当前位置:文档之家› 平抛运动讲义

平抛运动讲义

平抛运动讲义
平抛运动讲义

思方教育学科教师辅导讲义

平抛运动

一. 教学目标

1. 知道平抛运动的特点和规律,及形成的条件。

2. 理解平抛运动是匀变速运动,其加速度是 g ,会用平抛运动解答有关问题(像上抛,斜抛类平抛 等) 二. 教学内容

知识点1、平抛运动的分解(如图所示)

注意:平抛运动的飞行时间、水平位移和落地速度等方面的注意问题:

o (1)物体做平抛运动时 勺时间t

x

,其值由高度h 决定,与初速度无关。

分运动与合运动

加速度 速度\ =

位移

水平方向

(x 方向分运 动)

匀速直线

运动 a x =0

v / V x =V 0\

V

x= V 0t

竖直方向

(y 方向分运 动) 自由落体 运动

a y =g

V y =gt y=gt 2/2

合运动 匀变速曲

线运动

a 合=g

方向竖 直向下

与V 0方向夹角为 B ,

tan B =v y / v x = gt/ V 0 与x 方向夹角为

a , tan a =y/x= gt/ 2v 0

(2) 它的水平 位移大小为x= V 0 2h ,与水平 速度V 0及高度h 都有关系。 (3) 落地瞬时 速度的大小

=.v o 2

(gt)2

.v 0 2gh ,由

水平初速度v o

及高度h 决定。

(4) 落地时速度与水平方向夹角为B , tan B = gt/ v o ,h 越大空中运动时间就越

大,

(5) 落地速度与水平水平方向夹角B,位移方向与水平方向夹角a,B 与a 是不等的 混B 就越大。 注(6) 平抛物体的运动中,任意两个相等的时间间隔的速度变化量△ v=g A t ,都相等且厶v 方向怛

为竖直向下

如右图所示,平抛运动的偏角B 即为平 抛运动的速度与水平方向的夹角,所以有:tan B =型

V 。

tan B = y 常称为平抛运动的偏角公式,在一些些问答题中可直接应用该结论分析解答

x

在空 s a

9

V x

y

x

(8)以抛点为原点,取水平方向为x轴,正方向与初速度v o方向相同,竖直方向为y轴,正方向竖直向下,物体做平抛运动的轨迹上任意一点A(x,y)的速度方向的反向延长线交于x轴上的B 点。B 点的横坐标X B=X/2。

(9)平抛运动中,任意两个连续相等时间间隔内在竖直方向上分位移之差厶h=gT2都相等。(10)平抛物体的位置坐标:

以抛点为坐标原点,竖直向下为y轴正方向,沿初速度方向为X轴正方向,建立直角坐标系(如图所示),据平抛运动在水平方向上是匀速直线运动和在竖直方向上自由落体运动知:

水平分位移X= v o t,

竖直分位移y=gt2/2,

t时间内合位移的大小s X2y2

设合位移s与水平位移X的夹角为a,贝U tan a =y/x= (gt2/2)/ v o t =gt/ 2v o。

轨迹方程:平抛物体在任意时刻的位置坐标X和y所满足的方程,叫轨迹方程,由位移公式消去t 可得:y=gx2/2v o2。显然这是顶点在原点,开口向下的抛物线方程,所以平抛运动的轨迹是一条抛物线。

(11)研究平抛运动的方法:

研究平抛运动采用运动分解的方法,平抛运动可以看成是水平方向上的匀速直线运动和竖直方向上的自由落体运动的合运动,故解决有关平抛运动的问题时,首先要把平抛运动分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动。然后分别用两个分运动的规律去求分速度、分位移等,再合成得到平抛运动的速度、位移等。这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,使问题的解决得到简化。

[例1]如图所示,在倾角为a的斜面顶点A以初速度v o水平抛出一个小球,最后落在斜面上B点,不计空气阻力,求小球在空中的运动时间t及到达B点的速度大小。

A [变式训练1]如图所示,从倾角为B斜面

上落到斜面上的B点所用时间为()

A、2v o sin a /g

B、2v o tan a /g

C、v o sin a /g

D、v o ta n a /g

知识点2竖直上抛运动

1分段法将竖直上抛运动分成上升过程和下降过程,上升过程物体做匀减速直线运动,其速度公式为v = V o-gt 1,达最高点历时t/= v o/g,

最高点位移v°2/2g。下降过程物体做自由落体运动,其速度公式为v t2 = gt2,

2整体法:竖直上抛运动可看成一个统一的匀变速直线运动,据选取正方向的差异,又可分成二种

处理方法:

1).取竖直向上的方向作为正方向,竖直上抛运动就是以v o为初速度的匀减速直线运动,其

速度公式和位移公式可以统一为:v t = v o- gt,s = v o t-gt 72。高中物理甲种本讲授的就是这种方法.

2).取竖直向下的方向作为正方向,竖直上抛运动就是以v o为初速度的匀加速直线运动,其速度和位移公式可以统一为:v t = -v o+ gt,s = -v o t + gt2/2。这种分析方法平时接触较少,要作观念上的转变才能接受。

[例1]一个气球以4m/s的速度从地面匀速竖直上升,气球下悬挂着一个物体,气球上升到217m 的高度时,悬挂物体的绳子断了,贝以这时起,物体经过多少时间落到地面(不计空气阻力)知识点3斜抛运动

(1) 定义:将物体以速度V ,沿斜向上方或斜向下方抛出,物体只在重力作用下的运动,称为斜 抛运动。

(2) 斜抛运动的处理方法:如右图所示,若被以速度 v 沿与水平方向成B 角斜向上方抛出,则其 初速度可按图示方向分解为V x 和V y 。 V x =V 0COs B v y = V 0sin B

由于物体运动过程中只受重力作用,所以水平方向作匀速直线运动;而竖直 方向因受重力作用,有竖直向下的重力加速度 g ,同时有竖直向上的初速度 v y = V 0si n B,故作匀减速直线运动(竖直上抛运动,当初速度斜向下方时,竖 直方向的分运动为竖直下抛运动)。因此斜抛运动可以看作水平方向的匀速直 线运动和竖直方向的抛体运动的合运动。

在斜抛运动中,从物体被抛出的地点到落地点的水平距离 X 叫射程;物体到达的最大高度 丫叫做 射高。

射程 X= V x t= V 0COS BX 2v 0sin B /g= V 02sin2 B /g ; 射高 Y= V y 2/2g= V 02sin 2 B /2g 。 物体的水平坐标随时间变化的规律是 x= (V 0cos B ) t

物体在竖直方向的坐标随时间变化的规律是 y= ( v o sin B ) t-^—

2

小球的位置是用它的坐标x 、y 描述的,由以上两式消去t ,得y=xtan B -

因一次项和二次项的系数均为常数,此二次函数的图象是一条抛物线。 [例3]一炮弹以v °=1000m/s 的速度与水平方向成30°斜向上发射,不计空气阻力,其水平射程为多 少其射高为多大炮弹在空中飞行时间为多少(g=10m/s 2)

