煤炭协会网络课程《误差理论与测量平差》复习题.doc
- 格式:doc
- 大小:484.00 KB
- 文档页数:14
实用标准文案《误差理论与测量平差》(1 )正误判断。
正确“ T ”,错误“ F ”。
(30分) 在测角中正倒镜观测是为了消除偶然误差()。
在水准测量中估读尾数不准确产生的误差是系统误差()。
如果随机变量X 和Y 服从联合正态分布,且()。
观测值与最佳估值之差为真误差()。
X 与Y 的协方差为0 ,则X 与Y 相互独立系统误差可用平差的方法进行减弱或消除( )。
权一定与中误差的平方成反比()。
间接平差与条件平差一定可以相互转换( )。
在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
对同一量的 N 次不等精度观测值的加权平均值与用条件平差所得的结果一定相同无论是用间接平差还是条件平差, 对于特定的平差问题法方程阶数一定等于必要观测数( )。
对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的( )。
观测值L 的协因数阵Q LL 的主对角线元素 Q ii 不一定表示观测值 L i 的权()。
当观测值个数大于必要观测数时,该模型可被唯一地确定()。
定权时6 0可任意给定,它仅起比例常数的作用()。
设有两个水平角的测角中误差相等, 则角度值大的那个水平角相对精度高()。
1. 1. 2 . 3 .4 .5 .6 .7 .8 .9 .101112131415用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m ±3.5cm; 600.686m ±3.5cm。
则:1•这两段距离的中误差( )。
2.这两段距离的误差的最大限差( )。
3•它们的精度( )。
4•它们的相对精度( )。
17 . 选择填空。
只选择一个正确答案( 25分)。
1•取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权a) d/D b) D/dc) d2/D2d) D2/d 22.有一角度测20测回,得中误差土0.42秒,如果要使其中误差为土0.28秒, 测回数N=( )。
《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同得观测条件系作一系列得观测,如果误差在大小与符号上都表现出偶然性。
即从单个误差瞧,该误差得大小与符号没有规律性,但就大量误差得总体而言,具有一定得统计规律。
这种误差称为偶然误差。
2、函数模型线性化——在各种平差模型中,所列出得条件方程或观测方程,有得就是线性形式,有得就是非线性形式。
在进行平差计算时,必须首先把非线性形式得函数方程按台劳公式展开,取至一次项,转换成线性方程。
这一转换过程,称之为函数模型得线性化。
3、点位误差椭圆——以点位差得极大值方向为横轴X 轴方向,以位差得极值F E 、分别为椭圆得长、短半轴,这样形成得一条椭圆曲线,即为点位误差椭圆。
4、协方差传播律——用来阐述观测值得函数得中误差与观测值得中误差之间得运算规律得数学公式。
如0K KL Z +=,若观测向量得协方差阵为LL D ,则按协方差传播律,应有T LL ZZ K KD D =。
5、权——表示各观测值方差之间比例关系得数字特征,220ii P σσ=。
二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1、 6个2、 13个3、1/n4、 0、45、 0)()()()(432200=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρ,其中AB AC AC X X Y Y W αββ-++--=''4300arctan五、问答题(每题4分,共12分)1、 几何模型得必要元素与什么有关?必要元素数就就是必要观测数吗?为什么?答:⑴几何模型得必要元素与决定该模型得内在几何规律有关;(1分) ⑵必要元素数就就是必要观测数;(1分)⑶几何模型得内在规律决定了要确定该模型,所必须具备得几何要素,称为必要元素,必要元素得个数,称为必要元素数。
煤炭协会网络课程《误差理论与测量平差》复习题一、 写出五种衡量精度指标的名称,并指出他们之间的关系是什么?答:五种衡量精度指标的名称:方差2σ或中误差σ,平均误差θ,或然误差ρ,相对误差和极限误差; 关系:方差n n ][lim2∆∆=∞→σ,平均误差σθ54≈,或然误差σρ32≈,相对误差Km 1==观测值大小σ,极限误差=2σ或3σ。
二、已知独立观测值1L 、2L 的中误差分别为1σ、2σ,求下列函数的中误差:(1) 2132L L x -=; (2) 212132L L L x -=; (3) )cos(sin 211L L L x +=。
解 (1) 2132L L x -==[]03221+=⎥⎦⎤⎢⎣⎡⋅KL L L ,利用协方差转播公式:TK KL x K KD D LL xx =+=则,,0[][]22212221222122212949432323232σσσσσσσσσσ+±=+=⎥⎦⎤⎢⎣⎡⋅=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅==x xxx 则,因此,D(2)212132L L L x -=,此式是非线性形式,需要线性化,对上式求全微分得: []KdL dL dL L L L dL L dL L L dx =⎥⎦⎤⎢⎣⎡⋅--=⋅-+⋅-=21010212011021)3()3()3()3(利用协方差转播公式:[]2221212212221212210102122210102129)3(9)3()3()3()3()3(σσσσσσσσL L L L L L L L L L L L x xxx +-±=+-=⎥⎦⎤⎢⎣⎡--⋅⎥⎦⎤⎢⎣⎡⋅--==则,因此,D(3))cos(sin 211L L L x +=,此式是非线性形式,需要线性化,对上式求全微分得:")(cos )sin(sin ")(cos )sin(sin )cos(cos 2021221110212211211ρρdL L L L L L dL L L L L L L L L dx ⋅⎪⎪⎭⎫ ⎝⎛+++⋅⎪⎪⎭⎫ ⎝⎛++++⋅= 222212211************")(cos )sin(sin ")(cos )sin(sin )cos(cos σρσρσ⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛++++±=L L L L L L L L L L L L L x三、若要在两坚强点间布设一条附合水准路线,已知每公里观测中误差等于mm 0.5±,欲使平差后线路中点高程中误差不大于mm 0.10±,问该路线长度最多可达几公里?