静止无功补偿器的控制方式
- 格式:doc
- 大小:34.00 KB
- 文档页数:2
静止无功发生器(SVG)无功补偿静止无功发生器(SVG)无功补偿专业知识:静止无功发生器(SVG)是指采用全控型电力电子器件组成的桥式变流器来进态无功补偿的装置。
SVG的思想早在20世纪70年代就有人提出,1980 年日本研制出了20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991年和1994年日本和美国分别研制成功了80MVA 和10OMVA的采用GTO晶闸管的SVG。
目前国际上有关SVG的研究和将其应用于电网或工业实际的兴趣正是方兴未艾,国内有关的研究也已见诸报道。
与传统的以TCR为代表的SVC相比,SVG的调节速度更快,运行范围宽,而且在采取多重化或PWM技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是,SVG使用的电抗器和电容元件远比SVC中使用的电抗器和电容要小,这将大大缩小装置的体积和成本。
由于SVG具有如此优越的性能,是今后动态无功补偿装置的重要发展方向。
无功补偿的专业知识:与电网中的有功损耗相比,无功损耗要大的多,这是因为高压线路、变压器的等值电抗要比电阻大得多,并且变压器的励磁无功损耗也要比励磁有功损耗更大,事实证明电网最基本的无功电源——发电机所发出的无功功率远远满足不了电网对无功的需求,因此对电网进行无功补偿显得尤为必要。
另外,对电网采取适当的无功补偿可以稳定受端及电网的电压,在长距离输电线路中选择合适的地点设置无功补偿装置,还可以改善电网性能,提高输电能力,在负荷侧合理配置无功,可以提高供用电系统的功率因数,减少功率损耗,因此,电网中无功补偿的作用已得到普遍重视。
1.电网无功补偿的方法电网无功补偿方法有很多种,从传统的带旋转机械的方式到现代的电力电子元件的应用经历了近一个世纪的发展历程,下面将按无功补偿方式的发展顺序逐一论述电网的无功补偿方法。
1.1同步调相机同步调相机是一种专门设计的无功功率电源,相当于空载运行的同步电动机。
调节其励磁电流可以发出或吸收无功功率,在其过励磁运行时,向系统供给感性无功功率而起无功电源的作用,可提高系统电压;在欠励磁运行时,它会从系统吸取感性无功功率而起无功负荷的作用,可降低系统电压,同步调相机欠励磁运行吸收无功功率的能力,约为其过励磁运行发出无功功率容量的50%~65%。
无功补偿控制策略1.静态无功补偿控制策略:静态无功补偿控制策略主要包括静态无功补偿器的投入和退出控制。
静态无功补偿器包括无功补偿电容器(电感器)和静止补偿器(如STATCOM和SVC等)。
静态无功补偿器的控制主要是根据电压和无功功率的变化,通过控制开关装置对电容器(电感器)和静止补偿器的投入和退出进行控制,来实现无功功率的补偿。
2.动态无功补偿控制策略:动态无功补偿控制策略主要采用电力电子设备来实现无功功率补偿。
常见的动态无功补偿设备有同步电动机发电机组(Synchronous Condenser)、UPFC(Unified Power Flow Controller)等。
动态无功补偿控制策略主要是对动态无功补偿设备的控制参数进行调节,以实现对电力系统无功功率的精确控制。
3.直接电流控制策略:直接电流控制策略是一种基于直接电流测量的无功功率补偿控制策略。
该策略通过直接测量负荷侧的电流大小和方向,判断无功功率补偿的需求,并通过控制电力电子装置来实现无功功率的补偿。
这种策略具有实时性强、响应快、控制精度高等优点,但需要在负荷侧进行直接电流测量,因此要求测量装置的精度和可靠性较高。