[变式训练3]在水平地面上方10m 高处,以20m/s 的初速度沿斜上方抛出一石块,求石块的最大射 程。(空气阻力不计,g 取10m/s 2)

[例4]如图所示,从高为h=5m ,倾角B =450的斜坡顶点水平抛出一小球,小球的初速度为 V 0,若 不计空气阻力,求:(1)当V 0=4m/s 时,小球的落点离A 点的位移大小 (2)当V 0=8m/s 时,小球的落点离A 点的位移大小(g 取10m/s 2)

竖直方向:V y =gt,y= gt 2/2

2

gx 2 。 2v 0 cos

[变式训练4]如图所示,在与水平方向成37°的斜坡上的A 求落在斜坡上的B 点与A 点的距离及在空中的飞行时间(

i 以10m/s 的速度水平抛出一个小球,

h :

[例5]如图所示,排球场总长为18m ,设球网高度为2m ,运动员站在离 示),正对网前跳起将球水平击出(不计空气阻力)。(1)设击球点在 5m 处,试问击球的速度在什么范围内才能使球既不触网也不越界( ■ 高度小于某个值,那么无论水平击球的速度多大,球不是触网就是越界,试求这个高度(g 取10

[变式训练5]光滑斜面倾角为B,长为L ,上端一小球沿斜面水平方向 —V 0抛出, 求小球滑到底端时,水平方向位移多大 高度为 2)若击球点在3m 线正上 2。/ 方的 m/s 2)

口图所示,

[综合拓展]

[例6]—铅球运动员以初速度牛V °将铅球掷力 与水平方向的夹角B 多大时投掷的最

只受力 知识点4 动的初速度方 特征

抛物体的运类运 有水平初速度

出作设铅球离手时离地面

的 、计空气阻力) 力运动,但在运动过程中物体所受

J 只、■^受 线

水平方向:V x =V 0, x= V 0t

恒定丿爭且与物体运 处理方法:与平抛运动的分析方法完全一致; 3m 的线卜( 2m

7

用运动的合成与分解,将其看成是某一方向的匀速直线运动和垂直于此方向的匀加速直线运动的合 成,分别研究各个方向的规律。 三.[基础达标]

1、物体做平抛运动时,描述物体在竖直方向的分速度 V y (取向下为正方向)随时间变化的图象是 下图中的: ' A

2、做平抛运动的物

体,每 A 、大小相等,方向相

C 、大小相等,方向:

0: 3、关于平抛运动",X 下列说法正确的是: O ------------ *■ A 、平抛运动是匀变速运动。

B 、平抛运动是变加速运动。

C 、平抛运动的加速度方向竖直向下。

D 、平抛运动的水平位移随时间均匀增大

4、决定一个平抛物体的运动时间的因素是: A 、抛出时的初速度 B 、抛出时的竖直高度。

C 、抛出时的初速度和竖直高度。

D 、以上说法都不对。

5、继“神舟五号”飞船发射成功后,我国下一步的航天目标为登上月球,已知月球上的重力加速 度为地球上台阶六分之一,若分别在地球和月球表面,以相同初速度、离地面相同高度。 平抛相同 质量的小球(不计空气阻力),则那些判断是正确的: A 、 平抛运动时间t 月>t 地 B 、 水平射程x 月>x 地 C 、 落地瞬间的瞬时速度v 月'▼地 D 、 落地速度与水平面的夹角B 月> B 地

6 —物体做平抛运动,从抛出点算起,1s 末其水平分速度与竖直分速度大小相等,经 3s 落地, 若g=10m/s ?,则物体在: A 、 第一、二、三秒内的位移之比是 1: 4: 9 B 、 第一、二、三秒内速度的变化量是相等的。 C 、 后一秒内的位移比前一秒内的位移多 10m 。 D 、 落地时的水平位移是30m 。

7、一物体以初速度V 。水平抛出,经t 秒其竖直方向速度大小与水平方向速度大小相等,则 t 为: A 、v o /g B 、2v o /g C 、v o /2g D 、3v o /g 8、如图平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,在同一坐标系 中做出两个分运动的v ――t 图象,如图所示,则以下说法正确的是: A 、 图线1表示水平分运动的v ------- 1图象。 B 、 图线2表示竖直分运动的v ――t 图象。 C 、 t 1时刻物体的速度方向与初速度方向夹角为 45°。

D 、 若图线2倾角为B ,当地重力加速度为g ,则一定有tan B =g

9、以初速度v o ,抛射角B 向斜上方抛出一个物体,由抛出到经过最高点的时间是 这段时间内速度的变化量是 _________ ,速度的变化率是 经过最高点时的速度是 ____________________ 。 I 。 、作斜抛运动的物体,在 2秒末经过最高点时的瞬时速度是 15m/s ,g=1om/s 2,则初速度 v o =. ,抛射角B =_ 。 II 、 摩托车障碍赛中,运动员在水平路面上遇到一个壕沟, 壕沟的尺寸如图所示,摩托车前后轮间 距1m ,要安全地越过这壕沟,摩托车的速度 v o 至少要有多大(空气阻力不计,g=1om/s 2)

12、在研究平抛运动的实验中,某同学只在竖直板面上记下了重垂线 y 的方向但忘记下平抛的初位 置,在坐标纸上描出了一段曲线的轨迹,如图所示,丙在曲线上取]A 、B 两点量出它们旌8 y 轴的距

离,

BVy

C

2秒的速度增量总是: B 、大小不等,方向不同 D 、大小不等,方向相同 不同。 t

AA/=X1,BB/=X2,以及AB的竖直距离h,用这些可以求得小球平抛时的初速度为多少

[答案]t= 2v 0tan a /g ,v= v 0 - 1 4tan 2

[总结]1、平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动来处理

2、确定AB 是实际位移,不能将a 角当作落地时速度与水平方向的夹角。 [变式训练1][答案]B [例2]解得:t=7s

答:物体经过7s 落到地面

[例 3][思路分析]水平射程 X= (v o cos B) t=v 0cos 0x 2v °sin 0 /g= v 02sin2 0 /g=8。67x 104m ; 射高 H= v 02sin 2 0 /2g=1。25 x 104m 炮弹飞行时间t=2v °sin 0 /g=100s

[答案]水平射程为8。67x 104m ;射高为1。25x 104m ;飞行时间为100s

[总结]斜抛运动的处理方法是在水平方向上做匀速直线运动,竖直方向上做匀变速直线运动。 [变式训练3][答案]x m 20.6m [例4][思路分析]小球水平抛出后的落点在斜面上,还是在水平面上,这由初速度的大小来决定。

