静止无功补偿器 $ 静止无功补偿发生器 介绍
- 格式:doc
- 大小:381.50 KB
- 文档页数:7
SVG与SVC的作用及区别一、SVG的作用SVG是典型的电力电子设备,由三个基本功能模块构成:检测模块、控制运算模块及补偿输出模块。
其工作原理为由外部CT检测系统的电流信息,然后经由控制芯片分析出当前的电流信息、如PF、S、Q等;然后由控制器给出补偿的驱动信号,最后由电力电子逆变电路组成的逆变回路发出补偿电流。
SVG静止无功发生器采用可关断电力电子器件(IGBT)组成自换相桥式电路,经过电抗器并联在电网上,适当地调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流。
迅速吸收或者发出所需的无功功率,实现快速动态调节无功的目的。
作为有源形补偿装置,不仅可以跟踪冲击型负载的冲击电流,而且可以对谐波电流也进行跟踪补偿。
二、SVG与SVC的区别SVG是英文StaticVarGenerator的缩写,意思是静止无功发生器;SVC是英文StaticVarCompensator的缩写,是无功补偿器的意思(1)SVG它可分为电压型和电流型两种,其既可提供滞后的无功功率,又可提供超前的无功功率。
简单地说,SVG的基本原理就是将自换相桥式电路通过电抗器或者直接并联在电网上,适当调节桥式电路交流侧输出电压的相位和幅值,或者直接控制其交流侧电流,就可以使该电路吸收或者发出满足要求的无功电流,实现功率无功补偿的目的。
(2)SVC它是用于无功补偿典型的电力电子装置,它是利用晶闸管作为固态开关来控制接入系统的电抗器和电容器的容量,从而改变输电系统的导纳。
按控制对象和控制方式不同,分为晶闸管控制电抗器(TCR)和晶闸管投切电容器(FC)配合使用的静止无功补偿装置(FC+TCR)和TCR与机械投切电容器(MSC)配合使用的装置。
点评:SVG是调整系统电压的主要设备,个人认为其核心为自换向桥式电路,通过IGBT (风机中均按照有该元件)控制实现自换相桥式电路的电流的变化,而自换相桥式电路一般有多个功率单元(目前暂还不清楚)串联组织,形成一个星形接线,发出补偿电流进而调整母线电压。
静止无功发生器——(SVG)原理简介静止无功发生器 (SVG) 是指采用全控型电力电子器件组成的桥式变流器来进行动态无功补偿的装置。
SVG 的思想早在 20 世纪 70 年代就有人提出 ,1980 年日本研制出了 20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991 年和 1994 年日本和美国分别研制成功了80MVA 和 10OMVA 的采用 GTO 晶闸管的SVG 。
目前国际上有关 SVG 的研究和将其应用于电网或工业实际的兴趣正是方兴未艾 , 国内有关的研究也已见诸报道。
与传统的以 TCR 为代表的 SVC 相比 ,SVG 的调节速度更快 , 运行范围宽 , 而且在采取多重化或 PWM 技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是 ,SVG 使用的电抗器和电容元件远比 SVC 中使用的电抗器和电容要小 , 这将大大缩小装置的体积和成本。
由于 SVG 具有如此优越的性能 , 是今后动态无功补偿装置的重要发展方向。
一、SVG 的基本原理及特点SVG 的基本原理是将桥式变流电路通过电抗器并联 ( 或直接并联 ) 在电网上 , 适当调节桥式变流电路交流侧输出电压的相位和幅值或者直接控制其交流侧电流 , 使该电路吸收或者发出满足要求的无功电流 , 从而实现动态无功补偿的目的。
在单相电路中 , 与基波无功功率有关的能量是在电源和负载之间来回往返的。
但是在平衡的三相电路中 , 不论负载的功率因数如何 , 三相瞬时功率之和是一定的 , 在任何时刻都等于三相总的有功功率。
因此总体上看,在三相电路的电源和负载之间没有无功能量的来回往返 ,无功能量是在三相之间来回往返的。