4.基于模糊控制的策略:基于模糊控制的无功补偿策略是一种基于模糊逻辑的控制手段。
该策略通过利用模糊控制的非线性和模糊度的特点,构建模糊控制器,从而实现对无功功率的补偿。
模糊控制器可以根据实际控制需求和工作状态进行自适应调整,从而提高控制的准确性和稳定性。
从上述介绍可以看出,无功补偿控制策略的选择将取决于电力系统的特点和需求。
不同的策略具有不同的特点和适用范围,需要根据具体情况来选择和设计。
同时,无功补偿控制策略的效果也需要经过充分的仿真和实验验证,才能确保在实际应用中能够取得良好的性能和效果。
静止同步补偿器电压调节控制特性说明皎静止同步补偿器是一种由并联接入系统的电压源换流器构成的动态无功补偿装置,又简称为STATCOM或SVG。
其输出的容性或感性无功电流连续可调,其输出无功电流在可运行电压围与系统电压无关,具有良好的无功控制能力。
一、SVG主要控制方式简介静止同步补偿器目前广泛用于新能源接入领域,用于校正功率因数、稳定电压和提高风机或光伏变流器低电压/高电压穿越能力。
静止无功补偿装置的控制模式主要分为如下几种:恒无功控制模式、无功控制模式和电压控制模式等基本控制模式,主要的控制模式说明如下:1、恒无功控制模式通过闭环控制,使链式STATCOM运行在给定无功功率状态的控制模式。
此模式主要应用于设备调试、检修或功能特性测试时,当特殊情况下需要手动指定输出无功的时候也可使用此模式。
2、电压控制模式通过闭环控制,使考核点电压维持在设定水平的控制模式,是SVG连续运行控制的基本模式之一。
3、无功控制模式使负荷的无功量与SVG输出无功之差维持在一个规定的围的控制方式,即总无功不超过一个定值,这个值根据系统要求确定,称为调节死区。
4、电压无功联合控制方式以上电压控制方式和无功控制方式是控制器的基本控制模式,电压和无功可以单独控制也可联合控制,或加权联合控制。
一般采用在调度预先确定的电压合格围(如在设定电压的-3%~+7%或-5%~+5%)采用无功控制方式,以降低与电网的无功交换,提高功率因数,降低网损;在超过此电压围时,则转入电压控制,用于电压稳定,提高风场电压穿越能力。
5、AVC控制模式AVC控制模式是SVG设备接受AVC控制指令输出(无功或电压指令)的控制模式。
当同一风场存在多套动态无功补偿设备时,应采用AVC协调各套无功补偿设备输出,AVC应下发无功控制指令,若下发电压控制指令,会造成不同无功补偿装置输出不均衡或输出震荡。
二、SVG电压控制说明SVG进行电压控制的VI特性曲线见下图1。
图中向右上方倾斜的线表示SVG输出无功与目标电压的关系,SVG装置实际运行时,此线上的每一个点均代表实际的运行状态所对应的电压与无功功率(或无功电流)。
静止同步补偿器[浏览次数:133次]静止同步补偿器(Static Synchronous Compensator,STA TCOM)是柔性交流输电系统(Flexible AC Transmission System,FACTS)的核心装置和核心技术之一。
采用新一代的电力电子器件,如:门极可关断晶闸管(GTO),绝缘栅双极型晶体管(IGBT),集成门极换向晶闸管(IGCT),并且采用现代控制技术,其在电力系统中的作用是补偿无功,提高系统电压稳定性,改善系统性能。
与传统的无功补偿装置相比,STATCOM 具有调节连续,谐波小,损耗低,运行范围宽,可靠性高,调节速度快等优点,自问世以来,便得到了广泛关注和飞速发展。
目录静止同步补偿器分类静止同步补偿器控制方式静止同步补偿器工作原理静止同步补偿器应用及现状静止同步补偿器分类从理论上可以将静止同步补偿器分为电压源型和电流源型。