解 设路线总长S 公里,按照测量学上的附合路线计算步骤,则路线闭合差B A h H h h H f -++=21由于是路线中点,故()B A h H h h H f v v -++-=-==21212121 则线路中点高程()()数点的高程化成观测值函此步的目的是将线路中中点,2121212121212121ˆ212121111B A B A B A A A H H h h H H h h H h h H h H v h H H ++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=++-=-++-+=++=设每公里高差观测中误差为0σ,则021)2/(σσσs h h ==按误差传播定律)(16,10425)52/(41)52/(41)2/(41)2/(414141212100212122220202222ˆ21121km S S s s s s h h h h H ≤≤=⋅⨯+⋅⨯=⨯+⨯=+=⎪⎪⎪⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=σσσσσσσ中点四、设1P 点及2P 点的坐标为:⎩⎨⎧==⎩⎨⎧==m Y m X m Y m X 00.150000.1800,00.100000.10002211 向量[]TY X Y X 2211,,,的协方差阵为: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----8230261231420223(cm)2 试求坐标差函数12X X X -=∆与12Y Y Y -=∆的方差协方差阵;解:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-=-=∆2211120101Y X Y X X X X[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-=-=∆2211121010Y X Y X Y Y Y⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡∆∆22111121210100101Y X Y X Y Y X X Y X 则坐标差函数12X X X -=∆与12Y Y Y -=∆的方差协方差阵:2)(6115100110015112243110011001823026123142022310100101cm D D D D Y Y X Y Y X X X ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⋅⎥⎦⎤⎢⎣⎡------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⋅⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡∆∆∆∆∆∆∆∆五、有三角网(如图1),其中B 、C 为已知点,A 、D 、E 为待定点,观测角i L (i =1,2,…,10)。
《误差理论与测量平差基础》考试试卷一、名词解释1.观测条件2.偶然误差3.精确度4.多余观测5.权6.权函数式7.相对误差椭圆8.无偏性二、填空题1.观测误差包括偶然误差、、。
2.偶然误差服从分布,其图形越陡峭,则方差越。
3.独立观测值L1和L2的协方差为。
4.条件平差的多余观测数为减去。
5.间接平差的未知参数协因数阵由计算得到。
6.观测值的权与精度成关系,权越大,则中误差越。
7. 中点多边形有个极条件和个圆周条件。
8. 列立测边网的条件式时,需要确定与边长改正数的关系式。
9. 秩亏水准网的秩亏数为个。
三、 问答题1. 写出协方差传播律的应用步骤。
2. 由最小二乘原理估计的参数具有哪些性质?3. 条件平差在列立条件式时应注意什么?什么情况下会变为附有参数的条件平差?4. 如何利用误差椭圆求待定点与已知点之间的边长中误差?5. 为什么在方向观测值的误差方程式里面有测站定向角参数?6. 秩亏测角网的秩亏数是多少?为什么?7. 什么是测量的双观测值?举2个例子说明。
8. 方向观测值的误差方程式有何特点?四、 综合题1. 下列各式中的Li (i=1,2,3)均为等精度独立观测值,其中误差为σ,试求X 的中误差:(1) 321)(21L L L X ++= ,(2)321L L L X =。
2. 如图1示,水准网中A,B,C 为已知高程点,P1,P2,P3为待定点,h1~h6为高差观测值,按条件平差方法,试求: (1) 全部条件式; (2) 平差后P2点高程的权函数式。
3. 如图2示,测边网中A,B,C 为已知点,P 为未知点,观测边长为L1~L3,设P 点坐标P X 、P Y 为参数,按间接平差方法,试求: (1) 列出误差方程式; (2) 按矩阵符号写出法方程及求解参数平差值的公式; (3) 平差后AP 边长的权函数式。
4. 在条件平差中,0=+∆WA ,试证明估计量^L 为其真值~L 的无偏估计。