所以 , 如果能用某种方法将三相各部分总体上统一起来处理 , 则因为总体来看三相电路电源和负载间没有无功能量的传递 , 在总的负载侧就无需设置无功储能元件。
三相桥式变流电路实际上就具有这种将三相各部分总体上统一起来处理的特点。
静止无功发生器(SVG)无功补偿静止无功发生器(SVG)无功补偿专业知识:静止无功发生器(SVG)是指采用全控型电力电子器件组成的桥式变流器来进态无功补偿的装置。
SVG的思想早在20世纪70年代就有人提出,1980 年日本研制出了20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991年和1994年日本和美国分别研制成功了80MVA 和10OMVA的采用GTO晶闸管的SVG。
目前国际上有关SVG的研究和将其应用于电网或工业实际的兴趣正是方兴未艾,国内有关的研究也已见诸报道。
与传统的以TCR为代表的SVC相比,SVG的调节速度更快,运行范围宽,而且在采取多重化或PWM技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是,SVG使用的电抗器和电容元件远比SVC中使用的电抗器和电容要小,这将大大缩小装置的体积和成本。
由于SVG具有如此优越的性能,是今后动态无功补偿装置的重要发展方向。
无功补偿的专业知识:与电网中的有功损耗相比,无功损耗要大的多,这是因为高压线路、变压器的等值电抗要比电阻大得多,并且变压器的励磁无功损耗也要比励磁有功损耗更大,事实证明电网最基本的无功电源——发电机所发出的无功功率远远满足不了电网对无功的需求,因此对电网进行无功补偿显得尤为必要。
另外,对电网采取适当的无功补偿可以稳定受端及电网的电压,在长距离输电线路中选择合适的地点设置无功补偿装置,还可以改善电网性能,提高输电能力,在负荷侧合理配置无功,可以提高供用电系统的功率因数,减少功率损耗,因此,电网中无功补偿的作用已得到普遍重视。
1.电网无功补偿的方法电网无功补偿方法有很多种,从传统的带旋转机械的方式到现代的电力电子元件的应用经历了近一个世纪的发展历程,下面将按无功补偿方式的发展顺序逐一论述电网的无功补偿方法。
1.1同步调相机同步调相机是一种专门设计的无功功率电源,相当于空载运行的同步电动机。
调节其励磁电流可以发出或吸收无功功率,在其过励磁运行时,向系统供给感性无功功率而起无功电源的作用,可提高系统电压;在欠励磁运行时,它会从系统吸取感性无功功率而起无功负荷的作用,可降低系统电压,同步调相机欠励磁运行吸收无功功率的能力,约为其过励磁运行发出无功功率容量的50%~65%。
静止无功补偿发生器静止无功发生器,英文描述为:Static V ar Generator,简称为SVG。
又称高压动态无功补偿发生装置,或静止同步补偿器。
是指由自换相的电力半导体桥式变流器来进行动态无功补偿的装置。
SVG是目前无功功率控制领域内的最佳方案。
相对于传统的调相机、电容器电抗器、以晶闸管控制电抗器TCR为主要代表的传统SVC等方式,SVG有着无可比拟的优势。
一、SVG无功补偿装置的应用场合凡是安装有低压变压器地方及大型用电设备旁边都应该配备无功补偿装置(这是国家电力部门的规定),特别是那些功率因数较低的工矿、企业、居民区必须安装。
大型异步电机、变压器、电焊机、冲床、车床群、空压机、压力机、吊车、冶炼、轧钢、轧铝、大型交换机、电灌设备、电气机车等尤其需要。
居民区除白炽灯照明外,空调、冷冻机等也都是无功功率不可忽视的耗用对象。
农村用电状况比较恶劣,多数地区供电不足,电压波动很大,功率因数尤其低,加装补偿设备是改善供电状况、提高电能利用率的有效措施。
二、SVG无功补偿装置与目前国内其他产品相比的优势1、补偿方式:国内的无功补偿装置基本上是采用电容器进行无功补偿,补偿后的功率因素一般在0.8-0.9左右。