设临界的水平初速度为v ,小球恰好落在斜面的底端,则水平方向的位移为 x=h=5m ,落地时间为

I B QU

t — =1s,求得 v=h/t=5m/s g

(1) 若v 0

y 2

~4。5m

(2) 若v 0>v ,小球一定落在水平面上,贝U t=1s ,y=h ,x= v 0t , 位移 s

(v 0t)2

h 2

?9。4m

[答案](1) 4。5m (2) 9。4m

[方法总结]本题的关键是先找出临界的初速度来,然后分别研究两种不同的情况下的平抛运动问 题,解平抛运动的问题的一般方法是将运动分解成水平方向上的匀速运动与竖直方向上的自由落体 运动来解,这里注意落在斜面上时,x 、y 满足一定的制约关系,y=xtan 0 [变式训练4][答案]18。75m ; 1。5s

[例5][思路分析](1)作出如图所示的平面图,若刚好不触网,设球的速度为v 1,则水平位移为3m 的过程中,水平方向有:L= v 0t ,即3= v 1t ① 竖直方向有:y= gt 2/2,即时。5-2= gt 2/2

13、如图所示,从距地面高为H 的地方A 处平抛一物体,其水平射程为/ 2 高为2H 的地方B 处,以同方向抛出另一个物体,其水平射程为 s ; 二物体 同一竖直平面内,且都从同一屏的顶端擦过,求屏的高度。

点正上方距地面 s ; 工在空中运行时的轨道

在 14、从距地面20m 高处以15m/s 的初速度将一石子水平抛出,,该石子落地时 水平方向的夹角多大落地时的位移大小是多少与水平方向的夹角多 答案[例1][思路分析]:小球做的是平抛运动, 水平方向:Leos a = v o t ① 竖直方向:Lsin a = gt 2/2② 由①②得t= 2v o tan a /g

竖直速度V y =gt=2v o tan 故速度v ..

2 2

V x V

y

a

=V o 1 4ta n 2

/ g=10m/s 2) 速度的大小是多少与 2H

!B B

,则由平抛运动规律,B

AB 长度为实际位移,设为

由①②两式得:v i =3\ 10m/s

同理可得刚好不越界的速度:V 2=12 ?. 2 m/s 故范围为:310 m/s

⑵设发球高度为H 时,发出的球刚好越过球网落在边界线上,则刚好不触网时有:L= v o t ,

即3= v o t ③

H-2= gt 2/2 ④ 同理当球落在界线上时有:12= v o t /

⑤ H= gt /2/2

解③④⑤⑥得H=20 13m 即当击球的高度小于2。13m 时,无论球的水平速度多大,则球不是触网 就是越界。

[答案](1) 3.10m/s

(2) H=2。13m

[方法总结]解决本题的关键有三点:其一是确定运动性质一一平抛运动;二是确定临界状态一一恰 好不触网或恰好不出界;三是确定临界轨迹,并画出轨迹示意图。 [变式训练5][答案]水平方向位移x 2L

V gsin

[例6][思路分析]物理模型为运动的合成与分解,即:斜向上抛运动,对此问题多数师生都认为是 45°,下面我们加以分析,

可将v o 分解为水平方向:v x =v °cos B ① 竖直方向:V y = V 0si n B ②

竖直方向匀变速运动可得:H=-V y t+gt 2/2 ③

因水平方向为匀速运动,所以水平方向的距离: s= v x t ④

若 V 0=15m/s 时,H=1。5m ,g=10m/s 2,贝打=43。210, s=23。95m [答案]当铅球与水平方向成B 角度(tan

2 0

)时,投掷距离最远,

y'V 0 2gH

[方法总结]在斜上抛运动中,物体的着地点与抛出点在同一计划调节时,当抛射角B =450时,射程 最远,而本题中着地点低于抛射点,B =450时,射程不一定最大,因此莫因思维定势而导致错解。 [基础达标答案]

1、D

2、A

3、ACD

4、B

5、AB

6、BD

7、A

8、ABC

14、( 1) v=25m/s (2) v 与水平方向夹角为530 (3)位移x=36m ,位移与水平方向夹角为a

tan a =2/3

由①②③④式可得:当tan

{ 2

—时,s 有最大值:

,v 。2

2gH

9、V 0Si n B /g ; V 0Si n B; g ; v o cos B 10、25m/s ; 530 11、20m/s 12、

「 2 2

g(X 2 x 1

)13、h=6H/7

2h

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

RLC联谐振频率及其计算公式

RLC串联谐振频率及其计算公式串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是X L =X C时,为R-L-C串联电路产生谐振之条件。

图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即 Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路之频率: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。

7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之 间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 πfL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L?X C) 当 f = f r时, Z = R 为最小值,电路为电阻性。

【高中物理】曲线运动教案讲义.doc

曲线运动 一、基础知识 1.曲线运动 (1)定义:轨迹是一条曲线的运动叫做曲线运动。曲线运动一般可以看作几个直线运动的合成。 (2)条件:质点所受合外力的方向跟它的速度方向不在同一直线上 。也可以理解为加速度方向与速度方向不在同一直线上。 (3)特点:轨迹是一条曲线;某点瞬时速度方向就是通过这一点的切线 的方向;运动方向时刻在改变,所以是变速运动,必具有加速度;合外力始终指向运动轨迹的内侧。 2.运动的合成与分解 (1)合运动与分运动的关系:各分运动经历的时间与合运动经历的时间相同;一个物体同时参与几个分运动,各分运动同时进行,不受其他分运动的影响;各分运动叠加起来与合运动有相同的效果。(2)运算法则:运动的合成与分解是指描述运动的各物理量如位移、速度、加速度的合成与分解。由于它们都是矢量,所以合成与分解都遵循平行四边形法则。 (3)已知分运动求合运动,叫做运动的合成;已知合运动求分运动,叫做运动的分解。分运动与合运动是一种等效代替的关系。 3.平抛运动 (1)定义:水平抛出的物体只在重力作用下的运动。 (2)性质:加速度为重力加速度g 的匀变速曲线运动,轨迹是抛物线。 (3)研究方法:平抛运动可以分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动。 (4)运动时间和射程:时间 t=2hg仅取决于竖直下落的高度;射程x=v 02hg取决于初速度和高度。 (5)规律;水平分速度 v x=v0 ;竖直分速度 v y=gt ;合速度大小 v=v2+g2t2;速度与水平方向夹角θ,则tanθ= v y v x;水平分位移x′=v0t ;竖直 分位移 y′=12gt2 ;合位移 x合=x′2+y′2。 4.斜抛运动

平抛运动与斜抛运动典例分析讲义(含有答案解析)

