捷联惯导系统
- 格式:ppt
- 大小:1.33 MB
- 文档页数:30
捷联惯性导航系统的解算方法捷联惯性导航系统(Inertial Navigation System,简称INS)是一种利用陀螺仪和加速度计等惯性测量单元测量物体的加速度和角速度,然后通过对这些测量值的积分计算出物体的速度和位置的导航系统。
INS广泛应用于航空航天、无人驾驶车辆和船舶等领域,具有高精度和自主性等特点。
INS的解算方法一般分为初始对准、运动状态估计和航位推算三个主要过程。
初始对准是指在启动导航系统时,通过利用外部辅助传感器(如GPS)或静态校准等方法将惯性传感器的输出与真实姿态和位置进行初次校准。
在初始对准过程中,需要获取传感器的初始偏差和初始姿态,一般采用标定或矩阵运算等方法进行。
运动状态估计是指根据惯性传感器的测量值,使用滤波算法对物体的加速度和角速度进行实时估计。
常用的滤波算法包括卡尔曼滤波、扩展卡尔曼滤波和粒子滤波等。
其中,卡尔曼滤波是一种最优估计算法,通过对观测值和状态进行线性组合,得到对真实状态的最佳估计。
扩展卡尔曼滤波则是基于卡尔曼滤波的非线性扩展,可以应用于非线性INS系统。
粒子滤波是一种利用蒙特卡洛采样技术进行状态估计的方法,适用于非高斯分布的状态估计问题。
航位推算是指根据运动状态估计的结果,对物体的速度和位置进行推算。
INS最基本的航位推算方法是利用加速度值对速度进行积分,然后再对速度进行积分得到位置。
但是,在实际应用中,由于传感器本身存在噪声和漂移等误差,导致航位推算过程会出现积分漂移现象。
为了解决这个问题,通常采用辅助传感器(如GPS)和地图等数据对INS的输出进行校正和修正。
当前,还有一些先进的INS解算方法被提出,如基于深度学习的INS 解算方法。
这些方法利用神经网络等深度学习模型,结合原始传感器数据进行端到端的学习和预测,以实现更高精度的位置和姿态估计。
综上所述,捷联惯性导航系统的解算方法主要包括初始对准、运动状态估计和航位推算三个过程。
其中,运动状态估计过程利用滤波算法对传感器的测量值进行处理,得到物体的加速度和角速度的估计。
HT-LG-H激光捷联惯性导航系统使用说明书1 概述HT-LG-H激光捷联惯性导航系统(以下简称惯导系统)是陕西航天长城测控有限公司研制的高精度自主寻北、惯性组合导航系统。
该惯导系统由高精度激光陀螺、石英挠性加计、加计采集板、导航计算机、二次电源等部件组成,能够满足航空、陆用等设备的高精度定向/定位等功能的需求。
系统采用集成化,数字化、先进的对准导航算法等设计技术,具有高可靠性和环境适应性,可在阵风、发动机工作等严酷环境条件下完成高精度寻北;具备纯惯性导航功能,同时系统自带GPS/GLONASS卫星接收机,具有INS/GNSS组合导航功能;对外通信方式为RS-422总线。
2 主要功能与性能2.1 主要功能2.1.1 自检功能具备上电自检功能,可输出自检结果,可将故障分离到部件级。
2.1.2 初始标定功能接受外部输入的初始标定信息并完成初始标定。
2.1.3 寻北功能接受寻北指令,完成寻北并输出寻北结果。
2.1.4 导航功能完成寻北后自动转入导航状态;具有INS纯惯性导航功能和INS/GNSS组合导航功能。
2.2 主要性能惯导系统的主要性能指标如表1所示。
表1 惯导系统主要性能指标3 接口3.1 机械接口惯导系统采用4个M8-7H螺钉连接到专用过渡板上,过渡板采用4个M8-7H 螺钉安装到用户载体上,载体安装平面其平面度要求优于0.02mm;其详细要求2陕西航天长城测控有限公司见图1惯导系统机械接口图与图2过渡板接口图。
图1 惯导系统机械接口图图2 专用过渡板机械接口图 TAL:029- FAX:029-3图3 惯导系统等轴侧视图图4 惯导系统正视图3.2 电气接口3.2.1 电源接口电源接口用连接器选用的是中航光电(158厂)生产的JY27468T17B08PN圆形插座。
其接口定义如表2所示。
序号管脚号定义名称备注1 C +24V 24V电源2 E +24V 24V电源3 D 24V_GND 电源地4 F 24V_GND 电源地3.2.2 通讯接口通讯接口连接器选用的是中航光电(158厂)生产的JY27468T17B12PN圆形插座。