SVG采用的是电源模块进行无功补偿,补偿后的功率因素一般在0.98以上,这是目前国际上最先进的电力技术,国内掌握这项技术的目前就我们一家;2、补偿时间:国内的无功补偿装置完成一次补偿最快也要200毫秒的时间,SVG在5-20毫秒的时间就可以完成一次补偿。
无功补偿需要在瞬时完成,如果补偿的时间过长会造成该要无功的时候没有,不该要无功的时候反而来了的不良状况;3、有级无极:国内的无功补偿装置基本上采用的是3—10级的有级补偿,每增减一级就是几十千法,不能实现精确的补偿。
SVG可以从0.1千法开始进行无极补偿,完全实现了精确补偿;4、谐波滤除:国内的无功补偿装置因为采用的是电容式,电容本身会放大谐波,所以根本不能滤除谐波,SVG不产生谐波更不会放大谐波,并且可以滤除50%以上的谐波;5、使用寿命:国内的无功补偿装置一般采用接触器或可控硅控制,造成使用寿命较短,一般在三年左右,自身损耗大而且要经常进行维护。
静止无功发生器(SVG)又称静止同步补偿器(STATCOM).
主要器件:断路器、变压器、逆变器、电容器。
核心器件:IGBT 功能:维持系统电压恒定、谐波治理、抑制电压闪变。
优点:可对频率和大小都变化的谐波以及变化的无功功率进行补偿,对补偿对象的变化有极快的响应,补偿无功功率时不需要储能元件,补偿谐波时所需储能元件的容量不大,且补偿无功功率的大小可以做到连续调节;不会引起谐振短路;可以吸纳无功;精准电压控制(该装置除了可以按照功率因数或者无功功率控制之外,还可以按照电压幅值来控制,确保用户获得的电压的平稳性,降低电压纹波);受电网阻抗的影响不大,不容易和电网阻抗发生谐振;且可以跟踪电网频率的变化,故补偿性能不受电网频率变化的影响。
缺点:目前仅在大容量区域变电所使用,造价高昂。
适用场合:适用于大容量无功补偿的枢纽变电站。
SVC-MCR 主要器件:FC+MCR FC+MCR投切方式:FC固定投切,通过控制晶闸管的导通角来控制流过铁芯的磁通,磁通的强弱直接决定了铁芯的饱和程度,从而最终实现对电感值大小的控制。
静止无功补偿器和静止无功发生器的比较
SVC STATCOM
基本原理控制或投切并联阻抗通过电抗连接的控制电压或电流源
稳态特性见图4.0.9-1和图4.0.9-2 见图4.0.9-1和图4.0.9-2
恒阻抗/电纳恒电流
高/低电压下的运
行
占地面积大(电抗器,电容器)小于SVC
损耗 1.0~1.5% 1.0~1.5%
对暂态的影响无输出最大电流
电压控制及其响应响应取决于系统强度,要求变增益控制响应取决于系统强度,比SVC更快、更稳
定
对传输功率、
取决于容量和位置取决于容量和位置,但性能大大优于SVC 稳定及阻尼的改善
初始通电从高压系统直接通电储存能量迅速充电到运行电压
闪变补偿优于SVC
谐波产生产生低阶谐波产生高次谐波,取决于开关模式
系统及谐振对既有谐振有影响不影响既有谐振
滤波通常要求无源滤波通常不要求无源滤波
存在响应限制性能大大优于SVC
电压/电能质量改
善能力。
静止无功发生器(SVG)无功补偿专业知识:静止无功发生器(SVG)是指采用全控型电力电子器件组成的桥式变流器来进态无功补偿的装置。
SVG的思想早在20世纪70年代就有人提出,1980 年日本研制出了20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991年和1994年日本和美国分别研制成功了80MVA和10OMVA的采用GTO晶闸管的SVG。
目前国际上有关SVG的研究和将其应用于电网或工业实际的兴趣正是方兴未艾,国内有关的研究也已见诸报道。
与传统的以TCR为代表的SVC相比,SVG的调节速度更快,运行范围宽,而且在采取多重化或PWM技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是,SVG使用的电抗器和电容元件远比SVC中使用的电抗器和电容要小,这将大大缩小装置的体积和成本。