就其电路结构来说,电压源型静止同步补偿器直流侧并联有大电容,保证在持续充放电或器件换向过程电压不会发生很大的变化,桥侧串联电感,而电流源型静止同步补偿器则是直流侧串联大电感,保证在器件换向或充放电器件电流不会有大的波动,桥侧并联电感。
如图所示。
在实际应用中,常用的大容量静止同步补偿器采用的基本都是电压源型结构。
但是可以将SVG控制为电流源来进行无功补偿。
4提出了一种新的静止同步补偿器控制策略即采用电压控制电流源(VCCS)的策略和改进的电压控制电压源(VCVS)的策略来补偿电力系统公共连接点(Point of Common Coupling,PCC)电压不平衡,特别是在较小容量时采用VCCS方式将能达到最好的补偿效果。
按构成基本单元逆变器模块,可以将静止同步补偿器分为单相桥二电平,三相桥二电平,三相桥多电平。
在大容量高电压等级的应用场合中,往往需要将多个低压小容量变换器通过控制技术对电流波形的瞬时值进行反馈控制,直接指令电流的发生,结构简单,电流调节响应快,对扰动的鲁棒性好,但是只适用于中小容量场合,对于大容量场合具有很大的局限性。
静止无功补偿发生器静止无功发生器,英文描述为:Static V ar Generator,简称为SVG。
又称高压动态无功补偿发生装置,或静止同步补偿器。
是指由自换相的电力半导体桥式变流器来进行动态无功补偿的装置。
SVG是目前无功功率控制领域内的最佳方案。
相对于传统的调相机、电容器电抗器、以晶闸管控制电抗器TCR为主要代表的传统SVC等方式,SVG有着无可比拟的优势。
一、SVG无功补偿装置的应用场合凡是安装有低压变压器地方及大型用电设备旁边都应该配备无功补偿装置(这是国家电力部门的规定),特别是那些功率因数较低的工矿、企业、居民区必须安装。
大型异步电机、变压器、电焊机、冲床、车床群、空压机、压力机、吊车、冶炼、轧钢、轧铝、大型交换机、电灌设备、电气机车等尤其需要。
居民区除白炽灯照明外,空调、冷冻机等也都是无功功率不可忽视的耗用对象。
农村用电状况比较恶劣,多数地区供电不足,电压波动很大,功率因数尤其低,加装补偿设备是改善供电状况、提高电能利用率的有效措施。
二、SVG无功补偿装置与目前国内其他产品相比的优势1、补偿方式:国内的无功补偿装置基本上是采用电容器进行无功补偿,补偿后的功率因素一般在0.8-0.9左右。
SVG采用的是电源模块进行无功补偿,补偿后的功率因素一般在0.98以上,这是目前国际上最先进的电力技术,国内掌握这项技术的目前就我们一家;2、补偿时间:国内的无功补偿装置完成一次补偿最快也要200毫秒的时间,SVG在5-20毫秒的时间就可以完成一次补偿。
无功补偿需要在瞬时完成,如果补偿的时间过长会造成该要无功的时候没有,不该要无功的时候反而来了的不良状况;3、有级无极:国内的无功补偿装置基本上采用的是3—10级的有级补偿,每增减一级就是几十千法,不能实现精确的补偿。
SVG可以从0.1千法开始进行无极补偿,完全实现了精确补偿;4、谐波滤除:国内的无功补偿装置因为采用的是电容式,电容本身会放大谐波,所以根本不能滤除谐波,SVG不产生谐波更不会放大谐波,并且可以滤除50%以上的谐波;5、使用寿命:国内的无功补偿装置一般采用接触器或可控硅控制,造成使用寿命较短,一般在三年左右,自身损耗大而且要经常进行维护。
静止无功补偿器工作原理以静止无功补偿器工作原理为标题,我们来探讨一下静止无功补偿器的工作原理及其作用。
静止无功补偿器(Static Var Compensator,SVC)是一种用于电力系统中的无功补偿装置。
它主要通过控制电流的相位和幅值来实现对无功功率的补偿,从而提高系统的功率因数,并稳定系统电压。