第二讲平抛运动及斜抛运动专题训练 知识重点: 1、知道什么是平抛运动与斜抛运动 2、理解平抛运动与斜抛运动是两个直线运动的合成 3、掌握平抛运动与斜抛运动的规律,并能用来解决简单的问题 知识难点: 1、理解平抛运动与斜抛运动是匀变速运动 2、理解平抛运动与斜抛运动在水平方向和竖直方向的运动互相独立 3、会用平抛运动与斜抛运动的规律解答有关问题 (一)平抛运动 沿水平方向抛出的物体只在重力(不考虑空气阻力)作用下的运动叫做平抛运动 1、平抛运动的分解: (1)水平方向是匀速直线运动,水平位移随时间变化的规律是: x=vt ① (2)竖直方向是自由落体运动,竖直方向的位移随时间变化的规律是: y=gt2 ② 由上面①②两式就确定了平抛物体在任意时刻的位置。 2、平抛物体的运动轨迹: 由方程x=vt得t=,代入方程y=gt2,得到:y=x2 这就是平抛物体的轨迹方程。可见,平抛物体的运动轨迹是一条抛物线。 3、平抛运动的速度: 如果用v x和v y分别表示物体在时刻t的水平分速度和竖直分速度,在这两个方向上分别应用运动学的规律,可知 v x=v v y=gt 根据v x和v y的值,按照勾股定理可以求得物体在这个时刻的速度(即合速度)大小和方向: v合= v合与水平方向夹角为θ, tanθ= 如图所示: 4、平抛物体的位移

s= 位移与水平方向的夹角α, tanα== 如图所示 5、运动时间: 平抛运动在空中运动的时间t=由高度h决定,与初速度无关。 6、平抛运动水平位移: 水平位移大小为x=v0t=v0,与水平初速度及高度h都有关系。 【典型例题】 例1、在一次“飞车过黄河”的表演中,汽车在空中飞经最高点后在对岸着地.已知汽车从最高点至着地点经历的时间约0.8 s,两点间的水平距离约为30 m,忽略空气阻力,则汽车在最高点时速度约为m/s.最高点与着地点的高度差为m.(取g=10 m/s2) 例2、飞机在离地面720m的高度,以70m/s的速度水平飞行,为了使从飞机上投下的炸弹落在指定的轰炸目标上,应该在离轰炸目标水平距离多远的地方投弹?(不计空气阻力g取10m/s2)可以参考媒体展示飞机轰炸目标的整个过程以及分析,帮助理解. 例3、如图所示,以9.8m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为θ=30°的斜面上,则物体完成这段飞行的时间为多少?

高考物理1.1研究简谐运动专题1

高考物理1.1研究简谐运动专题1 2020.03 1,一绳长为L的单摆,在平衡位置正上方(L-L′)的P处有一个钉子,如图所示,这个摆的周期是() A. 2L T g = B. ' 2L T g = C. ' 2L L T g g = D. ' L L T g g = 2,把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周给筛子一个驱动力,这就做成了一个共振筛,筛子在做自由振动时,完成10次全振动用时15s,在某电压下电动偏心轮转速是36r/min。(转/分),已知如果增大电压可以使偏心轮转速提高,增大筛子的质量,可以增大筛子的固有周期。那么,要使筛子的振幅增大,下列哪些做法是正确的() ①提高输入电压②降低输入电压 ③增加筛子质量④减小筛子质量 A.①③ B.①④ C.②③ D.②④ 3,做简谐运动的物体,当物体的位移为负值时,下面说法正确的是() A.速度一定为正值,加速度一定为负值B.速度一定为负值,加速

度一定为正值 C.速度不一定为正值,加速度一定为正值D.速度不一定为负值,加速度一定为正值 4,弹簧振子作简谐运动,t1时刻速度为v,t2时刻也为v,且方向相同。已知(t2-t1)小于周期T,则(t2-t1) A.可能大于四分之一周期 B.可能小于四分之一周期 C.一定小于二分之一周期 D.可能等于二分之一周期 5,如图所示,两木块A和B叠放在光滑水平面上,质量分别为m和M,A与B 之间的最大静摩擦力为f,B与劲度系数为k的轻质弹簧连接构成弹簧振子。为使A和B在振动过程中不发生相对滑动,则它们的振幅不能大于,它们的最大加速度不能大于 。 6,如图所示,固定曲面AC是一段半径为4.0米的光滑圆弧形成的,圆弧与水平方向相切于A点,AB=10cm,现将一小物体先后从斜面顶端C和斜面圆弧部分中点D处由静止释放,到达斜曲面低端时速度分别为v1和v2,所需时间为t1和t2,以下说法正确的是: A.v1 > v2 , t1 = t2 B.v1 > v2 , t1 > t2 C.v1 < v2 , t1 = t2 D.v1 < v2 , t1 > t2

机械振动第1节简谐运动讲义-人教版高中物理选修3-4讲义练习

第1节简谐运动 1.平衡位置是振子原来静止的位置,振子在其附近 所做的往复运动,是一种机械振动,简称振动。 2.如果质点的位移与时间的关系遵从正弦函数的规 律,即它的振动图像(x-t图像)是一条正弦曲线, 这样的振动叫做简谐运动,它是一种最简单、最基 本的振动,是一种周期性运动。 3.简谐运动的位移一时间图像表示质点离开平衡位 置的位移随时间变化的关系,而非质点的运动轨 迹。由该图像可以确定质点在任意时刻偏离平衡位 置的位移和运动情况。 一、弹簧振子 1.弹簧振子 如图所示,如果球与杆或斜面之间的摩擦可以忽略,且弹簧的质量与小球相比也可以忽略,则该装置为弹簧振子。 2.平衡位置 振子原来静止时的位置。 3.机械振动 振子在平衡位置附近所做的往复运动,简称振动。 二、弹簧振子的位移—时间图像 1.振动位移 从平衡位置指向振子某时刻所在位置的有向线段。 2.建立坐标系的方法 以小球的平衡位置为坐标原点,沿振动方向建立坐标轴。一般规定小球在平衡位置右边(或上边)时,位移为正,在平衡位置左边(或下边)时,位移为负。 3.图像绘制 用频闪照相的方法来显示振子在不同时刻的位置。

三、简谐运动及其图像 1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 2.特点:简谐运动是最简单、最基本的振动,其振动过程关于平衡位置对称,是一种往复运动。弹簧振子的运动就是简谐运动。 3.简谐运动的图像 (1)形状:正弦曲线,凡是能写成x=A sin(ωt+φ)的曲线均为正弦曲线。 (2)物理意义:表示振动的质点在不同时刻偏离平衡位置的位移,是位移随时间的变化规律。 1.自主思考——判一判 (1)平衡位置即速度为零时的位置。(×) (2)平衡位置为振子能保持静止的位置。(√) (3)振子的位移-5 cm小于1 cm。(×) (4)简谐运动的轨迹是一条正弦(或余弦)曲线。(×) (5)简谐运动是一种匀变速直线运动。(×) 2.合作探究——议一议 (1)简谐运动与我们熟悉的匀速运动比较,速度有何不同的特点?如何判断一个物体的运动是不是简谐运动? 提示:简谐运动与匀速运动的区别在于其速度大小、方向都不断变化,只要质点的位移随时间按正弦规律变化,则这个质点的运动就是简谐运动。 (2)如图所示为振子的位移—时间图像,振子的位移—时间图像就是振子的运动轨迹吗? 提示:图像描述的是振动物体的位移随时间的变化规律,并不是物体的运动轨迹。