由于SVG具有如此优越的性能,是今后动态无功补偿装置的重要发展方向。
无功补偿的专业知识:与电网中的有功损耗相比,无功损耗要大的多,这是因为高压线路、变压器的等值电抗要比电阻大得多,并且变压器的励磁无功损耗也要比励磁有功损耗更大,事实证明电网最基本的无功电源——发电机所发出的无功功率远远满足不了电网对无功的需求,因此对电网进行无功补偿显得尤为必要。
另外,对电网采取适当的无功补偿可以稳定受端及电网的电压,在长距离输电线路中选择合适的地点设置无功补偿装置,还可以改善电网性能,提高输电能力,在负荷侧合理配置无功,可以提高供用电系统的功率因数,减少功率损耗,因此,电网中无功补偿的作用已得到普遍重视。
1.电网无功补偿的方法电网无功补偿方法有很多种,从传统的带旋转机械的方式到现代的电力电子元件的应用经历了近一个世纪的发展历程,下面将按无功补偿方式的发展顺序逐一论述电网的无功补偿方法。
1.1同步调相机同步调相机是一种专门设计的无功功率电源,相当于空载运行的同步电动机。
调节其励磁电流可以发出或吸收无功功率,在其过励磁运行时,向系统供给感性无功功率而起无功电源的作用,可提高系统电压;在欠励磁运行时,它会从系统吸取感性无功功率而起无功负荷的作用,可降低系统电压,同步调相机欠励磁运行吸收无功功率的能力,约为其过励磁运行发出无功功率容量的50%~65%。
静止无功发生器SVGC简要说明书上海华坤电器有限公司一、产品简介1.1概述SVGC无功补偿装置是一种可靠性更高、基本无谐波污染、体积更小、对环境适应能力更强的动态无功补偿装置。
将传统的电容补偿与现代的静止无功发生器结合起来具有动态响应速度快、补偿精度高、补偿容量大、防止投切震荡的优点。
SVGC柜体如图1-1所示,SVGC外观图如图1-2所示。
图1-1 SVGC机柜尺寸图图1-2 SVGC机柜外观图1.2 原理SVG的基本原理是利用可关断大功率电力电子器件(如IGBT)组成自换相桥式电路,经过变压器并联在电网上,适当地调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流,就可以使该电路吸收或者发出满足要求的无功电流,实现动态无功补偿的目的。
与此同时SVG中的处理器(DSP)会将采集到的电网电压信号和电网电流信号通过瞬时无功算法之后提取出无功功率的大小。
这个参数就是作为投切电容的依据。
SVG并联于电网中,相当于一个可变的无功电流源,其无功电流可以快速地跟随负荷无功电流的变化而变化,自动补偿系统所需无功功率。
由于SVG的响应速度极快,所以又称为静止同步补偿器(Static Synchronous Compensator,简称STATCOM)。
举例:SVGC检测到负载端含有45Kvar的无功的时候,SVG在50ms内立刻发出30Kvar 的无功功率,同是会对30S内检测系统中无功功率的变换情况,在确定45Kvar不是由于负载突变造成的之后,SVG会发出电容的投入指令。
此时检测到负载端的无功功率只剩下15Kvar,SVG会降低输出功率,发出15Kvar的无功功率。
内部结构示意图如图1-3所示,产品接线图如图1-4所示。
SVG示意图LC电容组示意图图1-3 SVGC系统连接示意图图1-4 SVGC系统接线图二、技术参数三、控制屏的使用3.1起始系统界面图3-1 起始系统界面上电初始化:触摸启动后下发配方中的数据,供主控制器初始化使用。
静止无功补偿器(STATCOM)是一种用于电力系统中的电力质量控制设备,它可以实时响应电力系统中的无功功率需求变化,通过调节电流的相位和幅值,提供无功功率的动态补偿。
本文将详细解释与静止无功补偿器工作原理相关的基本原理。
1. 无功功率的产生和补偿在电力系统中,无功功率是由电感和电容元件引起的。
电感元件(如电感线圈、变压器等)会产生感性无功功率,而电容元件(如电容器、电缆等)会产生容性无功功率。
这些无功功率会导致电压的波动和不稳定,影响电力系统的运行和电力质量。