静止无功补偿器由控制系统和功率电子元件组成。
控制系统通过监测系统电压和电流的波形,并计算出系统的功率因数和无功功率的大小。
根据计算结果,控制系统会发出指令,通过功率电子元件调整电流的相位和幅值,以实现无功功率的补偿。
在电力系统中,无功功率是指由于电感和电容元件引起的交流电路中的无功能量。
无功功率的存在会导致电压波动,降低系统的稳定性和效率。
为了解决这个问题,引入了静止无功补偿器。
静止无功补偿器主要通过控制电流的相位来改变无功功率的流动方向。
当系统需要吸收无功功率时,静止无功补偿器会向系统注入电流,使其与系统电流形成夹角,从而吸收无功功率。
相反,当系统需要释放无功功率时,静止无功补偿器会向系统注入与系统电流相位相反的电流,使其与系统电流形成夹角,从而释放无功功率。
静止无功补偿器还可以通过控制电流的幅值来调整无功功率的大小。
当系统需要补偿更多的无功功率时,静止无功补偿器会增大电流的幅值;反之,当系统需要补偿较少的无功功率时,静止无功补偿器会减小电流的幅值。
通过以上方式,静止无功补偿器能够快速响应系统的无功功率需求,实现对无功功率的精确控制。
这不仅可以提高系统的功率因数,减少无功功率的损耗,还可以稳定系统电压,提高系统的稳定性和可靠性。
总的来说,静止无功补偿器通过控制电流的相位和幅值,实现对无功功率的补偿,提高系统的功率因数,并稳定系统电压。
它在电力系统中发挥着重要的作用,能够有效解决无功功率带来的问题,提高系统的运行效率和稳定性。
静止无功发生器(SVG)无功补偿专业知识:静止无功发生器(SVG)是指采用全控型电力电子器件组成的桥式变流器来进态无功补偿的装置。
SVG的思想早在20世纪70年代就有人提出,1980 年日本研制出了20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991年和1994年日本和美国分别研制成功了80MVA和10OMVA的采用GTO晶闸管的SVG。
目前国际上有关SVG的研究和将其应用于电网或工业实际的兴趣正是方兴未艾,国内有关的研究也已见诸报道。
与传统的以TCR为代表的SVC相比,SVG的调节速度更快,运行范围宽,而且在采取多重化或PWM技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是,SVG使用的电抗器和电容元件远比SVC中使用的电抗器和电容要小,这将大大缩小装置的体积和成本。
由于SVG具有如此优越的性能,是今后动态无功补偿装置的重要发展方向。
无功补偿的专业知识:与电网中的有功损耗相比,无功损耗要大的多,这是因为高压线路、变压器的等值电抗要比电阻大得多,并且变压器的励磁无功损耗也要比励磁有功损耗更大,事实证明电网最基本的无功电源——发电机所发出的无功功率远远满足不了电网对无功的需求,因此对电网进行无功补偿显得尤为必要。
另外,对电网采取适当的无功补偿可以稳定受端及电网的电压,在长距离输电线路中选择合适的地点设置无功补偿装置,还可以改善电网性能,提高输电能力,在负荷侧合理配置无功,可以提高供用电系统的功率因数,减少功率损耗,因此,电网中无功补偿的作用已得到普遍重视。
1.电网无功补偿的方法电网无功补偿方法有很多种,从传统的带旋转机械的方式到现代的电力电子元件的应用经历了近一个世纪的发展历程,下面将按无功补偿方式的发展顺序逐一论述电网的无功补偿方法。
1.1同步调相机同步调相机是一种专门设计的无功功率电源,相当于空载运行的同步电动机。