平抛运动课时作业同步讲义高考物理一轮复习

课时作业11平抛运动 时间:45分钟 一、单项选择题 1.(2016·南京模拟) 如图所示,某同学斜向上抛出一小石块,忽略空气阻力.下列关于小石块在空中运动的过程中,加速度a随时间t变化的图象中,正确的是() 解析:由题意,忽略空气阻力,石块抛出后只受重力,由牛顿第二定律得知,其加速度为g,大小和方向均保持不变,故B正确.答案:B 2. 如图所示,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度v a和v b沿水平方向抛出,经时间t a和t b后落到与两抛出点水平距离相等的P点,若不计空气阻力,则() A.t a>t b,v at b,v a>v b

C .t a v b 解析:由平抛运动规律可知:h =12gt 2 ,x =v 0t ,根据题中条件, 因为h a >h b ,所以t a >t b ,又因为x a =x b ,故v a

经典课件:2020年高考物理总复习第52讲简谐运动讲义精品

【关键字】方法、条件、问题、系统、平衡、保持、合力、规律、位置、基础、方式、作用、水平、速度、关系、满足、整合、方向、中心 第52讲简谐运动 考情剖析 考查内容考纲要求考查年份考查详情能力要求 简谐运动 简谐运动的 表达式和图象Ⅰ 知识整合 一、机械振动 1.机械振动(振动) (1)定义:物体(或物体的一部分)在某一中心位置两侧所做的________运动. (2)条件:①物体离开平衡位置就受到回复力作用;②阻力足够小. (3)实例:弹簧振子、单摆. 二、简谐运动 1.运动特征:如果质点的位移与时间的关系遵从________规律,即它的振动图象(x -t 图象)是一条________曲线,这样的振动叫简谐运动.简谐运动是最简单、最基本的振动.2.受力特征:如果质点所受的力与它偏离平衡位置位移的大小成________,并且总是指向平衡位置,质点的运动就是简谐运动. 3.简谐运动的两种判定方式:从运动上,运动的位移与时间按正弦规律;从受力上,回复力与位移大小成正比. 4.弹簧振子的运动就是简谐运动.其振动位移与时间的关系如图所示. 三、回复力 1.定义:力的方向总是指向________,它的作用效果总是要把物体拉回到________,

我们通常把这个力称为回复力. 2.回复力的提供:回复力是效果力,大小等于________方向上的合外力,它可以是________单独提供,也可以是一个力的________,还可以是几个力的________提供. 注意:回复力不一定等于合外力. 四、简谐运动的描述 1.位移(x):由________指向振动质点所在位置的有向线段. 2.振幅(A):振动物体离开平衡位置的________距离,是标量. 3.周期(T):振动物体完成________所需的时间. 4.频率(f):单位时间内完成全振动的________. 简谐运动的频率或周期由____________所决定,与振幅____________. 五、简谐运动图象 1.物理意义:描述振动物体在________时刻离开平衡位置的________,简谐运动的振动图象都是________或________曲线,它不是质点运动的________.如图,弹簧振子的振动图象. 2.从图象上可以得到信息 (1)可以直接读取振子在某一时刻相对于平衡位置的________大小. (2)从振动图象上可以直接读出________、________. (3)可以判断某一时刻振动物体的________方向和________方向,以及它们的________变化趋势. 六、简谐运动的表达式 表达式:____________. 式中x 表示振动质点相对于平衡位置的位移,t 表示振动的时间,A 表示振幅,ω表示简谐运动的圆频率,它也可以表示做简谐运动的物体振动的________,与周期T 及频率f 的关系是:ω=2πT =2πf.故上面的公式还可写为x =A sin ? ?? ??2πT t +φ或x =A sin (2πft +φ),φ表示t =0时,做简谐运动的质点所处的状态称为________或________.ωt +φ代表了做简谐运动的质点在t 时刻处在一个运动周期中的哪个状态,代表简谐运动的相位. 七、简谐运动中位移、回复力、速度、加速度的变化规律 1.振动中物体的位移x 都是以________为起点,方向从________指向________位置,大小为这两位置间直线的距离,在平衡位置位移为________.

高中物理必修二曲线运动平抛运动的规律教案讲义

二、抛体的位置 我们以平抛运动为例来研究抛体运动所共同具有的性质. 首先我们来研究初速度为V。的平抛运动的位置随时间变化的规律.用手把小球水平抛出,小球从离开手的瞬间(此时速度为v,方向水平)开始,做平抛运动.(我们以小球离开手的位置为坐标原点,以水平抛出的方向为x轴的方向,竖直向下的方向为y轴的方向,建立坐标系,并从这一瞬间开始计时.) 引导1:在抛出后的运动过程中,小球受力情况如何? 引导2:那么,小球在水平方向有加速度吗?它将怎样运动? 引导3:我们用函数表示小球的水平坐标随时间变化的规律将如何表示? 引导4:在竖直方向小球有加速度吗?若有,是多大?它做什么运动?它在竖直方向有初速度吗? 引导5:那根据运动学规律,请大家说出小球在竖直方向的坐标随时间变化的规律. 引导6:小球的位置能否用它的坐标(x,y)描述?能否确定小球在任意时刻t的位置? 三、抛体的轨迹 例题1、讨论物体以速度V水平抛出后的轨迹。(认真阅读教材p8,独立 完成下列问题)

四、抛体的速度 引导1:利用运动合成的知识,结合图6.4—2,求物体落地速度是多大? 落地速度与什么因素有关? 例2、一个物体以l0 m/s的速度从10 m的水平高度抛出,落地时速度与地面的夹角θ是多少(不计空气阻力)? 练习、在5 m高的地方以6 m/s的初速度水平抛出一个质量是10 kg的物体,则物体落地的速度是多大? (忽略空气阻力,取g=10m/s2) 任务二合作探究 (认真阅读教材p2-p3,独立完成下列问题) 引导1:由于运动的等时性,那么大家能否根据前面的结论得到物体做平抛运动的时间? 平抛运动的物体在空中运动的时间仅取决于下落的什么? 引导2:那么落地的水平距离是多大? 平抛运动的水平位移不仅与初速 度有关系,还与物体的下落高度有关. 任务三达标提升 1.平抛物体的运动可以看成( ) A.水平方向的匀速运动和竖直方向的匀速运动的合成 B.水平方向的匀加速运动和竖直方向的匀速运动的合成 C.水平方向的匀加速运动和竖直方向的匀加速运动的合成 D.水平方向的匀速运动和竖直方向的自由落体运动的合成 2.物体做平抛运动时,描述物体在竖直方向的分速度v y(取向下为正)随时间变化的图线是( ) 3.一小球在高0.8m的水平桌面上滚动,离开桌面后着地,着地点与桌边水平距离为1 m,求该球离开桌面时的速度. 4、在5m高处以8m/s的初速度水平抛出—个质量为12 kg的物体,空气阻力不计,g取10m/s2:,试求: (1)物体落地的速度的大小; (2)物体从抛出到落地发生的水平位移.