静止无功补偿器可以通过控制电流的相位和幅值,实时地调节电力系统中的无功功率,使其与有功功率保持平衡,从而提高电力系统的稳定性和可靠性。
2. 静止无功补偿器的基本原理静止无功补偿器主要由一个直流电压源、一个逆变器以及一个电流控制系统组成。
2.1 直流电压源静止无功补偿器的直流电压源通常由一个直流电压源和一个电容滤波器组成。
直流电压源通过电容滤波器提供稳定的直流电压,用于逆变器的工作。
2.2 逆变器逆变器是静止无功补偿器的核心部件,它将直流电压转换为交流电压,并通过控制电流的相位和幅值来实现无功功率的补偿。
逆变器通常采用可控硅器件(如GTO、IGBT等)作为开关元件,通过不断开关和导通这些器件,可以产生可控的交流电压。
逆变器的工作原理如下:1.通过控制开关器件的导通和开断,逆变器可以产生可控的脉冲宽度调制(PWM)波形。
2.逆变器通过PWM波形控制开关器件的导通时间,从而控制输出电压的幅值。
3.逆变器还通过改变PWM波形的相位,控制输出电压的相位。
2.3 电流控制系统电流控制系统是静止无功补偿器的核心控制部分,它通过检测电力系统中的电流和电压,实时计算出无功功率的补偿需求,并控制逆变器的工作,实现无功功率的动态补偿。
电流控制系统的工作原理如下:1.电流控制系统通过电流传感器和电压传感器实时检测电力系统中的电流和电压。
2.电流控制系统根据检测到的电流和电压信号,计算出电力系统中的无功功率需求。
静止无功补偿发生器SVG/STATCOM介绍静止无功发生器,英文描述为:Static Var Generator,简称为SVG。
又称高压动态无功补偿发生装置,或静止同步补偿器。
是指由自换相的电力半导体桥式变流器来进行动态无功补偿的装置。
SVG是目前无功功率控制领域内的最佳方案。
相对于传统的调相机、电容器电抗器、以晶闸管控制电抗器TCR为主要代表的传统SVC等方式,SVG有着无可比拟的优势。
静止无功补偿技术经历了3代:第1代为机械式投切的无源补偿装置,属于慢速无功补偿装置,在电力系统中应用较早,目前仍在应用;第2代为晶闸管投切的静止无功补偿器(SVC),属无源、快速动态无功补偿装置,出现于20世纪70年代,国外应用普遍,我国目前有一定应用,主要用于配电系统中,输电网中应用很少;第3代为基于电压源换流器的静止同步补偿器(Static Synchronous Compensator,STATCOM),亦称ASVG,属快速的动态无功补偿装置,国外从20世纪80年代开始研究,90年代末得到较广泛的应用。
随着大功率全控型电力电子器件GTO、IGBT及IGCT的出现,特别是相控技术、脉宽调制技术(PWM)、四象限变流技术的提出使得电力电子逆变技术得到快速发展,以此为基础的无功补偿技术也得以迅速发展。
静止同步补偿器,作为FACTS家族最重要的成员,在美国、德国、日本、中国相继得到成功应用。
电压型的STATCOM直流侧采用直流电容为储能元件,通过逆变器中电力半导体开关的通断将直流侧电压转换成交流侧与电网同频率的输出电压。
当只考虑基波频率时,STATCOM可以看成一个与电网同频率的交流电压源通过电抗器联到电网上。
一.工作原理STATCOM-的基本原理是利用可关断大功率电力电子器件(如IGBT)组成自换相桥式电路,经过电抗器并联在电网上,适当地调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流,就可以使该电路吸收或者发出满足要求的无功电流,实现动态无功补偿的目的。
STATCOM静止同步补偿器关键词:静止同步补偿器晶闸管逆变器无功补偿 STATCOM静止同步补偿器(STATCOM)是目前用于电力系统中性能最好的无功补偿装置 ,是柔性交流输电系统的核心。
静止同步补偿器对输电系统的作用,分析了静止同步补偿器的基本工作原理、瞬时无功信号检测方法、以及建了STSTCOM的模型和其仿真图,阐述了静止同步补偿器补偿效果,并提出今后静止同步补偿器技术的发展趋势。