调节其励磁电流可以发出或吸收无功功率,在其过励磁运行时,向系统供给感性无功功率而起无功电源的作用,可提高系统电压;在欠励磁运行时,它会从系统吸取感性无功功率而起无功负荷的作用,可降低系统电压,同步调相机欠励磁运行吸收无功功率的能力,约为其过励磁运行发出无功功率容量的50%~65%。
新型静止无功发生器SVG控制策略仿真研究一、本文概述随着电力电子技术的快速发展和电力系统的日益复杂化,无功功率的调节和控制变得越来越重要。
静止无功发生器(Static Var Generator,SVG)作为一种先进的无功补偿设备,具有快速响应、连续调节和无功补偿容量大等优点,在电力系统中的应用越来越广泛。
本文旨在深入研究新型静止无功发生器SVG的控制策略,并通过仿真实验验证其有效性。
本文将介绍SVG的基本原理和结构,阐述其在电力系统中的重要作用和应用背景。
接着,将详细介绍几种常见的SVG控制策略,包括传统的电压控制策略和电流控制策略,以及近年来提出的一些新型控制策略。
通过对这些控制策略的对比分析,可以了解它们各自的优缺点和适用范围。
然后,本文将重点研究一种新型SVG控制策略,该策略结合了传统控制策略的优点,并引入了一些创新性的控制方法。
通过仿真实验,我们将验证这种新型控制策略在调节无功功率、提高系统稳定性和响应速度等方面的性能表现。
本文将总结研究成果,并提出一些建议和改进方向。
通过本文的研究,可以为SVG在电力系统中的实际应用提供理论支持和技术指导,有助于推动SVG技术的进一步发展和应用。
二、SVG的基本原理与分类静止无功发生器(Static Var Generator,SVG)是一种先进的无功补偿设备,其核心功能是动态调节电力系统中的无功功率,从而维持电压稳定、提高电能质量并优化系统运行效率。
SVG的基本原理和分类对于理解其控制策略及仿真研究至关重要。
基本原理:SVG的基本工作原理基于电力电子变换技术,通过快速调节变换器输出电压的幅值和相位,实现无功功率的快速、连续调节。
SVG通常由直流侧储能元件(如电容器或电池)、电力电子变换器(如逆变器)和滤波器等部分组成。
当系统需要吸收无功时,SVG 通过逆变器将直流侧储能元件中的能量转换为交流侧的无功功率;当系统需要发出无功时,SVG则将从电网吸收的有功功率转换为直流侧储能元件中的能量,并同时发出所需的无功功率。
在调功器控制的电加热系统中静止无功补偿器 (SVC)的应用摘要:随着电力电子技术不断发展,电加热系统逐步走向大功率、高频化。
静止无功补偿器中电抗器和电容器都是产生无功功率的重要部分,以系统需求为依据,调节电容性无功或者电感性无功。
固定电容器和晶闸管控制电抗器(FC+TCR)是较为普遍的静止无功补偿装置,在电力系统中使用较多。
静止无功补偿装置可以通过调整TCR中晶闸管的触发延迟角度来解决连续调节补偿装置的无功功率问题。
基于此,本文主要探讨了在调功器控制的电加热系统中静止无功补偿器的应用,可供参阅。
关键词:调功器控制;电加热系统;静止无功补偿器1调功器控制的电加热系统设计1.1硬件设计1.1.1静止无功补偿器设计SVC是一种能够实现对有功功率或无功功率进行快速调节、保持电网电压的良好水平以及提升电力系统暂态稳定性的重要设备。
SVC包括可控电感和电容支路两部分,电感电容支路类型可分为饱和电抗器、晶闸管控制电抗器等几种。
常用SVC的性能比较如表1。
表1经过比较性能,选用FC-TCR型静止无功补偿器。
具体设备参数如表2。
表2在FC-TCR型SVC中,所有TCR支路由统一的晶闸管阀和分裂电抗器串联控制。
为保证晶闸管阀的额定电压为10kV,将数个晶闸管串联起来,同时兼顾晶闸管电压承受能力。
当两个晶闸管的正负半周交替导通时,可有效控制交流电流的开启和关闭。