(提示:~)(L L E =,须证明0)(=V E )5. 在某测边网中,设待定点P 的坐标为未知参数,即[]TX X X 21^=,平差后得到^X 的协因数阵为⎥⎦⎤⎢⎣⎡=yy xyxy xx XX Q Q Q Q Q ^^,且单位权中误差为0^σ,求:(1)P 点的纵横坐标中误差和点位中误差; (2)P 点误差椭圆三要素 E ϕ、E 、F 。
《误差理论与测量平差》(1)1.正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
16.用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m ±3.5cm;600.686m ±3.5cm 。
则:1.这两段距离的中误差( )。
2.这两段距离的误差的最大限差( )。
3.它们的精度( )。
4.它们的相对精度( )。
17. 选择填空。
只选择一个正确答案(25分)。
1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。
a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
《误差理论与测量平差》课程自测题(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(25分)。
1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。
a) d/D b) D/d c) d 2/D 2d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同的观测条件系作一系列的观测,如果误差在大小和符号上都表现出偶然性。
即从单个误差看,该误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律。
这种误差称为偶然误差。
2、函数模型线性化——在各种平差模型中,所列出的条件方程或观测方程,有的是线性形式,有的是非线性形式。
在进行平差计算时,必须首先把非线性形式的函数方程按台劳公式展开,取至一次项,转换成线性方程。
这一转换过程,称之为函数模型的线性化。
3、点位误差椭圆——以点位差的极大值方向为横轴轴方向,以位差的极值分别为椭圆的长、短半轴,这样形成的一条椭圆曲线,即为点位误差椭圆。
4、协方差传播律——用来阐述观测值的函数的中误差与观测值的中误差之间的运算规律的数学公式。
如,若观测向量的协方差阵为,则按协方差传播律,应有。
5、权——表示各观测值方差之间比例关系的数字特征,。
二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1. 6个2. 13个3.1/n4. 0.45. ,其中五、问答题(每题4分,共12分)1. 几何模型的必要元素与什么有关?必要元素数就是必要观测数吗?为什么?答:⑴几何模型的必要元素与决定该模型的内在几何规律有关;(1分) ⑵必要元素数就是必要观测数;(1分)⑶几何模型的内在规律决定了要确定该模型,所必须具备的几何要素,称为必要元素,必要元素的个数,称为必要元素数。
实际工程中为了确定该几何模型,所必须观测的要素个数,称为必要观测数,X F E 、0K KL Z +=LL D T LL ZZ K KD D =220ii P σσ=0)()()()(4320020=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρABAC AC X X Y Y W αββ-++--=''4300arctan其类型是由必要元素所决定的,其数量,必须等于必要元素的个数。
一、名词解释(每个2分,共10分)真误差、误差传播定律、平差函数模型、条件方程、观测方程二、填空(每空1分,共20分)1.观测条件主要包括 、 和 三个方面。
2.误差一般分成 、 和 三类。
3.衡量精度的指标有 、 、 、 和极限误差五种。
4.设随机误差服从正态分布,则=+<∆<-)(σσP 。
5.测量平差的任务是 和 。
6.已知某点平面坐标)(Y X 、的协方差阵如下2)(00.130.030.064.0cm ⎪⎪⎭⎫ ⎝⎛,其相关系数XYρ= ,其点位方差为2σ=2)cm (7.若令⎥⎦⎤⎢⎣⎡=21S S Z ,21S S 、为边长观测值,已知其方差阵为2)(4224厘米⎥⎦⎤⎢⎣⎡--=ZZ D ,若220(1ˆ秒)=σ,求2S 的权为 。
8.某观测值L ,其权为4,则L 2的权为 。
9.丈量一正方形各边,边长观测为独立观测,中误差均为4cm ,则该正方形周长的中误差为 。
10. 设观测值的协因数阵为Q ,如果使用条件平差, 则平差后观测值的平差值协因数阵L L Q ˆˆ= ;如果使用间接平差, 则平差后未知数的平差值协因数阵X X Q ˆˆ= ;三、简答题(每小题4分,共20分)1.精度、准确度和精确度之间的关系是什么?2.观测值向量的协方差阵D 、协因数阵Q 和权阵P 之间有什么关系? P 矩阵内的元素的含义是什么?3.什么叫平差的随机模型?它一般如何确定,有什么作用?4.绘图说明使用误差椭圆表示某个方向上误差大小的方法?5. 常用的参数假设检验方法有哪四种?各能检验分布的什么数字特征指标?四、计算题(每小题10分,共40分)1. 设1P 点及2P 点的坐标为:⎩⎨⎧==⎩⎨⎧==mY m X m Y m X 00.30000.400,00.000.02211 向量[]T Y X Y X 2211,,,的协方差阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010000100001(cm)2,设有向量[]TS Y X Z ,,∆∆=,其中12X X X -=∆、12Y Y Y -=∆、212212)()(Y Y X X S -+-=,求向量Z 的方差协方差阵;2. 如图1,A 、B 为已知点,C 、D 为待定点,同精度独立观测了61L L →六个角度。
误差理论与测量平差 专升本 复习题 参考一、综合题1.已知两段距离的长度及中误差分别为cm m 5.4465.300±及cm m 5.4894.660±,试说明这两段距离的真误差是否相等?他们的精度是否相等?(问答题,10分) 答:它们的真误差不一定相等;相对精度不相等,后者高于前者。