简谐运动位移公式推导

简谐运动位移公式推导 问题:质量为m的系于一端固定的轻弹簧(弹簧质量可不计)的自由端。如图(a)所示, 将物体略向右移,在弹簧力作用下,若接触面光滑,m物体将作往复运动,试求位移x与时间t的函数关系式。 图(a) 分析:m物体在弹力F的作用下运动,显然位移X与弹力F有关,进而由弹簧联想起胡克定律,但结果只有位移与时间,故要把弹力F替换成关于X与t的量,再求解该微分方程。 推导:取物体平衡位置O为坐标原点,物体运动轨迹为X轴,向右为正。设弹力为F, 由胡克定律F=?kX,K为劲度系数,负号表示力与位移方向相反。 根据牛顿第二定律,m物体加速度a=dv dt =d2X dt2 =F m =-k m x(1) 可令k m =ω2 代入(a),得 d2X dt2=?ω2X或d2X dt2 +ω2X=0 显然,想求出位移X与时间t的函数关系式,须解出此微分方程

求解:对于d2X dt 2+ω2X=0,即X ’’+ ω2X=0 (4) (4)式属可将阶的二阶微分方程, 若设X ’=u ,消去t,就要把把X ”转化为关于X 与t 的函数,那么 X ’’= dX "dt = du dx dx dt =u du dx , u du dx +ω2X=0, u du dx =?ω2X 下面分离变量再求解微分方程,然后两边积分,得 udu =?ω2 Xdx 得 12u 2=? 12ω2 x 2+C ,即u 2=? ω2 x 2+C1 (5) u=x ’,x ’= 2 x 2 =dx dt 再次分离变量, C1? ω2 x 2=dt (7) 两边积分,右边=t ,但左边较为复杂, 经过仔细思考,笔者给出一种求解方法: 运用三角代换,令X= C1ωcos z (7)式左边化为 d cos z ωsin z =?sin zdz ωsin z =-dz ω, 两边积分,得 -–z ω=t+C2 由此可得, X= C1ωcos(ωt+ωC2),

高一物理斜抛运动

斜抛运动 学习目标: 1.知道斜抛运动及其运动轨迹。 2.理解平抛物体运动的性质,理解平抛运动的特点:水平方向速度不变,竖直方向仅受重力,加速度为g 3.掌握斜抛物体运动的规律。 4.会用运动的合成和分解求解斜抛运动问题。 学习重点: 斜抛物体运动的规律。 学习难点: 斜抛物体运动的性质。 知识要点: 1、斜向上或斜向下抛出的物体只在重力(不考虑空气阻力)作用下的运动叫做斜 抛运动。 2、斜抛运动的特点:水平方向速度不变,竖直方向仅受重力,加速度为g。 3、斜抛运动的分解:斜抛运动可以看成是水平方向的匀速直线运动和竖直方向的竖直上抛或竖直下抛运动的合运动。 4、斜抛运动的方程 如图所示,斜上抛物体初速度为v,与水平方向夹角为θ,则 速度: 位移: 由得t=, 代入y可得:y=xtanθ-x2 这就是斜抛物体的轨迹方程。 可以看出: y=0时,1)x=0是抛出点位置; 2)x==是水平最大射程. 思考:以什么角度抛出去有最大水平射程??

飞行时间: 斜抛问题常见的处理方法: 第一、将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动,这样有由此可以得到哪些特点? 由此可得如下特点:a.斜向上运动的时间与斜向下运动的时间相等;b.从轨道最高点将斜抛运动分为前后两段具有对称性,如同一高度上的两点,速度大小相等,速度方向与水平线的夹角相同。 第二、将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解。 第三、将沿斜面和垂直斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题。 ◎例题评析 、例1、在掷铅球时,铅球出手时距地面的高度为h,若出手时的速度为v0,求以何角度掷球时,水平射程最远?最远射程为多少? 练习: 1.关于斜抛运动的下列说法中正确的是 A.斜抛运动物体受重力和向前的冲力 B.斜抛运动物体的速度大小不变方向改变 C.斜抛运动是匀变速曲子运动 D.斜抛运动的加速度与速度方向总是成钝角 2.物体做斜抛运动时 A.加速度大小不变,速度大小一直增加 B.加速度大小不变,速度大小一直减小 c.加速度大小不变,速度大小先减小后增加 D.加速度大小改变,速度大小变化无法确定 3.在斜抛运动中,飞行时间T A.只由竖直分运动决定 B.只由水平分运动决定 C.由竖直和水平分运动共同决定 D.与竖直和水平分运动都无关 4.斜抛运动的射程 A.只由抛出的初速度V0决定 B.只由抛出时的抛射角θ决定 c.由抛出时的初速度V0和抛射角θ共同决定 D.与抛出时的初速度V。和抛射角都无关 5.喷水管喷水的速度大小不变,喷水管与水平方向的夹角可以改变,则 A.射程随着抛射角的增加而增大 B.射程随着抛射角的增加而减小

(江苏专版)201X年高考物理总复习 第52讲 简谐运动讲义

第52讲简谐运动 考查内容考纲要求考查年份考查详情能力要求 简谐运动 简谐运动的 表达式和图象Ⅰ 知识整合 一、机械振动 1.机械振动(振动) (1)定义:物体(或物体的一部分)在某一中心位置两侧所做的________运动. (2)条件:①物体离开平衡位置就受到回复力作用;②阻力足够小. (3)实例:弹簧振子、单摆. 二、简谐运动 1.运动特征:如果质点的位移与时间的关系遵从________规律,即它的振动图象(x -t 图象)是一条________曲线,这样的振动叫简谐运动.简谐运动是最简单、最基本的振动.2.受力特征:如果质点所受的力与它偏离平衡位置位移的大小成________,并且总是指向平衡位置,质点的运动就是简谐运动. 3.简谐运动的两种判定方式:从运动上,运动的位移与时间按正弦规律;从受力上,回复力与位移大小成正比. 4.弹簧振子的运动就是简谐运动.其振动位移与时间的关系如图所示. 三、回复力 1.定义:力的方向总是指向________,它的作用效果总是要把物体拉回到________,我们通常把这个力称为回复力.

