六西格玛之分析阶段S848卡方检验p23
- 格式:ppt
- 大小:2.17 MB
- 文档页数:23
6西格玛1西格玛=690000次失误/百万次操作2西格玛=308000次失误/百万次操作3西格玛=66800次失误/百万次操作4西格玛=6210次失误/百万次操作5西格玛=230次失误/百万次操作6西格玛=3。
4次失误/百万次操作7西格玛=0次失误/百万次操作什么是6西格玛”σ”是希腊文的字母,是用来衡量一个总数里标准误差的统计单位。
一,以4西格玛而言般企业的瑕疵率大约是3到4个西格玛,相当于每一百万个机会里,有6210次误差。
如果企业不断追求品质改进,达到6西格玛的程度,绩效就几近于完美地达成顾客要求,在一百万个机会里,只找得出3。
4个瑕疪。
6西格玛(6Sigma是在九十年代中期开始从一种全面质量管理方法演变成为一个高度有效的企业流程设计、改善和优化技术,并提供了一系列同等地适用于设计、生产和服务的新产品开发工具。
继而与全球化、产品服务、电子商务等战略齐头并进,成为全世界上追求管理卓越性的企业最为重要的战略举措.6西格玛逐步发展成为以顾客为主体来确定企业战略目标和产品开发设计的标尺,追求持续进步的一种质量管理哲学。
6西格玛的主要原则(一在推动6西格玛时,企业要真正能够获得巨大成效,必须把6西格玛当成一种管理哲学。
这个哲学里,有六个重要主旨,每项主旨背后都有很多工具和方法来支持。
6西格玛的主要原则(二真诚关心顾客。
6西格玛把顾客放在第一位.例如在衡量部门或员工绩效时,必须站在顾客的角度思考。
先了解顾客的需求是什么,再针对这些需求来设定企业目标,衡量绩效.6西格玛的主要原则(三根据资料和事实管理。
近年来,虽然知识管理渐渐受到重视,但是大多数企业仍然根据意见和假设来作决策。
6西格玛的首要规则便是厘清,要评定绩效,究竟应该要做哪些衡量(measurement,然后再运用资料和分析,了解公司表现距离目标有多少差距。
6西格玛的主要原则(四以流程为重。
无论是设计产品,或提升顾客满意,6西格玛都把流程当作是通往成功的交通工具,是一种提供顾客价值与竞争优势的方法。
6西格玛管理项目辅导数据分析的第二阶段:分析原因一、六西格玛管理数据分析原因在绘制流程图的过程中,团队成员就会产生很多的疑问,会提出形形色色的问题。
在这个阶段中,先要根据流程图识别流程中明显存在的问题,再进行量化分析。
1、识别流程中明显存在的问题流程冗余:不同流程中的不同环节提出了相同的活动和结果。
流程中断:流程中前后环节信息的中断。
如顾客和供应商之间没有及时沟通,造成顾客对产品货源信息的中断。
流程瓶颈:流程中因为某个环节不能及时完成任务而延误整个流程。
流程循环:流程中某环节的输出产品有缺陷,必须送回其上游环节,或另设“返工”直到必需的工作完成为止。
检验这一步往往是返工循环的起始点。
2、量化分析①价值分析在现代商业社会中,任何一件产品都为顾客提供了价值,商品的生产过程就是创造价值的过程。
价值分析通过外部顾客的角度来识别流程中的每个环节是否是满足顾客需求。
企业在进行价值流程图分析时,首先要挑选出典型的产品作为深入调查分析的对象,从而绘制出信息流程和实物流程的现状图,然后再绘制理想的价值流程图,通过将现状图与理想状况图相比较,发现当前组织生产过程中存在的问题点,进而针对问题点提出改进措施。
②时间分析对于流程时间维度的分析可能会带给你意外的惊奇:流程中往往有许多时间是空闲着的,并不是人闲坐在那里,而是忙的事情并不能创造价值。
等待、多余的动作、无意义的工步、重复的搬运、批次生产和返工使得流程变得漫长。
在完成六西格玛分析过程的推测时,团队已经对何时、何地、问题如何暴露出来有了一定的了解,同时对潜在原因也有了初步分析。
天行健咨询指出本阶段的任务就是关注问题的定义,组织探查、分析工作,透过问题的表面现象进行深入研究,找出问题的真正潜在原因,了解事物的本质。
只有确保找到所要研究问题的真正潜在原因,以后才能真正找到解决办法。
二、六西格玛分析阶段最常用的分析工具是因果图和关系图它们为找到根源性原因提供了方向,但使用这些工具时有两点要注意:一是它们仅仅帮助团队进行系统的思考并发现问题可能的潜在原因,仍需收集数据才能证实究竟什么才是问题的真正原因。
24. 卡方检验卡方检验,是针对无序分类变量的一种非参数检验,其理论依据是:实际观察频数f 0与理论频数f e (又称期望频数)之差的平方再除以理论频数所得的统计量,近似服从2χ分布,即)(n f f f ee 2202~)(χχ∑-= 卡方检验的一般是用来检验无序分类变量的实际观察频数和理论频数分布之间是否存在显著差异,二者差异越小,2χ值越小。
卡方检验要求:(1)分类相互排斥,互不包容; (2)观察值相互独立;(3) 样本容量不宜太小,理论频数≥5,否则需要进行校正(合并单元格、增加样本数、去除样本法、使用校正公式校正卡方值)。
卡方校正公式为:∑--=ee f f f 202)5.0(χ卡方检验的原假设H 0: 2χ= 0; 备择假设H 1: 2χ≠0; 卡方检验的用途:(1)检验某连续变量的数据是否服从某种分布(拟合优度检验); (2)检验某分类变量各类的出现概率是否等于指定概率; (3)检验两个分类变量是否相互独立(关联性检验); (4)检验控制某几个分类因素之后,其余两个分类变量是否相互独立;(5)检验两种方法的结果是否一致,例如两种方法对同一批人进行诊断,其结果是否一致。
(一)检验单样本某水平概率是否等于某指定概率一、单样本案例例如,检验彩票中奖号码的分布是否服从均匀分布(概率=某常值);检验某产品市场份额是否比以前更大;检验某疾病的发病率是否比以前降低。
有数据文件:检验“性别”的男女比例是否相同(各占1/2)。
1. 【分析】——【非参数检验】——【单样本】,打开“单样本非参数检验”窗口,【目标】界面勾选“自动比较观察数据和假设数据”2.【字段】界面,勾选“使用定制字段分配”,将变量“性别”选入【检验字段】框;注意:变量“性别”的度量标准必须改为“名义”类型。
3. 【设置】界面,选择“自定义检验”,勾选“比较观察可能性和假设可能性(卡方检验)”;4. 点【选项】,打开“卡方检验选项”子窗口,本例要检验男女概率都=0.5,勾选“所有类别概率相等”;注:若有类别概率不等,需要勾选“自定义期望概率”,在其表中设置各类别水平及相应概率。