2.已知观测值向量⎪⎪⎭⎫ ⎝⎛=2121L L L 的权阵为⎥⎦⎤⎢⎣⎡=3224LL P ,及单位权方差120=σ,求L 的方差阵及观测值的权1L P ,2L P 。
(计算题,10分)答:1321248LL Q P --⎡⎤==⎢⎥-⎣⎦,所以128/3,2L L P P == 3.在下图所示三角网中,A .B 为已知点,41~P P为待定点,已知32P P 边的边长和方位角分别为0S 和0α,今测得角度1421,,,L L L 和边长21,S S ,若按条件平差法对该网进行平差:(1)共有多少个条件方程?各类条件方程各有多少个?(2)试列出除图形条件和方位角条件外的其它条件方程(非线性条件方程不要求线性化) (问答题,20分)答:(1)14216,6,10n t r =+=== ,所以图形条件:4个;极条件:2个;边长条件:2个;基线条件:1个;方位角条件:1个 (2)四边形14ABPP 的极条件(以1P 为极): 34131241314ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+ 四边形1234PP P P 的极条件(以4P 为极): 10116891167ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+边长条件(1ˆAB S S - ):123434ˆˆˆˆˆˆs i n ()s i n ()AB S S L L L L L =+++ 边长条件(12ˆˆS S - ):1121314867ˆˆˆs i n ˆˆˆˆˆsi n ()s i n s i n ()S L S L L L L L ⋅=++基线条件(0AB S S - ):02101191011ˆˆˆˆˆsi n ()s i n ()S S L L L L L=+++4.有水准网如下图,A 、B 为已知水准点,高程m H A 013.12+=、m H B 013.10+=无误差,C 、D 为待定点,观测了四个高差,高差观测值及相应水准路线的距离为:km S 21=,m h 004.11-=,km S 12=,m h 516.12+=,km S 23=,m h 512.23+=,km S 5.14=,m h 520.14+=。
《误差理论与测量平差》复习思考题1.观测条件是由那些因素构成的?它与观测结果的质量有什么联系?2. 观测误差分为哪几类?它们各自是怎样定义的?对观测结果有什么影响?试举例说明。
3.用钢尺丈量距离,有下列几种情况使得结果产生误差,试分别判定误差的性质及符号: (1) 尺长不准确; (2) 尺不水平;(3) 估读小数不准确; (4) 尺垂曲;(5) 尺端偏离直线方向。
4.在水准了中,有下列几种情况使水准尺读书有误差,试判断误差的性质及符号: (1) 视准轴与水准轴不平行; (2) 仪器下沉; (3) 读数不准确; (4) 水准尺下沉。
5. 何谓多余观测?测量中为什么要进行多余观测?6. 为了鉴定经纬仪的精度,对已知精确测定的水平角'"450000α=作12次同精度观测,结果为:'"450006 '"455955 '"455958 '"450004'"450003'"450004'"450000 '"455958 '"455959 '"455959 '"450006 '"450003设a 没有误差,试求观测值的中误差。
7.已知两段距离的长度及中误差分别为300.465m ±4.5cm 及660.894m ±4.5cm ,试说明这两段距离的真误差是否相等?他们的精度是否相等? 8. 设对某量进行了两组观测,他们的真误差分别为: 第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差1ˆθ、2ˆθ和中误差1ˆσ、2ˆσ,并比较两组观测值的精度。
9. 设有观测向量1221[]T X L L =,已知1ˆL σ=2秒,2ˆL σ=3秒,122ˆ2L L σ=-秒,试写出其协方差阵22XXD。
《误差理论与测量平差》课程自测题(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(25分)。
1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。
a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
《误差理论与测量平差》复习题一、填空题1、测量平差的任务是:、。
2、观测误差产生的原因:、、。
3、观测误差一般分为:、、。
4、最小二乘法最早由提出,其基本思想是。
5、图1所示水准网中观测总数n= 、必要观测个数t= 、多余观测数r= 。
6、四种基本平差方法:、、、。
图17、误差椭圆三要素指、、。
8、观测误差的主要来源有:、、。
9、根据观测误差对测量误差的影响性质可分为:、、三类。
10、最小二乘法的基本思想是。
11、常用衡量精度的指标有:、、、、。
二、判断题1、在水准测量中估读尾数不准确产生的误差是系统误差。
()2、对于大量的偶然误差具有一定的概率统计规律。
()3、系统误差可用四种基本平差模型进行减弱或消除。
()4、粗差在测量过程中是不可避免的。
()5、对于同一几何模型,如果按件平差法解算,不同的人列出的条件方程可能不同。
()6、定权时是可以任意选定的常数。
()7、权一定无单位。
()8、精度是指误差分布的密集或离散的程度。
()9、设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高。
()10、当观测值个数大于必要观测数时,该平差模型可被唯一地确定。
()11、在水准测量中估读水准尺上的毫米数不准确产生的误差是偶然误差。
()12、对于大量的偶然误差也不具有一定的概率统计规律。
()13、系统误差可用四种基本平差模型进行减弱或消除。
()14、粗差在测量过程中是可以避免的。