捷联惯性导航原理捷联惯性导航(Inertial Navigation System,简称INS)是一种基于捷联惯性测量单元(Inertial Measurement Unit,IMU)的导航系统。
该系统通过测量物体在空间中的加速度和角速度,进而推导出它的位置、速度和航向等导航信息。
捷联惯性导航系统由三个主要组件组成:加速度计、陀螺仪和计算机。
加速度计用于测量物体的加速度,陀螺仪用于测量物体的角速度,而计算机则用于整合和处理这些测量数据。
加速度计和陀螺仪通常被组合在一起形成IMU,IMU被安装在导航系统的载体上。
加速度计是用来测量物体的线性加速度的设备。
它的作用类似于测力仪,通过测量物体所受的力,可以计算出物体的加速度。
加速度计一般使用压电传感器或气泡级感应器来测量物体的加速度。
陀螺仪则是用来测量物体的角速度的设备。
它的原理基于陀螺效应,通过测量物体围绕轴线旋转的角速度来推导物体的旋转状态。
陀螺仪分为一体式陀螺仪和光纤陀螺仪两种类型,一体式陀螺仪主要使用电子仪器的原理,而光纤陀螺仪则使用光学原理。
在捷联惯性导航系统中,加速度计和陀螺仪的输出数据会被输入到计算机中进行处理。
计算机通过积分和滤波等算法,对加速度和角速度进行处理,推导出物体的位置和速度等导航信息。
计算机还会结合其他传感器如GPS等,以提高导航系统的精度和稳定性。
然而,捷联惯性导航也存在一些局限性。
首先,由于加速度计和陀螺仪的精度和稳定性有限,导致导航系统随着时间的推移会产生累积误差。
其次,在长时间的运动过程中,加速度计和陀螺仪可能受到震动、振动和温度变化等外界因素的影响,进而导致导航系统的精度下降。
为了解决这些问题,通常将捷联惯性导航系统与其他导航系统如GPS进行组合导航。
通过将两种导航系统的输出数据进行融合,可以克服各自的缺点,提高导航系统的精度和鲁棒性。
总结起来,捷联惯性导航是一种基于物体惯性特性的导航系统,通过测量物体的加速度和角速度,推导出物体的位置、速度和航向等导航信息。
激光陀螺捷联惯导系统多位置标定方法我折腾了好久这个激光陀螺捷联惯导系统多位置标定方法,总算找到点门道。
说实话,一开始我对这玩意儿完全是瞎摸索。
我就知道这是个挺复杂的事儿,要想标定准确,肯定得从不同位置下手,但具体怎么做,那真是一头雾水。
我最开始的尝试啊,就是很笨的方法。
我简单地把系统放在几个不同的、自认为是有代表性的位置,然后就按照常规的标定流程去弄。
就好比你要给一个形状奇怪的东西量尺寸,你随便从几个地方开始量,以为能量准,结果发现根本不是那么回事。
这个时候得到的数据那叫一个混乱,偏差大得很,这就是失败的教训啊。
后来我就仔细研究这个激光陀螺和捷联惯导系统的原理。
我发现啊,对于激光陀螺,不同位置的磁场、温度这些外部因素影响很大。
我要是想标定准确,就得把这些外部因素考虑进去。
比如说,在一些靠近大型金属设备的位置,磁场干扰严重,那这个位置的数据可能就不准确。
这就像是你测量东西的时候,旁边有人一直捣乱,你肯定测量不好。
我又开始了新的尝试。
我把位置选择得更加科学了。
我先找那些环境比较稳定的地方,比如远离大型设备、温度比较恒定的角落。
然后慢慢地增加一些不同影响因素的位置,就像给孩子吃辅食,一点点加种类。
每次在新位置标定的时候,我都特别注意记录环境数据,看看是不是和之前的假设有出入。
我也犯过这样的错,就是在改变位置之后,没有等待足够的时间让系统稳定。
就像你从一个很冷的地方突然到一个很热的地方,得让自己适应适应吧,系统也一样。
结果那次得到的数据就不太对啊。
再比如说,多位置标定,也不是位置越多越好。
我曾经试过把能想到的所有位置都来一遍,结果数据多得我自己都看懵了,而且由于操作过程太长,还引入了很多其他不可控的误差,就像是你做菜放了太多调料,最后味道全乱了。
我的心得就是,在进行激光陀螺捷联惯导系统多位置标定的时候,位置选择要精心,要考虑外部因素,操作过程得细致,给系统稳定的时间,同时也不要过度追求位置数量。
目前我这个方法虽然不能说是完美的,但相比最开始已经成功了许多。
捷联式惯导系统初始对准方法研究一、本文概述随着导航技术的不断发展,捷联式惯导系统(StrapdownInertial Navigation System, SINS)已成为现代导航领域的重要分支。
由于其具有自主性强、隐蔽性好、不受外界电磁干扰等优点,被广泛应用于军事、航空、航天、航海等领域。