在电压各正或负的半周中,当电压处于峰值与零点之间时,可以有效触发晶闸管,使晶闸管在正向电压的作用下得以导通,电抗器开始运行。
当投入时间相位发生变化时,电抗器的电流有效值也会有所变化,因此多以此方法控制电抗器,借此改变吸收的无功功率,确保电加热系统的母线电压始终保持在允许范围内。
由于连续调节性以及响应速度快的特点,导致SVC可以对无功功率进行动态补偿,确保补偿点电压近似保持不变。
1.1.2晶闸管交流调功器作为半导体交流功率控制器中的一种,晶闸管交流调功器以晶闸管作为开关元件,是一种可以快速、精准地控制开关时间的无触点式开关,也是一种具有高精度的自动控温系统的终端控制设备。
静止无功补偿器(STATCOM)是一种用于电力系统中的电力质量控制设备,它可以实时响应电力系统中的无功功率需求变化,通过调节电流的相位和幅值,提供无功功率的动态补偿。
本文将详细解释与静止无功补偿器工作原理相关的基本原理。
1. 无功功率的产生和补偿在电力系统中,无功功率是由电感和电容元件引起的。
电感元件(如电感线圈、变压器等)会产生感性无功功率,而电容元件(如电容器、电缆等)会产生容性无功功率。
这些无功功率会导致电压的波动和不稳定,影响电力系统的运行和电力质量。
静止无功补偿器可以通过控制电流的相位和幅值,实时地调节电力系统中的无功功率,使其与有功功率保持平衡,从而提高电力系统的稳定性和可靠性。
2. 静止无功补偿器的基本原理静止无功补偿器主要由一个直流电压源、一个逆变器以及一个电流控制系统组成。
2.1 直流电压源静止无功补偿器的直流电压源通常由一个直流电压源和一个电容滤波器组成。
直流电压源通过电容滤波器提供稳定的直流电压,用于逆变器的工作。
2.2 逆变器逆变器是静止无功补偿器的核心部件,它将直流电压转换为交流电压,并通过控制电流的相位和幅值来实现无功功率的补偿。
逆变器通常采用可控硅器件(如GTO、IGBT等)作为开关元件,通过不断开关和导通这些器件,可以产生可控的交流电压。
逆变器的工作原理如下:1.通过控制开关器件的导通和开断,逆变器可以产生可控的脉冲宽度调制(PWM)波形。
2.逆变器通过PWM波形控制开关器件的导通时间,从而控制输出电压的幅值。
3.逆变器还通过改变PWM波形的相位,控制输出电压的相位。
2.3 电流控制系统电流控制系统是静止无功补偿器的核心控制部分,它通过检测电力系统中的电流和电压,实时计算出无功功率的补偿需求,并控制逆变器的工作,实现无功功率的动态补偿。
电流控制系统的工作原理如下:1.电流控制系统通过电流传感器和电压传感器实时检测电力系统中的电流和电压。
2.电流控制系统根据检测到的电流和电压信号,计算出电力系统中的无功功率需求。
SVC 输出容量控制主要有电压控制和恒导纳控制两种方式,可以在运行人员的指令下互相切换。
3.1.1电压控制模式
这种控制模式下控制系统将测量所得到的母线电压Vmeas与一个设定的参考电压Vref 进行比较,然后将差值进行计算, 得到一个标么值电纳信号Bref ,该电纳值除以单组机械可投切电容(电抗) 器的电纳值可以确定需要的电容(电抗)器数目,而差值由TCR来补充。
随后将该标么值电纳送往脉冲触发发生电路,控制TCR 的触发角。
SVC稳态特性曲线的斜率采用电流反馈来实现,这种方法能够保证在SVC 控制范围内使端电压和端电流之间保持线性关系。
实测的SVC电流ISVC与代表调差率的系数KSL相乘,构成信号VSL再输入到加法节点。
当ISVC为感性时, VSL取正;当ISVC为容性时,VSL取负。
其传递函数为:G( s) =K1(1+s T Q)/s(1+s Tp),其中T Q=Tp+Kp/K1