()15、对于同一几何模型按条件平差法解算,不同的人列出的条件方程一定是相同的。
()16、准确度是用来描述系统误差的指标。
()17、权一定没有单位。
()18、精度是指误差分布的密集或离散的程度。
()19、设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高。
()20、各观测值权之间的比例关系与观测值中误差的大小无关。
()三、选择题1、现有一组观测数据,其真误差为3、-3、2、4、-2、-1、0、-4、3、-2,请问这组观测值的中误差为()。
误差理论与测量平差基础期末复习试题含答案误差理论与测量平差基础(B) 一、填空题(每空1分,共30分)1. 测量平差就是在基础上,依据原则,对观测值进行合理的调整,即分别给以适当的,使矛盾消除,从而得到一组最可靠的结果,并进行。
2. 测量误差的定义为,按其性质可分为、和。
3. 衡量估计量优劣的标准有、、。
9km,5mm4. 在A、B两点间进行水准测量,路线长度为,每千米单程观测高差的中误差等于,则A、B两点间单程观测高差的中误差等于,往返高差中数的中误差等于,往返高差不符值的限差为。
5. 设为独立等精度偶然误差,为每个误差的均方差,则误差和的限差为,(i,1,2,?,n),,,,i。
(取2倍中误差为限差) [,],6. 若有一组观测值的函数、,设,则二L,?,Lx,aL,?,aLx,bL,?,bLQ,I1n111nn211nnL者的相关系数= ,若再设,则行列式= 。
Q,b,2a(i,1,?,n)xxXii12x3,1,,,,17. 设,,,,,则,X,,,,2Σ,z,x,x,,z,x0Xz21212,,,,1x,122,,,,,, ,。
,,zzz122T8. = 。
tr[E(ΔPΔ)]1,nn,nn,111SS9. 设观测值为,观测值的函数为,欲使的权倒数为,则的权倒数, 。
f,lgSfppfS,,ˆˆv,sinx,2cosx,L10. 设非线性误差方程,参数近似值,观测值,x,60, x,45L,2512510205线性化之后的误差方程为。
11. 平差的数学模型可分为模型和模型,前者描述观测值之间、观测值与参数之间以及参数之间数学期望的关系,后者描述的则是观测值的精度特性。
ˆ,V,AδX,l,n,tn,1n,1t,1T12. 由二次型的数学期望= 可以证明,具有条件的参数平差模型中,E(XAX),ˆBδXW0,,X,t,1r,1r,t,T= 。
E(VPV),,15cm9cm4513. 已知某点的点位中误差等于,点位误差椭圆的短半轴为,短轴的方向角为,则误差椭圆的长半轴等于,长轴的方向角等于。
误差理论与测量平差》(1)一、正误判断。
正确“ T”,错误“ F”。
(30 分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N 次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L 的协因数阵Q LL的主对角线元素Q ii 不一定表示观测值L i 的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ 0 可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
用“相等”或“相同”或“不等”填空(8 分)。
已知两段距离的长度及其中误差为600.686m±3.5cm 。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差(3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(1.取一长为 d 的直线之丈量结果的300.158m ± 3.5cm;)。
25 分)。
1,则长为 D 的直线之丈量结果的权P D=()。
a) d/D c) d 2/D2b) D/dd) D222/d 22. 有一角度测20 测回,得中误差± 0.42秒,如果要使其中误差为± 0.28 秒,则还需增加的测回数N=()。
误差理论与测量平差基础习题集Word版第⼀章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,⽽且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪⼏类?它们各⾃是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04⽤钢尺丈量距离,有下列⼏种情况使量得的结果产⽣误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不⽔平;(3)估读⼩数不准确;(4)尺垂曲;(5)尺端偏离直线⽅向。
1.1.05在⽔准测量中,有下列⼏种情况使⽔准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与⽔准轴不平⾏;(2)仪器下沉;(3)读数不准确;(4)⽔准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进⾏多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 ⾼斯于哪⼀年提出最⼩⼆乘法?其主要是为了解决什么问题?1.3.09 ⾃20世纪五六⼗年代开始,测量平差得到了很⼤发展,主要表现在那些⽅⾯?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学⽬的是什么?第⼆章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是⼀种重要的分布?试写出⼀维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三⾓形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,⼤量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和⽅差各是多少?§2-3 衡量精度的指标测值⽐误差⼤的观测值精度⾼?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差⼀定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的⽔平⾓α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
