碳纳米管储氢的理论研究44页PPT
- 格式:ppt
- 大小:1.90 MB
- 文档页数:44
碳纳米管储氢技术的研究正如我们所知,氢气成本低且效率高,在能源日益显现不足和燃油汽车造成人类生存环境极大污染的今天,以氢燃料作为汽车燃料的呼声日益高涨.从90年代起,许多发达国家都制定了系统的氢能研究计划,其短期目标是氢燃料电池汽车的商业化.现在利用氢能的障碍是氢气的规模化存储和运输。
碳纳米管由于其管道结构及多壁碳管之间的类石墨层空隙,成为最有潜力的储氢材料,并是当前研究的热点.碳纳米管储氢的优越性将使碳纳米管燃料电池成为最具发展潜力的新型汽车动力源.研究:美国国立可再生能源实验室[1]采用TPDS(程序控温脱附仪)测量单壁纳米碳管(SWNT)的载氢量,从实验结果推测在130K、4×104 Pa条件下的载氢量为5wt%一10wt%,并认为SWNT是唯一可用于氢燃料电池汽车的储氢材料.这是世界上关于碳纳米管储氢的第一篇报道.后来他们[2]又用强超声波处理SWNT并使纳米管在室温、50kPa条件下吸氢,测得6.5wt%的储氢量.美国加州理工学院[3]将激光烧蚀法制备的SWNT 进行纯化处理,测量氢气在80K,0~12MPa条件下的吸附量,结果表明低压段(<4MPa)吸附量较低,认为氢分子主要吸附在管束的外表面,当压力达到4MPa时,等温线出现转折点,斜率增大;12MPa时吸附量达到8wt%.中科院金属所[4]用半连续氢电弧法合成了高质量的SWNT(直径1.85±0.05nm),纳米管束的直径约2O nm.用容积法测得室温、10 MPa时的储氢量为4.2 wt% ,但在常温常压下约21%一25%的氢气不能脱附,加热至473K则全部脱附.Liu等认为常温常压下未脱附的氢气可能与化学吸附有关,并认为其管径较大(普通SWNT 直径为1.2—1.4nm)可能是吸附量大的原因.与此同时,有些研究者对以上研究结果提出了质疑.德国普朗克铁研究所公司[5]报道77K、10 MPa纳米管的吸氢量为2 wt%,而同条件下具有狭缝孔结构的活性炭达到5.5 wt%.他们认为参考文献[1]的实验结果(5wt%一10wt%)不能单纯用物理吸附来解释.美国General Motors R&D Center[6]在11MPa,80一500℃条件下测定了9种不同的碳材料的储氢性能,指出任何有关碳材料在常温下储氢量大于1 wt%的报道都是不可靠的,认为过高的储氢量是由实验误差导致的.从现有的研究结果及理论计算来看,碳纳米管储氢能力达到美国的DOE标准,即6.5%和62kg/m,是非常有希望的(除了个别学者认为不可能外),部分学者的实验数据已经达到或超过了这一标准.虽然实验结果和见解比较离散,但是大家还是达成了一些基本共识:①吸附量与表面积成正比关系.②吸附的区域大致在管内和管外,或阵列的间隙处.③碳纳米管的直径对吸附量有影响.④表面活化或掺杂对吸附量起着重要甚至于决定性作用.[7] 专利:关于碳纳米管储氢方面的专利,国内外都公开了一些,见下表(部分),并且选取部分简单介绍.专利号公开日专利申请人名称CN1259581A 2000-7-12 南开大学储氢合金/碳纳米管复合储氢材料CN1398664CN139**** ****-2-26 武汉理工大学储氢金属或储氢合金修饰的一维纳米碳储氢材料经微波等离子体刻蚀的一维纳米碳储氢材料及其制备方法US2005118091 2005-06-02 COOPER ALAN C 利用碳纳米管材料储氢JP2004292310 2004-10-21 AIR WATER INC 碳纳米管制备方法及储氢体JP2004059409 2004-02-26 NAKAMURA JUNJI 碳纳米材料的制备方法及储氢材料JP2004313906 2004-11-11 NISSAN MOTOR 储氢材料、储氢体、储氢设备、燃料电池及制备储氢材料的方法KR2001091479 2001-10-23 LEE YOUNG HEE 使用碳纳米管的储氢技术JP2001146408 2001-05-29 TOKYO SHIBAURA ELECTRIC CO 储氢材料及生产方法JP2004026604 2004-01-29 TOYOTA MOTOR CORP 储氢材料南开大学2000年7月12日公开的CN1259581A储氢合金/碳纳米管复合储氢材料,涉及复合储氢材料,特别是储氢合金/碳纳米管复合储氢材料的制造,它包括储氢合金和碳纳米管,其中储氢合金的重量含量范围为1~90%,采用催化裂解或机械复合方法制备.武汉理工大学2003年2月26日公开的CN1398782经微波等离子体刻蚀的一维纳米碳储氢材料及其制备方法,提供了一种一维纳米碳储氢材料及其制备方法.特点是采用微波等离子体刻蚀方法对一维纳米碳表面进行刻蚀,从而由表及里地增加和增大氢的扩散通道,使更多的氢进入到一维纳米碳的内部,提高一维纳米碳的储氢容量。
碳纳米管材料在氢能源中的应用研究氢能源作为一种高效、环保的新能源形式,一直以来备受各国工程师和科学家的重视与关注。
然而,作为氢能源的“关键技术”之一——氢储存技术的广泛应用却一直受到限制。
氢气密度极低,在常温和常压下,氢气占据的体积远远大于其他燃油,因此在氢能源的流通、储存和制造过程中,一直以来都难以直面氢气的储存问题。
近年来,碳纳米管材料已经成为了当前被广泛研究的氢气储存材料之一,尤其是在氢能源领域。
那么,碳纳米管材料具备哪些特点,使其在氢能源中拥有广泛应用前景呢?碳纳米管物理特性碳纳米管(Carbon Nanotube,CNT)是由碳原子排列而成,呈螺旋型圆柱体的一种纳米材料。
碳纳米管具有独特的力学、电学、光学、热学和化学等特性,是一种具备广泛应用前景的新材料。
首先说到碳纳米管的力学特性。
碳纳米管的力学强度极高,是碳氢化合物材料中最强的材料之一。
其强度与纤维素相似,可达到甚至超过李藻糖的高强度。
此外,碳纳米管还具有弹性模量极高、伸缩性能极佳等独特的力学特性。
其次,碳纳米管具有优异的电学特性。
基于其独特的性质,碳纳米管可以用作电磁场调制元器件、场发射器、纳米电池、微型继电器以及聚合物电子元器件等。
同时,碳纳米管的电导率非常高,甚至远远超过铜、铝等传统的导体材料。
再次,碳纳米管具有出色的化学稳定性。
碳纳米管与有机物、无机物等大多数化合物的作用力均比较微弱,涂敷碳纳米管薄膜的材料比较稳定,有良好的化学稳定性,是目前几种化学转换过程的新型纳米材料。
碳纳米管材料在氢能源中的应用在氢气储存技术领域,二阶段压缩式氢气储存器、压力摩擦焊接储氢器和吸附式氢气储存器等氢气储存材料已经被开发,但是由于这些材料在储氢密度、稳定性和耐久性等关键性能上的限制,导致了这些材料在实际应用中难以推广。
因此,碳纳米管材料作为氢气储存材料的重要代表,在氢能源领域的应用也越来越广泛。
碳纳米管材料在氢能源中的应用分为充氢式和吸附式两大类。