什么是静止同步补偿器静止同步补偿器(Static Synchronous Compensator,STATCOM)应用了新一代的电力电子器件(如门极可关断晶闸管(GateTurn-off Thyristor,GTO)、绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、集成门极换相型晶闸管(IntegratedGate Commutated Thyristor,IGCT)和现代控制技术(如逆系统、直接反馈线性化等), 具有补偿系统感性和容性无功、提高系统功率因数、改善电能质量、提高电力系统稳定性等多重功能。
STATCOM自问世以来, 就引起各国电力科研和工业界的广泛重视, 得到了迅速发展和应用, 它是目前用于电力系统中性能最好的无功补偿装置,是柔性交流输电系统的核心。
STATCOM在电力系统中的作用是进行无功补偿,维持连接点的电压为给定值,提高系统电压的稳定性,改善系统的稳态性能和动态性能。
STATCOM是基于瞬时无功功率的概念和补偿原理,采用全控型开关器件组成自换相逆变器,辅之以小容量储能元件构成无功补偿装置。
与现有的静止无功补偿装置(SVC)相比,具有调节速度更快、运行范围更宽、吸收无功连续、谐波电流小、损耗低、所用电抗器和电容器容量及安装面积大为降低等优点。
STATCOM对输电系统的作用输电系统是一个互联的弱阻尼系统,系统的负荷和运行状态处于不断变化中,即系统不断地发生扰动,因此很容易出现振荡。
SVC & SVG产品简介SVC静止无功补偿器(Static Var Compensator),是一种无功补偿比较科学的方式,能提高电网的功率因数、滤除负荷的谐波、消除三相不平衡电流、改善电网运行电能质量。
基于DSP的全数字控制系统,具有运算速度快、处理数据量大,实现实时控制量计算。
该装置应用于电网,作用为:能实现调相调压功能,提高线路的输送能力,提高稳定运行水平,改善电能质量,提高供电设备的利用率,提高输电效率,改善供电质量,提高输电安全性。
应用于电气化铁路、冶金、炼钢等工业用户,可进行动态无功功率补偿,电压控制,谐波和负序治理,提高用户的生产工效,提高产品质量和降低能耗。
原理:静止无功补偿器是一种没有旋转部件,快速、平滑可控的动态无功功率补偿装置。
它是将可控的电抗器和电力电容器(固定或分组投切)并联使用。
电容器可发出无功功率(容性的),可控电抗器可吸收无功功率(感性的)。
通过对电抗器进行调节,可以使整个装置平滑地从发出无功功率改变到吸收无功功率(或反向进行),并且响应快速。
作用:静止无功补偿器在低压供配电系统中广泛应用于电压调整、改善电压水平、减少电压波动、改善功率因数、抑制电压闪变、平衡不对称负荷,静止无功补偿器配套的滤波器能吸收谐波和减小谐波干扰等。
在超高压输电系统中,静止无功补偿器的作用是提供无功补偿、调整电压,改善系统电压水平,改善电力系统的动态和暂态稳定性,抑制工频过电压等。
SVC目前广泛应用于输电系统和负载无功补偿,其典型代表是晶闸管控制电抗器+固定电容器(TCR+FC)、晶闸管投切电容器(TSC)、以及磁控电抗器+固定电容器(MCR+FC)等。
TCR晶闸管控制电抗器(Thyristor Controlled Reactor),由电抗器及晶闸管等构成,与系统并联并从系统吸收无功功率的静止无功装置。
通过控制晶闸管阀的导通角使其等效感抗连续变化。
晶闸管控制电抗器TCR+FC:TCR通过调节晶闸管的触发角α,实现连续调节补偿装置的无功功率。
利用TCR回路吸收的感性无功功率,可以对无功功率进行动态补偿,使得并联滤波器中多余的无功功率得到平衡,确保补偿点的电压接近维持不变。
其基本组成如下图TCR+FC基本组成MCR磁阀式可控电抗器/磁控电抗器(Magnetic Control Reactor),是一种容量可调的并联电抗器,主要用于电力系统的无功补偿。