《误差理论与测量平差》期末试卷(1)班级____________学号____________________姓名____________题号一二三四五六总分成绩一、填空题(每题3分,共计30分)1.观测误差的来源主要有测量仪器、观测者、外界环境三个方面。
2.根据观测误差对观测结果的影响性质,可将观测误差分为系统误差、偶然误差和粗差。
3.在测量平差中,常用的衡量精度的指标主要有中误差、相对误差和限差。
4.在1:1000的地形图上,量得a、b 两点间的距离d=40.6mm,量测中误差为d σ=0.2mm,则该两点间的实际距离中误差为200mm 。
5.在测量中权为1的观测值称为单位权观测值,与之对应的中误差称为单位权中误差。
6.间接平差中,未知参数X 的选取要求满足相互独立和参数个数等于必要观测个数。
7.在条件平差中,已知观测总量n=7,其中t=3,r=4,则条件方程的个数为4。
8.已知观测值L 的方差D LL =4,单位权中误差为2,则该观测值的权为P L =1。
9.不论在条件平差还是间接平差中,单位权中误差的计算公式都为0ˆσ=t n PV V T -=0σ。
10.若某待定点P 两个相互垂直方向上的坐标方差为2x σ、2y σ,则该点的点位中误差P σ=22y x P σσσ+=。
二、简答题:(每题5分,共25分)1、什么叫测量误差?产生测量误差的原因有哪些?答:(1)对某量进行多次观测,所得的各次观测结果都存在差异,通常将每次测量所得的观测值与该量的真值之间的差值称为测量误差,即测量误差=真值-观测值。
(2)产生测量误差的原因主要有:观测仪器,观测者和外界环境。
2、系统误差、偶然误差各自的特性?并举例说明。
答:系统误差指在相同的观测条件下作一系列的观测时,大小和符号表现出系统性,或按一定规律变化,或者为某一常数的误差,其具有累积性,如水准尺的刻画不准确、水准仪的视准轴误差、温度对钢尺量距的误差、尺长误差等;偶然误差指在相同的观测条件下作一系列的观测时,从单个误差看,该列误差的大小和符号表现出偶然性,无规律,但就大量误差的总体而言,具有一定的统计规律,主要表现为有界性、对称性,单峰性和抵偿性,如对中整平误差、照准目标误差、读数时估读误差等。
《误差理论与测量平差基础》试卷1-⑴分)已知翊叱若设厶为单位权观测值,2,(10*)设对某扶度进行同精度独立观测,已知I孜观测中误差b = 2朋浪,设4蚣观测值平均值的枫为2n试求’ (1)单位枫中误差巧p ⑴—次观测值的抚⑶ 若使平均值的权諄于気应观S?協少汶°3.C105>)在三角册中,己知角直无澳差閃负儿观测角b匚的观测值为卸L2,其I■办因颤阵心为单位阵,现将闭會差平均分配到两匍得4-4--*2J 2式中血亠厶-1孔J ⑴试求H的枫⑴w与£■[厶fj是否f冃关■试込明之.4-1分)某一平差间题中’观测值向壘H 同穡度独立观测值,已求出的法方程如代试求出此平差间题中的单位权方差估值炭O5. (10分)在下列图形中,试写出必要观测数X 方程的个^c (c=r +u ),并指出采用何种平 差模型。
⑴图1中方1〜久为高差观渕值,设参数£ =比 祗 石J;(2)图2中缶B 为已知点,C 、D 、E 为未知点,AE 边的辺长为已知,厶~心为角度观测值•设待定点以D. E 平差后的坐标为参数左5 6J6. (10分)同圏2»设平差后厶他为参数览,扌旨出采用何种平差方法,并列出全部条件方程(不必线性化)32.51 11.2011.20 24.65 1220 + -9 357.(10分)图3中,在已知高程的水准点A、B、C (高程无误差)之间布设新水准点現、马.水准线路长度相同,观测高差为:j^=0.310m ,A2=0.110m ,/^=0 220m ,冋=0.280m,//x=8.200m, 7/^=8.800m» Z/C=8.800m> 试按间接平差法求E、马点高程的平差值并评定平差后厶的权.& (10分)图4为一长方形£; = [厶Zj r=[8.60 540『©«)为同精度独立边长观测值, 已知长方形对角线长10cm (无误差),求平差后长方形的面积。
1.1 观测条件是由那些因素构成的?它与观测结果的质量有什么联系?1.2 观测误差分为哪几类?它们各自是怎样定义的?对观测结果有什么影响?试举例说明。
1.3用钢尺丈量距离,有下列几种情况使得结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;(2)尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.4 在水准了中,有下列几种情况使水准尺读书有误差,试判断误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沉。
1.5 何谓多余观测?测量中为什么要进行多余观测?答案:1.3 (1)系统误差。
当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。
(2)系统误差,符号为“-”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”(5)系统误差,符号为“-”1.4 (1)系统误差,当i角为正时,符号为“-”;当i角为负时,符号为“+”(2)系统误差,符号为“+”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”2.1 为了鉴定经纬仪的精度,对已知精确测定的水平角'"450000α=作12次同精度观测,结果为:'"450006 '"455955'"455958'"450004'"450003'"450004'"450000 '"455958'"455959 '"455959 '"450006 '"450003设a 没有误差,试求观测值的中误差。
