正数大于负数. 3.同号两数比较,要考虑这两个数的绝对值.
两个正数,绝对值大的数大;两个负数,绝对值大的数反而小. 4.多个有理数比较,适宜用数轴.
在数轴上表示的两个有理数,右边的数总比左边的数大; 注意:需要化简时,要先化简再比较.
谢谢
=
1 10
.
因为正数大于负数,所以
1 9
>
1 10
;
(4)这是两个负分数比较大小,因为
3 = 3 = 9 , 2 = 2 = 8 , 4 4 12 3 3 12
从而
3>2, 43
所以
3< 2. 43
随堂演练
1.比较下列各组数的大小:
(1)- 与- ;
(2)-π和-3.14.
解:(1) = = , = = . 因为 < ,所以- >- . (2)因为π>3.14,所以-π<-3.14.
第一章 有理数
新知导入 例题讲解 课堂小结
获取新知 随堂演练
新知导入 前面我们学过如何来比较两个有理数的大小? 在数轴上表示的两个有理数,右边的数总比左边的数大; 正数都大于0,负数都小于0,正数都大于负数. 那么,怎样直接比较两个负数的大小呢? 例如,-3与-5哪个大? -1.3与-3哪个大?
将各有理数在数轴上表示出来,再根据“在 数轴上,右边的数总比左边的数大”进行比较.
(2)(3)先化 简再比较大小
(3)-
1 9
与
1; 10
(4) 3 与 2 . 43
解:(1)这是两个负数比较大小,因为
1 =1,0.01 =0.01,
且1>0.01,所以-1<-0.01;
(2)化简 2 = 2. 因为负数小于0,所以2 <0;