磁控电抗器MCR+FC:MCR利用直流助磁原理,通过附加直流励磁磁化电抗器铁芯,通过调节磁控电抗器的饱和程度来改变铁芯的磁导率,实现电抗值的连续、快速调节。
从而实现无功容量的连续可调。
其基本组成如下图MCR+FC基本组成TCR与MCR的区别SVG 静止无功发生器(Static Var Generator),又称:高压动态无功补偿发生装置;或STATCOM (Static Synchronous Compensator)--静止同步补偿器;还叫STATCON—静止调相机。
是指由自换相的电力半导体桥式变流器来进行动态无功补偿的装置。
在电力系统中,为减少配电网向负荷提供大量无功电流而造成功率损耗,在各受电点均需配置相应电压等级的无功补偿装置,以提高电网输电能力,节约能源。
原理:SVG采用可关断电力电子器件(如IGBT)组成自换相桥式电路,经过电抗器并联在电网上,适当地调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流。
迅速吸收或者发出所需的无功功率,实现快速动态调节无功的目的。
作为有源形补偿装置,不仅可以跟踪冲击型负载的冲击电流,而且可以对谐波电流也进行跟踪补偿。
电压源型逆变器包含直流电容和逆变桥两个部分,其中逆变桥由可关断的半导体器件IGBT 组成。
工作中,通过调节逆变桥中IGBT器件的开关,可以控制直流逆变到交流的电压的幅值和相位,因此,整个装置相当于一个调相电源。
通过检测系统中所需的无功,可以快速发出大小相等、相位相反的无功,实现无功的就地平衡,保持系统实事高高率因数运行。
SVG基本原理主要是将逆变器经过电抗器或者变压器或者直接并联在电网上,通过调节逆变器交流侧输出电压的幅值和相位,或者直接控制其交流侧电流的幅值和相位,迅速吸收或者发出所需要的无功功率,实现快速动态调节无功的目的。
其基本电路有2种,电压源型逆变电路和电流源型逆变电路。
电压源型逆变电路电流源型逆变电路SVC与SVG的区别静止无功补偿器(SVC)该装置产生无功和滤除谐波是靠其电容和电抗本身的性质产生的。
静止无功发生器(SVG)该装置产生无功和滤除谐波是靠其内部电子开关频繁动作产生无功电流和与谐波电流相反的电流。
无功补偿器,通常是指补偿电容器的控制器,或指成套的电容补偿装置,是无源的被动补偿设备;无功发生器通常是指类似有源滤波器一类的设备,或者移相发电机,等等。
这类设备可以主动发生无功功率。
TCR\MCR\SCG相比较工作原理通过调整触发角的大小就可以改变电抗器所吸收的无功分量,达到调整无功功率的效果采用直流励磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,改变电抗器感抗电流,以投入的电抗器感性无功容量变化来补偿系统容性无功动态补偿装置SVG是基于大功率逆变器的动态无功补偿装置,它以大功率三相电压型逆变器为核心,其输出电压通过连接电抗接入系统,与系统侧电压保持同频、同相,通过调节其输出电压幅值与系统电压幅值的关系来确定输出功率的性质,当其幅值大于系统侧电压幅值时输出容性无功,小于时输出感性无功。
技术指标40ms 300ms 响应时间10ms,从容性无功到感性无功连续平滑调节优点可以实现较快、连续的无功功率调节,具有反映时间快、运行可靠、无级补偿、可分相调节、能平衡有功,使用范围广功率因数达到0.90-0.99的要求,无功补偿容量自动无级调节,不产生谐波,可靠性高,维护简单,使用寿命长,应用电压等级广泛除较低次的谐波,并使用较高的谐波限制在一定范围内,使用直流电容来维持稳定的直流电源电压,和SVC使用的交流电容相比,直流电容量相对较小,成本低;另外,在系统电压很低的情况下,仍能输出额定无功电流,而SVC补偿的无功电流随系统电压的降低而降低缺点结构复杂,损耗大,任何一只SCR击穿,都会使晶闸管整体损坏;对冷却要求严格,设备造价、建设施工