然而,捷联式惯导系统的初始对准问题是其实际应用中的一大难题。
初始对准精度的高低直接影响到系统的导航精度和稳定性。
因此,研究捷联式惯导系统的初始对准方法具有重要意义。
本文旨在深入研究和探讨捷联式惯导系统的初始对准方法。
对捷联式惯导系统的基本原理和组成进行简要介绍,为后续研究奠定基础。
对初始对准的定义、目的和重要性进行阐述,明确研究的重要性和方向。
接着,重点分析现有初始对准方法的优缺点,包括传统的静基座对准、动基座对准以及近年来兴起的智能对准方法等。
在此基础上,提出一种新型的初始对准方法,并对其进行详细的理论分析和仿真验证。
通过实验验证所提方法的有效性和优越性,为捷联式惯导系统的实际应用提供有力支持。
本文的研究内容对于提高捷联式惯导系统的初始对准精度、增强其导航性能和稳定性具有重要意义。
所提出的新型初始对准方法有望为相关领域的研究提供新的思路和方向。
二、捷联式惯导系统初始对准理论基础捷联式惯导系统(Strapdown Inertial Navigation System,SINS)的初始对准是其正常工作的前提,对于提高导航精度和长期稳定性具有重要意义。
初始对准的主要目的是确定惯导系统载体在导航坐标系中的初始姿态,以便为后续的导航计算提供准确的基准。
捷联式惯导系统的初始对准过程涉及多个理论基础知识,包括载体运动学、动力学模型、误差分析以及滤波算法等。
载体运动学模型描述了载体在三维空间中的姿态、速度和位置变化,是初始对准过程中姿态解算的基础。
动力学模型则用于描述载体在受到外力作用下的动态行为,为误差分析提供了依据。
在初始对准过程中,误差分析是至关重要的。
捷联惯导系统的算法研究及其仿真实现Study and Simulation of Strapdown Inertial Navigation System1.1.3捷联惯导系统的发展趋势捷联式惯导系统是从20世纪60年代初开始发展起来的。
20世纪70年代以来,作为捷联系统的核心部件—惯性测量装置和计算机技术有了很大发展,而电子技术、计算机技术、现代控制理论的不断进步,为捷联惯性技术的发展创造了有利条件。
在硬件方面,新一代惯性器件如激光陀螺、光纤陀螺的成功研制,为捷联惯导的飞速发展打下了物质基础。
进入20世纪80-90年代,在航天飞机、宇宙飞船、卫星等民用领域及各种战略、战术导弹、军用飞机、反潜武器、作战舰艇等军事领域开始采用动力调谐式陀螺、激光陀螺和光纤式陀螺的捷联惯导系统。
其中激光陀螺和光纤式陀螺是捷联惯导系统的理想器件。
激光陀螺具有角速率动态范围宽、对加速度和震动不敏感、不需温控、启动时间特别短和可靠性高等优点。
激光陀螺惯导系统己在波音757/767、A310民机以及F-20战斗机上试用,精度达到 1.85km/h 的量级。
20世纪90年代,激光陀螺惯导系统估计占到全部惯导系统的一半以上,其价格与普通惯导系统差不多,但由于增加了平均故障间隔时间,其寿命期费用只有普通惯导系统的15%-20%。
光纤陀螺实际上是激光陀螺中的一种,其原理与环型激光陀螺相同,它克服了由激光陀螺闭锁带来的负效应,具有检测灵敏度和分辨率极高、启动时间极短、动态范围极宽、结构简单、零部件少体积小、造价低、可靠性高等优点。
采用光纤陀螺的捷联航姿系统已用于战斗机的机载武器系统及波音777飞机中。
波音777由于采用了光纤陀螺的捷联惯导系统,其平均故障间隔时间可高达20000h。
采用光纤陀螺的捷联惯导系统被认为是一种极有发展前途的导航系统。
而随着航空航天技术的发展及新型惯性器件关键技术的陆续突破,捷联惯导系统的可靠性、精度将会更高。
捷联惯性导航系统算法
1.经典捷联惯性导航算法(毕卡逼近、旋转矢量、四阶龙格库塔算法),使用C语言编写,在
实际的系统中得到验证;
2.组合导航算法,包括:速度匹配、位置匹配、姿态角匹配等;
3.捷联惯性导航系统初始对准算法,粗对准方法:经典解析法、基于惯性系抗晃动基座解析
法,精对准方法:基于Kalman滤波的速度匹配、位置匹配精对准方法;
4.捷联惯导系统姿态算法研究,包括:四阶龙格库塔算法、旋转矢量算法,在典型圆锥运动
环境下对姿态解算算法系数进行优化;
5.利用Allan方差分析对光纤陀螺随机误差进行分析,为了抑制随机误差采用Kalman滤波
器对其进行滤波;