2.回复力的提供:回复力是效果力,大小等于________方向上的合外力,它可以是________单独提供,也可以是一个力的________,还可以是几个力的________提供. 注意:回复力不一定等于合外力. 四、简谐运动的描述 1.位移(x):由________指向振动质点所在位置的有向线段. 2.振幅(A):振动物体离开平衡位置的________距离,是标量. 3.周期(T):振动物体完成________所需的时间. 4.频率(f):单位时间内完成全振动的________. 简谐运动的频率或周期由____________所决定,与振幅____________. 五、简谐运动图象 1.物理意义:描述振动物体在________时刻离开平衡位置的________,简谐运动的振动图象都是________或________曲线,它不是质点运动的________.如图,弹簧振子的振动图象. 2.从图象上可以得到信息 (1)可以直接读取振子在某一时刻相对于平衡位置的________大小. (2)从振动图象上可以直接读出________、________. (3)可以判断某一时刻振动物体的________方向和________方向,以及它们的________变化趋势. 六、简谐运动的表达式 表达式:____________. 式中x 表示振动质点相对于平衡位置的位移,t 表示振动的时间,A 表示振幅,ω表示简谐运动的圆频率,它也可以表示做简谐运动的物体振动的________,与周期T 及频率f 的关系是:ω=2πT =2πf.故上面的公式还可写为x =A sin ? ?? ??2πT t +φ或x =A sin (2πft +φ),φ表示t =0时,做简谐运动的质点所处的状态称为________或________.ωt +φ代表了做简谐运动的质点在t 时刻处在一个运动周期中的哪个状态,代表简谐运动的相位. 七、简谐运动中位移、回复力、速度、加速度的变化规律 1.振动中物体的位移x 都是以________为起点,方向从________指向________位置,大小为这两位置间直线的距离,在平衡位置位移为________.

高三物理简谐运动的公式描述.docx

简谐运动的公式描述教案 教学目标 1.知识与技能 (1)会用描点法画出简谐运动的运动图象. (2)知道振动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线. (3)了解替代法学习简谐运动的位移公式的意义. (4) 知道简谐运动的位移公式为x=A sin (ωt+),了解简谐运动位移公式中各量的物 理含义. (5) 了解位相、位相差的物理意义. (6) 能根据图象知道振动的振幅、周期和频率、位相. 2.过程与方法 (1) 通过“讨论与交流”匀速圆周运动在Ⅳ方向的投影与教材表1— 3— 1 中数据的 比较,并描出z— t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图象一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易 以及应用已学的知识解决问题. (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点. 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简, 科学地寻找解决问题的方法. (2)培养学生合作学习、探究自主学习的学习习惯. ●教学重点 ,难点 1.简谐运动位移公式x=Asin(ω t +)的推导 2.相位 , 相位差的物理意义 .. ●教学过程 教师讲授 简谐振动的旋转矢量法 。y 在平面上作一坐标轴 OX,由原点 O 作一长度等于振幅的矢量 A t=0 ,矢量与坐标轴的夹角等于初相 矢量 A 以角速度w 逆时针作匀速圆周运动, 研究端点M 在 x 轴上投影点的运动, 1.M 点在 x 轴上投影点的运动 x=Asin(ω t+)为简谐振动。 x 代表质点对于平衡位置的位移,t 代表时间,简谐运动的三角函数表示 回答下列问题 a:公式中的 A 代表什么 ? b:ω叫做什么 ?它和 f 之间有什么关系? c:公式中的相位用什么来表示? d:什么叫简谐振动的初相? M A t M 0 o x P x

(完整版)高考总复习—简谐运动习题.doc

教学课题: 简谐运动习题 时间 教学目标: 1、掌握简谐运动两种模型。 2、理解单摆简谐运动振动的过程分析 。 教学重点: 1. 理解并掌握振动中回复力、位移、振幅、周期、频率的变化规律 2. 理解单摆的周期公式及单摆在复合场中周期的计算 教学难点: 教学器材: 教学过程: 教学随笔 一、简谐运动的判定 例 1、如图,一弹性球被水平抛出,在两个互相竖直的平面之间运动,小球 落到地面之前的运动( D ) A 是机械振动 , 但不是简谐运动 . B 是简谐振动 , 但不是机械运动 . C 是机械振动 , 同时又是简谐运动 . D 不是机械振动 , 也不是简谐运动 . 二、求回复力 例 2 如图所示, 质量为 m 的物体 A 放置在质量为 M 的物体 B 上, B 与弹簧相连, 它们一起在光滑水平面上作简谐运动,振动过程中 A 、 B 之间无相对运动 . 设弹 簧的劲度系数为 k ,当物体离开平衡位置的位移为 x 时, A 、 B 间的摩擦力的大 小等于 ( D ) A 、 0 B 、 kx C 、 m kx M m D 、 kx m M 三、分析振动过程 例 3、如果表中给出的是作简谐运动的物体的 位移 x 或速度 v 与时刻的对应关系 ,T 是 振动周期 , 则下列选项中正确的是 : ( A D ) 0 T/4 T/2 3T/4 T 甲 零 正向最大 零 负向最大 零 乙 零 负向最大 零 正向最大 零 丙 正向最大 零 负向最大 零 正向最大 丁 负向最大 零 正向最大 零 负向最大 A 、若甲表示位移 x ,则丙表示相应速度 v ; B 、若乙表示位移 x ,则丙表示相应速度 v ; C 、若丙表示位移 x ,则甲表示相应速度 v ; D 、若丁表示位移 x ,则甲表示相应速度 v.

02自主招生物理讲义:斜抛运动拓展【讲师版】

V 0y = V 0×sinθ V 0x = V 0×cosθ 自主招生 物理 斜抛运动拓展 知识定位 斜抛运动是高中相对边缘的知识,部分学校会在运动学板块有所涉及,但因为高考不做要求,所以所涉未深。而自主招生中,斜抛运动是除了相对运动外最重要的运动学考点。 知识梳理 ? 知识点:斜抛运动 ? 子知识点一:斜抛运动的定义 将物体用一定的初速度沿斜上方抛出去,仅在重力作用下物体所做的运动。 ? 子知识点二:斜抛运动的规律 1. 特点:⑴ 0v ≠0, ⑵ 仅受重力G 作用,有加速度g ⑶ 因0v 方向与G 不在同一条直线上,故斜抛运动的轨迹为曲线. 2. 性质:匀变速曲线运动(轨迹为曲线,加速度g 恒定不变) ? 子知识点三:斜抛运动的一般处理方法 在处理斜抛运动的曲线运动问题中,和平抛运动一样。为了处理问题的方便,建立 x—y 直角坐标系,把斜抛运动分解成沿水平x 方向及竖直y 方向上的两个分运动。 ★:把0v 沿x ,y 方向分解在x—y 直角坐标系上,有0x v ,0y v ★:两分运动的情况: ①水平x 方向上物体不受力的作用,故水平以某一初速度x 作匀速直线运动。 ②竖直y 方向上物体受竖直向下重力G 作用,又有一竖直向上的初速度0y v ,故物体作 x y V 0y V 0