及运行维护费用很高,对维护人员要专门培训以提高维护水平;占地面积大,产生谐波等相对于TCR型SVC,其谐波水平,有功损耗,占地面积都要小,但是调节时间长,成本高,温升和噪音是需要控制的控制复杂,成本高,35Kv以上系统没有产品应用场合35Kv及以下系统,与FC\MSC\TSC配合0.4-500Kv系统,适用于冲击性负荷;牵引变电站,电弧炉,轧钢机,造船厂中低压系统,电力行业,指各大电网公司,省电力公司,各地的供电公司、电气化铁道及城市轨道交通行业、石化和天然气行业、钢铁与冶金行业、矿山、造船业调节范围超前\滞后滞后超前\滞后控制方式连续连续连续调节灵活性好好很好启动速度较快快快反映速度较快快快调节精度好好好产生高次谐波多中少电压调节效应正\负正正\负控制难易程度较简单/复杂简单复杂技术成熟好好一般单位容量投资中等低高维护检修方便不常维修方便噪音小小小分相调节可以可以可以电磁阀(Electromagnetic Valve),是用电磁控制的工业设备,用在工业控制系统中调整介质的方向、流量、速度和其他的参数。
电磁阀可以配合不同的电路来实现预期的控制,而控制的精度和灵活性都能够保证。
电磁阀有很多种,不同的电磁阀在控制系统的不同位置发挥作用,最常用的是单向阀、安全阀、方向控制阀、速度调节阀等。
电磁阀分类:1. 原理分类(3类)1)直动式电磁阀原理:通电时,电磁线圈产生电磁力把关闭件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。
特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。
2)分步直动式电磁阀原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。
当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。
特点:在零压差或真空、高压时亦能可*动作,但功率较大,要求必须水平安装。
3)先导式电磁阀:原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关电磁阀闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动关闭件向下移动,关闭阀门。
特点:流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件。
2. 结构材料分类(6类)直动膜片结构、分步直动膜片结构、先导膜片结构、直动活塞结构、分步直动活塞结构、先导活塞结构。
3. 功能分类(45类)电容器(Capacitor),电路中具有储存电荷功能的装置;电容器的分类:1.按照结构分三大类:固定电容器、可变电容器和微调电容器。
2.按电解质分类:有机介质电容器、无机介质电容器、电解电容器和空气介质电容器等。
3、按用途分有:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型电容器。
4.按制造材料的不同可以分为:瓷介电容、涤纶电容、电解电容、钽电容,还有先进的聚丙烯电容等等5.高频旁路:陶瓷电容器、云母电容器、玻璃膜电容器、涤纶电容器、玻璃釉电容器。
6.低频旁路:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器。
7、滤波:铝电解电容器、纸介电容器、复合纸介电容器、液体钽电容器。
8.调谐:陶瓷电容器、云母电容器、玻璃膜电容器、聚苯乙烯电容器。
9.低耦合:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器、固体钽电容器。
10.小型电容:金属化纸介电容器、陶瓷电容器、铝电解电容器、聚苯乙烯电容器、固体钽电容器、玻璃釉电容器、金属化涤纶电容器、聚丙烯电容器、云母电容器。