的零解的稳定性1.2相平面、相轨迹和奇点与系统的运动状态一一对应的像平面上的点称为系统的相点,相点的移动轨迹称为相轨迹。
像平面内能使方程右边分子分母同时为零的特殊点称为相轨迹的奇点。
保守系统的相轨迹有以下特点:(1)相轨迹曲线相对横坐标对称;(2)势能曲线z=V(x)与横坐标轴的平行线z=E交点的横坐标C1,C2,C3,处,相轨迹与横坐标轴相交;(3)横坐标轴上与势能曲线的驻点相对应的点S1,S2,S3,为奇点,因为他们满足几点的定义;(4)在势能取极小值处,设E>V(S1),则在x= S1的某个小领域内都有E大于等于V(x)。