由于Tp通常设为零,因而控制器转化为简单的比例积分器,比例系数Kp 反映响应速度。
电压调节器输出的电纳参考信号被送到触发计算单元,该单元计算出6 组触发角,送至脉冲发生电路,从而在SVC 母线上得到期望的电纳值,达到设定的控制目标。
3.1.2恒导纳控制模式
在该模式下,SVC 的等效导纳Bord 由运行人员设定,且该导纳可以在规定范围内连续可调。
Bref来自电压调节器的输出,在恒导纳模式下被偏置。
首先根据监控单元提供的开入量需要确定已投运的电容(电抗) 器组的等效电纳,然后经过电纳计算,得出仍需投切的电容(电抗) 器组以及需要的TCR 触发角连续调节的等效感性电纳。
最后换算成触发角发送到触发脉冲发生电路。
3.1.3 PWM电流控制
对PWM电路的电流控制可分为间接电流控制和直接电流控制。
前者通过控制整流器产生的交流电压基波分量的相位和幅值来实现PWM 交流侧的电流控制;后者采用跟踪型PWM控制技术对交流侧的电流进行直接控制。
在目前的STATCOM 系统中,考虑到PWM开关频率较低以及功耗问题,因此多采用间接电流控制。
但间接电流控制其网侧电流的动态响应慢,且对系统参数变化灵敏。
相比之下,直接电流控制更能精确地控制PWM输出的电流,因此在DSTATCOM设计中,采用直接电流控制方法,从而可以设置较高的PWM 开关频率,减少输出电流谐波,获得较好的输出电流波形,进而降低系统设计成本,提高运行可靠性。
该实验控制方法采用基于矢量变换的直接电流控制,其控制方案如下图所示。
该实验控制方法采用基于矢量变换的直接电流控制实测三相输出电流ia,ib,ic 经过d-q 变换与指令电流生成无功电流指令,实测直流侧电压Udc与控制电压通过电压控制器生成有功电流指令,此指令送入电流控制器进行调节,经过d-q 反变换得到三相PWM指令信号。
利用DSP 的事件管理器生成PWM 输出信号,对输出电流进行直接控制,以获得所需要的电流波形。
系统采用内、外环控制,控制外环对电压进行控制,以稳定直流侧输出电压,方便并网,提高系统运行可靠性;控制内环对输出电流进行直接控制,以提高系统动态响应性能。
由于矢量变换参考值和反馈值在稳态时均为直流信号,因此可通过调节器进行无稳态误差的电流信号跟踪,以消除系统的静态误差,提高DSTATCOM的补偿精度。
3.1.4 静止无功补偿器多目标统一控制方法
随着SVC在电网及负荷补偿中的广泛应用,其控制器的设计也就成为研究热点在电压控制方面,有很多学者提出了智能自适应比例积分微分(proportion integral differential,PID)控制方式、基于模糊算法,遗传算法等算法的非线性SVC控制方式、蚁群算法寻优的PID控制方法等。
在功率因数控制方面,主要有传统PI控制及神经网络控制等。
在不平衡补偿方法上,主要有基于瞬时无功功率和同步对称分量法、虚拟对称三相系统合成电压矢量的同步平衡补偿法和Steinmetz 平衡化补偿法等。
这些关于SVC在电能质量方面的控制,大多是针对单一电能质量目标的,少有文献研究SVC在多个电能质量目标方面的控制。
本文针对SVC补偿配电网负荷引起的电压波动、功率因数较低和负载电流不平衡的问题,提出一种多目标统一控制器,主要由功率因数闭环–负序电流补偿前馈控制支路和S VC安装点电压闭环–负序电流补偿前馈控制支路组成。
它可以依据负荷在不同运行状态所引起的电能质量问题,进行两条控制支路之间的自动切换。
其中对功率因数闭环–负序电流补偿前馈控制支路设计了模糊P I 控制算法,对S VC 安装点电压闭环–负序电流补偿前馈控制支路设计了非线性P I 控制算法。