2.2 已知两段距离的长度及中误差分别为300.465m ±4.5cm 及660.894m ±4.5cm ,试说明这两段距离的真误差是否相等?他们的精度是否相等?2.3 设对某量进行了两组观测,他们的真误差分别为: 第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差1ˆθ、2ˆθ和中误差1ˆσ、2ˆσ,并比较两组观测值的精度。
煤炭协会网络课程《误差理论与测量平差》复习题一、 写出五种衡量精度指标的名称,并指出他们之间的关系是什么?答:五种衡量精度指标的名称:方差2σ或中误差σ,平均误差θ,或然误差ρ,相对误差和极限误差; 关系:方差n n ][lim2∆∆=∞→σ,平均误差σθ54≈,或然误差σρ32≈,相对误差Km 1==观测值大小σ,极限误差=2σ或3σ。
二、已知独立观测值1L 、2L 的中误差分别为1σ、2σ,求下列函数的中误差:(1) 2132L L x -=; (2) 212132L L L x -=; (3) )cos(sin 211L L L x +=。
解 (1) 2132L L x -==[]03221+=⎥⎦⎤⎢⎣⎡⋅KL L L , 利用协方差转播公式:TK KL x K KD D LL xx =+=则,,0[][]22212221222122212949432323232σσσσσσσσσσ+±=+=⎥⎦⎤⎢⎣⎡⋅=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅==x xxx 则,因此,D(2)212132L L L x -=,此式是非线性形式,需要线性化,对上式求全微分得: []KdL dL dL L L L dL L dL L L dx =⎥⎦⎤⎢⎣⎡⋅--=⋅-+⋅-=21010212011021)3()3()3()3(利用协方差转播公式:[]2221212212221212210102122210102129)3(9)3()3()3()3()3(σσσσσσσσL L L L L L L L L L L L x xxx +-±=+-=⎥⎦⎤⎢⎣⎡--⋅⎥⎦⎤⎢⎣⎡⋅--==则,因此,D(3))cos(sin 211L L L x +=,此式是非线性形式,需要线性化,对上式求全微分得:")(cos )sin(sin ")(cos )sin(sin )cos(cos 2021221110212211211ρρdL L L L L L dL L L L L L L L L dx ⋅⎪⎪⎭⎫ ⎝⎛+++⋅⎪⎪⎭⎫ ⎝⎛++++⋅= 222212211************")(cos )sin(sin ")(cos )sin(sin )cos(cos σρσρσ⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛++++±=L L L L L L L L L L L L L x三、若要在两坚强点间布设一条附合水准路线,已知每公里观测中误差等于mm 0.5±,欲使平差后线路中点高程中误差不大于mm 0.10±,问该路线长度最多可达几公里?解 设路线总长S 公里,按照测量学上的附合路线计算步骤,则路线闭合差B A h H h h H f -++=21由于是路线中点,故()B A h H h h H f v v -++-=-==21212121 则线路中点高程()()数点的高程化成观测值函此步的目的是将线路中中点,2121212121212121ˆ212121111B A B A B A A A H H h h H H h h H h h H h H v h H H ++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=++-=-++-+=++=设每公里高差观测中误差为0σ,则021)2/(σσσs h h ==按误差传播定律)(16,10425)52/(41)52/(41)2/(41)2/(414141212100212122220202222ˆ21121km S S s s s s h h h h H ≤≤=⋅⨯+⋅⨯=⨯+⨯=+=⎪⎪⎪⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=σσσσσσσ中点四、设1P 点及2P 点的坐标为:⎩⎨⎧==⎩⎨⎧==mY m X m Y m X 00.150000.1800,00.100000.10002211 向量[]TY X Y X 2211,,,的协方差阵为: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----8230261231420223(cm)2 试求坐标差函数12X X X -=∆与12Y Y Y -=∆的方差协方差阵;解:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-=-=∆2211120101Y X Y X X X X[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-=-=∆2211121010Y X Y X Y Y Y⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡∆∆22111121210100101Y X Y X Y Y X X Y X 则坐标差函数12X X X -=∆与12Y Y Y -=∆的方差协方差阵:2)(6115100110015112243110011001823026123142022310100101cm D D D D Y Y XY Y X X X ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⋅⎥⎦⎤⎢⎣⎡------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⋅⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡∆∆∆∆∆∆∆∆五、有三角网(如图1),其中B 、C 为已知点,A 、D 、E 为待定点,观测角i L (i =1,2,…,10)。