竖直上抛运动。(竖直方向上,初速度0y v 向上的,a=-g 的匀减速直线运动) ? 子知识点四:斜抛运动中任一时刻t ,物体的速度及位置 水平x 方向上(匀直): Vx =0x v =0v cosθ, X =x v ×t =0v cosθ×t 竖直y 方向上(匀减): ? 子知识点五:斜抛运动中的几个特殊概念 X 表示 2 0v sin 2= g X θ 射高:从抛出点的水平面到物体运动诡计轨迹最高点的高度叫做射高,用Y 表示 2 0v sin 2g Y θ= () 飞行时间:从物体被抛出到落地所用的时间叫做飞行时间,用符号T 表示,02v sin = g T θ T/2 T/2 V V 0Y V 0 Vx =V 0x V 0x V 0 V 0y V y =V 0y —gt X = V 0cos × t X Y Y X X Y

高三-平抛运动、圆周运动的临界问题(学)

学科教师辅导讲义 前情回顾 体系搭建 突破一平抛运动中的临界问题 1.有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程中存在着临界点。

2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程中存在着“起止点”,而这些起止点往往就是临界点。 3.若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点。 【例1】 (2015·新课标全国卷Ⅰ,18)一带有乒乓球发射机的乒乓球台如图所示。水平台面的长和宽分别为L 1和L 2,中间球网高度为h 。发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h 。不计空气的作用,重力加速度大小为g 。若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( ) A. L 1 2g 6h <v <L 1g 6h B. L 1 4 g h <v <(4L 2 1+L 2 2)g 6h C. L 1 2 g 6h <v <12(4L 2 1+L 2 2)g 6h D. L 1 4 g h <v <12 (4L 2 1+L 22)g 6h 规律总结 处理平抛运动中的临界问题要抓住两点 (1)找出临界状态对应的临界条件。 (2)要用分解速度或者分解位移的思想分析平抛运动的临界问题。 【变式训练】 1.(多选)如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外马路宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的马路上,小球 离开屋顶时的速度v 0的大小的可能值为(g 取10 m/s 2 )( )

简谐运动周期公式的推导

简谐运动周期公式的推导 【摘要】:本文通过简谐运动与圆周运动的联系,用圆周运动的周期公式推导出了简谐运动周期公式。 【关键辞】:简谐运动、周期、匀速圆周运动、周期公式 【正文】: 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标图2 图3 图4

系。 则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= 二零一一年三月九日 图5

平抛运动与斜抛运动

平抛运动与斜抛运动 一、平抛运动 1,定义:水平方向抛出的物体只在重力作用下运动。 2,性质: ①水平方向:以初速度v 0做匀速直线运动。 ②竖直方向:以加速度a=g 做自由落体运动。 ③在水平方向和竖直方向的两个分运动同时存在,互不影 响,具有独立性。 ④合运动是匀变速曲线运动。 3,平抛运动的规律 以抛出点为坐标原点,以初速度v 0方向为x 正方向,竖直 向下y 为正方向,,如右图所示,则有: 分速度0v v x =,gt v y = 合速度2220t g v v +=,0 tan v gt =θ 分位移gt x =,221gt y = 合位移42220222 1t g t v y x s +=+= θαtan 2 1221tan 002====v gt t v gt x y (注意:合位移方向与合速度方向不一致) 4,平抛运动的特点 ①平抛运动是匀变速曲线运动,故相等的时间内速度的变化量相等,由gt v =?可知,速度的变化必沿竖直方向,如下图所示。 任意两时刻的速度,画到一点时,其末端连线必沿竖直方向,且都与v 0构成直角三角形。 ②物体由一定高度做平抛运动,其运动时间由下落高度决定,与初速度无关。由公式221at h =,可得:g h t 2=。落地点距离抛出点的水平距离t v s 0=,由水平速度和下落时间共同决定。 二、斜抛运动 1,定义:斜向上或斜向下抛出的物体只在重力(不考虑空气阻力)作用下的运动叫做斜抛运动。 2,斜抛运动的特点:水平方向速度不变,竖直方向仅受重力,加速度为g 。 3,斜抛运动的分解:斜抛运动可以看成是水平方向的匀速直线运动和竖直方向的竖直上抛或竖直下抛运动的合运动。 4,斜抛运动的方程 如图所示,斜上抛物体初速度为v ,与水平方向夹角为θ,则

平抛运动讲义

平抛运动讲义 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

思方教育学科教师辅导讲义 平抛运动 一.教学目标 1.知道平抛运动的特点和规律,及形成的条件。 2.理解平抛运动是匀变速运动,其加速度是g ,会用平抛运动解答有关问题(像上抛,斜抛类平抛等) 二.教学内容 知识点1、平抛运动的分解(如图所示) (2)它的水平位移大小为x= v 0g h 2,与水平速度v 0及高度h 都有关 系。 (3)落地瞬时 速度的大小2 2 y x t v v v +==22 0)(gt v +=gh v 22 +,由水平初速度v 0及高度h 决定。 (4)落地时速度与水平方向夹角为θ,tan θ= gt/ v 0,h 越大空中运动时间就越大,θ就越大。 (5)落地速度与水平水平方向夹角θ,位移方向与水平方向夹角α,θ与α是不等的。注意不要混淆。

(6)平抛物体的运动中,任意两个相等的时间间隔的速度变化量△v=g △t ,都相等且△v 方向怛为竖直向下。 (7)平抛运动的偏角与水平位移和竖直位移之间的关系:如右图所示,平抛运动的偏角θ即为平 抛运动的速度与水平方向的夹角,所以有:tan θ= 2 2121020 x y t v gt v gt == tan θ= x y 常称为平抛运动的偏角公式,在一些些问答题中可直接应用该结论分析解答。 (8 轴,正方 x 轴上的B (9 (10以抛点为坐标原点,竖直向下为y 轴正方向,沿初速度方向为x 轴正方向,建立直角坐标系(如图所示),据平抛运动在水平方向上是匀速直线运动和在竖直方向上自由落体运动知: 水平分位移x= v 0t , 竖直分位移y=gt 2/2, t 时间内合位移的大小22y x s += 设合位移s 与水平位移x 的夹角为α,则tan α=y/x=( gt 2/2)/ v 0t =gt/ 2v 0。 轨迹方程:平抛物体在任意时刻的位置坐标x 和y 所满足的方程,叫轨迹方程,由位移公式消去t 可得:y=gx 2/2v 02。显然这是顶点在原点,开口向下的抛物线方程,所以平抛运动的轨迹是一条抛物线。 (11)研究平抛运动的方法:

相关主题
文本预览
相关文档 最新文档