6.单轴旋转捷联惯导系统(SINS)多位置初始对准算法以及导航解算方法;
以上所有算法均采用C语言编写,且已经在实际的惯性导航系统中进行了充分的验证,如果需要交流,可以进一步进行联系!。
捷联式惯性导航原理捷联式惯性导航(Inertial Navigation System,简称INS)是一种基于惯性测量装置的导航系统。
它通过测量线性加速度和角速度来得出加速度、速度和位置信息,从而实现航海、航空和航天等领域的精确导航和定位。
捷联式惯性导航系统由多个惯性传感器组成,包括加速度计和陀螺仪。
加速度计用于测量线性加速度,而陀螺仪则用于测量角速度。
这些传感器安装在导航系统的载体上,并与导航系统的计算单元相连。
捷联式惯性导航系统的原理可分为两个主要步骤:传感器测量和姿态解算。
传感器测量是指测量加速度计和陀螺仪输出的信号。
加速度计通过测量导航系统相对于载体的线性加速度来估计速度和位移。
陀螺仪则通过测量导航系统相对于载体的角速度来估计转角和航向。
这些测量值由传感器输出,并发送给导航系统的计算单元进一步处理。
姿态解算是指根据传感器测量值计算导航系统相对于载体的三维方向。
这个过程基于四元数算法和方向余弦矩阵等数学模型。
根据加速度计的测量值,可以得到系统的重力矢量,从而计算出系统相对于地球的姿态。
陀螺仪的测量值则用于校正角速度误差和姿态的漂移。
通过不断地积分和更新测量值,导航系统可以保持准确的姿态信息。
捷联式惯性导航系统的优势在于其自主性和抗干扰能力。
由于不依赖于外部信号源,如卫星或地面控制点,INS可以在任何环境中进行导航。
同时,由于惯性传感器对外部扰动的响应速度很快,导航系统可以及时纠正估计误差,从而实现高精度的导航和定位。
然而,捷联式惯性导航系统也存在一些缺点。
由于惯性传感器存在漂移和积分误差,INS的导航信息随着时间的推移会变得不准确。
此外,惯性传感器的准确性和稳定性也会受到温度、振动和电磁干扰等因素的影响。
为了解决这些问题,通常需要与其他导航系统,如全球定位系统(GPS)或地面测量系统(如激光测距仪),进行组合导航。
总的来说,捷联式惯性导航系统是一种基于惯性传感器测量的导航系统。
它通过测量线性加速度和角速度,计算出加速度、速度和位置信息。
《捷联惯性导航系统关键技术研究》篇一一、引言捷联惯性导航系统(SINS)是一种基于惯性测量单元(IMU)的导航技术,其通过测量物体的加速度和角速度信息,结合数字积分算法,实现对物体运动状态的精确估计和导航。
SINS具有高精度、抗干扰能力强、无需外部辅助等优点,在军事、航空、航天、航海等领域具有广泛的应用前景。
本文将重点研究捷联惯性导航系统的关键技术,包括传感器技术、算法技术以及系统集成技术。
二、传感器技术研究1. 陀螺仪技术陀螺仪是SINS的核心部件之一,其性能直接影响到整个系统的精度和稳定性。
目前,常用的陀螺仪包括机械陀螺、光学陀螺和微机电系统(MEMS)陀螺等。
其中,MEMS陀螺因其体积小、重量轻、成本低等优点,在SINS中得到了广泛应用。
然而,MEMS陀螺的精度和稳定性仍需进一步提高。
因此,研究高性能的MEMS陀螺制造技术和材料,以及优化其工作原理和结构,是提高SINS性能的关键。
2. 加速度计技术加速度计是SINS的另一个重要传感器,其测量精度和稳定性对SINS的导航性能有着重要影响。
目前,常用的加速度计包括压阻式、电容式和压电式等。
为了提高加速度计的测量精度和稳定性,需要研究新型的加速度计制造技术和材料,以及优化其电路设计和信号处理算法。
三、算法技术研究1. 姿态解算算法姿态解算算法是SINS的核心算法之一,其目的是通过陀螺仪和加速度计的测量数据,计算出物体的姿态信息。
目前常用的姿态解算算法包括欧拉角法、四元数法和卡尔曼滤波法等。
为了提高算法的精度和实时性,需要研究新型的姿态解算算法,如基于机器学习的姿态解算方法等。
2. 误差补偿算法由于传感器自身的误差和外部环境的影响,SINS在运行过程中会产生误差。
为了减小误差对系统性能的影响,需要研究误差补偿算法。
目前常用的误差补偿算法包括基于模型的方法和基于数据的自适应补偿方法等。
研究新型的误差补偿算法和技术手段是提高SINS性能的重要方向。
四、系统集成技术研究1. 数据融合技术数据融合技术是将来自不同传感器的数据信息融合起来,以提高导航系统的整体性能。