试写条件方程式并对非线性的条件方程进行线性化;图1解:本题,观测值个数为10个,必要观测个数是6个(3个未知点),可以列4个条件,分别为2个三角图形条件、1个圆周角条件、1个极条件。
2个三角图形条件:0180ˆˆˆ0180ˆˆˆ08540762=-++=-++L L L L L L1个圆周角条件:0360)ˆˆ180(ˆˆ03187=---++L L L L 1个极条件:01ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin 532641=-⋅⋅⋅⋅L L L L L L这个极条件为:01ˆsin ˆsin ˆsin ˆsin ˆsin ˆsin 532641=-⋅⋅⋅⋅L L L L L L.,,,,ˆsin ˆsin ,,ˆsin ˆsin ,,ˆsin ˆsin ,,1542631需要线性化因为该条件是非线性的可以得到极条件上式将三个图形的正弦代入中在中在中而在从图上可以看出L L BD CD BCD L L CD AD ACD L L AD BD ABD BDCDCD AD AD BD =∆=∆=∆=⋅⋅利用泰勒级数展开并取至一次项,经过推导可以得到以下规律,)sin sin sin sin sin sin 1("cot cot cot cot cot cot 641532665544332211=⋅⋅⋅⋅-+⋅+⋅-⋅+⋅-⋅-⋅L L L L L L v L v L v L v L v L v L ρ(总结其规律性) 六、在图2中,C B A 、、是已知点, 21P P 、为待定点,网中观测了12个角度和6条边长。
已知测角中误差为5.1''±,边长测量中误差为0.2±cm ,试用符号表示12号观测角和18号观测边的误差方程(线性化)和权。
图2jkh解:根据一般公式:))((ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(00200"200"2"200"200"200"200"200"jh jk L y S XxS YyS X x S YyS X xS Y yS X xS Y v h jk jk h jh jh j jh jh j jh jh k jk jkk jk jk j jk jkj jk jk i ααρρρρρρρρ---⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∆+∆-∆-∆-∆+∆-∆-∆=该式子是是对应上面的图形,针对本题的12号观测角,则:))((ˆˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(0012120"1200"20"200"2200"2200"200"200"12111111122222222CP CP CP CP CP C CP CP C CP CP CP CPCP CPC CP CPC CP CPi L y XxSYyS X x S YySX xSY ySX xSY v ααρρρρρρρρ---⎪⎬⎫⎪⎩⎪⎨⎧∆+∆-∆-∆-∆+∆-∆-∆=边长:)(ˆˆˆˆ00000000jk i k jkjk k jkjk j jkjkj jkjk i S L y SX xSX ySY xSX v --∆+∆+∆-∆-=该式子是是对应上面的图形,针对本题的18观测边,则:)(ˆˆˆˆ0180000000018212121212121212121P P k P P P Pk P P P Pj P P P P j P P P PS L y S X xS X yS Y xS X v --∆+∆+∆-∆-= 七、已知观测值的协因数阵为LL Q ,求条件平差L L Q ˆˆ。
解:根据条件平差的基础方程,建立平差值与观测值之间的关系式子因为,在条件平差中:1111011111110000))(()(,,0)(:,)(0,0)(,0)(,0ˆA N A P L A N A P A AL N A P W N A P K A P V W N K W K N W K A AP A AL W W AV A AL AV A V L A A L A T T T T T T ------------⋅-=+-⋅=⋅==⋅=-⋅=-⋅+-==-=++=++=+即其法方程根据条件平差原理其中111101111)(ˆA N A P L A N A P E A N A P L A N A P L V L L T T T T ---------⋅-=-⋅-=+= LLT LL LL T LL LL T LL T T LL LL T LL T T LL LL T LL T LL T T LL LL T LL T LL T T LL T LL T T LL T L L AQ N A Q Q AP N A Q Q AP N A P AQ N A P AP N A Q Q AP NN N A P AQ N A P AP N A Q Q AP N A AQ N A P AQ N A P AP N A Q Q AP N A E AQ N A P Q A N A P E AQ N A P Q A N A P E Q A N A P E Q 11111111111111111111111111111111111111ˆˆ)()()()()()(---------------------------------------=-=+--=+--=+--=-⋅-=-⋅-=-⋅⋅-= 八、已知观测值的协因数阵为LL Q ,求间接平差L L Q ˆˆ。