电感类对EMC的影响
- 格式:ppt
- 大小:967.00 KB
- 文档页数:32
EMC用电感器及软磁材料近年来,电子技术,特别是电力电子技术的飞速发展,导致系统和各种元器件向高频化、数字化、高功率化、高集成化和电子线路低压化的方向发展,这进一步导致了电磁干扰(或噪声)问题的发生和一个新的领域即电磁兼容(EMC)领域的出现。
目前,对电磁兼容性的较准确的定义是:对于系统、整机、部件和元件来说,“它们所具有的,既不影响周围电磁环境、又不受周围电磁环境的影响、其本身不会发生性能恶化和误动作,而能正常工作的能力”。
电磁干扰(或噪声)抑制技术通常包括以下内容:(1)传导干扰抑制技术(共模、差模滤波,去耦,隔离技术)(2)屏蔽技术(电屏蔽,磁屏蔽)(3)接地技术(4)噪声补偿技术等本文重点介绍近年来(1)和(2)项中所使用的软磁材料进展。
对于电子变压器行业来说,在EMC领域中最关心的实用问题是:A. 近年来出现的新的磁性电感元器件及其软磁新材料。
B. EMC用滤波电感器的最佳磁芯材料的选择。
C. EMC用滤波电感器的设计。
众所周知,对于几十MHz以上射频段的干扰的滤波电感器,通常采用镍锌铁氧体等软磁材料,例如,用于抑制数字线电缆及电源线电缆的射频(传导及辐射)干扰等。
本文仅介绍该频段以下的涉及传导干扰EMC领域中的问题,工业上用于该频段EMC的电感磁芯软磁材料有:薄硅钢,薄铁镍坡莫合金(Permalloy),锰锌铁氧体,镍锌铁氧体,铁粉芯,铁硅铝粉芯(Sendust),高磁通铁镍50粉芯(HF),铁镍钼粉芯(MPP)等,80年代和90年代又先后出现了非晶(Amorphous)和铁基纳米晶(Nanocrystallion或超微晶)等新型软磁材料,本文重点介绍这些材料磁芯的最新发展尤其是非晶和铁基纳米晶磁芯的进展,并按“传导干扰”和“磁屏蔽”两部分加以叙述。
1.EMC传导干扰及其抑制用软磁材料EMC传导干扰是从电源导线或信号线进行传播的,EMC传导干扰及其抑制技术包括了三方面的问题:A.本系统对市电网络的噪音(NOIS) 干扰及其抑制B.抵抗市电网络的噪音对本系统的干扰及其抑制C.本系统对下游负载的干扰及其抑制A,B.两项与通常的“电源线滤波器”有关电源线滤波器的基本线路电源线滤波器的作用是抑制共模和差模干扰,共模和差模干扰噪音的来源以及在线路中的流向示于图1,由图可见,抑制这些干扰应采取不同的方法,通常电源线滤波器的基本线路如图2,两级共模滤波电感L1,L2和差模电感L3同相应的共模和差模电容配合,可以达到如图3一例的噪声衰减效果。
emc电感特征曲线
EMC电感的特征曲线是指电感元件在不同频率下的阻抗变化的曲线。
通常情况下,随着频率的增加,电感元件的阻抗也会增加。
但频率达到一定值后,电感元件的阻抗开始逐渐趋于平稳。
在低频范围内,电感元件的阻抗主要由线圈的直流电阻和自感感抗组成。
在高频范围内,电感元件的阻抗主要受到线圈的自感感抗影响。
因此,在低频范围内,电感元件的阻抗值较低,而在高频范围内,电感元件的阻抗值较高。
EMC电感特征曲线还可以表示电感元件的频率响应。
根据特征曲线可以确定电感元件在不同频率下的阻抗特性,从而选择合适的电感元件来满足特定的电路要求。
特征曲线还可以用于分析电路中可能产生的电磁干扰问题,从而采取相应的EMC 措施。
EMC 设计技术随着电力电子技术的发展,开关电源模块以其相对体积小、效率高、工作可靠等优点而逐渐取代传统整流电源但是,由于开关电源工作频率高,内部会产生很高的电流、电压变化率(即高dv/dt和di/df),导致开关电源模块产生较强的电磁干扰,并通过传导、辐射和串扰等耦合途径影响自身电路及其它电子系统的正常工作,当然其本身也会受到其它电子设备电磁干扰的影响,电磁干扰将造成传输信号畸变,影响电子设备的止常工作对于雷电、静电放电等高能量的电磁下扰,严重时会损坏电子设备而对于某些电子设备,电磁辐射会引起重要信息的泄漏,严重时会威胁国家信息安全这就是我们所讨论的电磁兼容性问题另外,国家开始对部分电子产品强制实行3C认证,因此,一个电子设备能否满足电磁兼容标准,将关系到这一产品能否在市场上销售,所以,进行开关电源的电磁兼容性研究显得非常重要日常生活中常用的频率范围,包括交流电源频率、音频、长、中、短波收音机占有的频段、调频及电视广播、蜂窝电话常用的900MHz 及1.8GHz。
但实际的频谱远比这拥挤得多,9KHz 以上的频段几乎都被用于特定的场合。
随着微波技术广泛应用于日常生活,该图中所示的频率也很快将扩展至10GHz(甚至100GHz)。
交流电源整流器件在基频至相当高的谐波频率范围内均可发射开关噪声,具体情况取决于这些器件的功率。
5 千伏安左右的电源(线性或开关模式)由于其50 或60Hz 桥式整流所产生的开关噪声,通常在数MHz 频率以下不能满足传导发射的限制要求。
可控硅直流电机驱动装置及交流移相控制系统所产生的噪声也大致如此。
这些噪声极易干扰中长波和部分短波广播。
开关电源的工作基频一般在2kHz 至500kHz 之间。
开关电源在其工作频率1000 倍的频率处仍具有很强的发射是常见的。
图15 给出了个人计算机中常用的频率为70kHz 的开关电源的发射频谱。
这将干扰包括调频广播在内的广播通信。
这些器件的发射通常会在200MHz 甚至更高的频率超过发射极限值。
解决单片机EMC问题的8个方法本文中所提到的对电磁干扰的设计我们主要从硬件和软件方面进行设计处理,下面就是从单片机的PCB设计到软件处理方面来介绍对电磁兼容性的处理。
一、影响EMC的因数1、电压:电源电压越高,意味着电压振幅越大,发射就更多,而低电源电压影响敏感度。
2、频率:高频产生更多的发射,周期性信号产生更多的发射。
在高频单片机系统中,当器件开关时产生电流尖峰信号;在模拟系统中,当负载电流变化时产生电流尖峰信号。
3、接地:在所有EMC题目中,主要题目是不适当的接地引起的。
有三种信号接地方法:单点、多点和混合。
在频率低于1MHz时,可采用单点接地方法,但不适宜高频;在高频应用中,最好采用多点接地。
混合接地是低频用单点接地,而高频用多点接地的方法。
地线布局是关键,高频数字电路和低电平模拟电路的接地电路尽不能混合。
4、PCB设计:适当的印刷电路板(PCB)布线对防止EMI是至关重要的。
5、电源往耦:当器件开关时,在电源线上会产生瞬态电流,必须衰减和滤掉这些瞬态电流。
来自高di/dt源的瞬态电流导致地和线迹发射电压,高di/dt产生大范围的高频电流,激励部件和线缆辐射。
流经导线的电流变化和电感会导致压降,减小电感或电流随时间的变化可使该压降最小。
二、对干扰措施的硬件处理方法1、印刷线路板(PCB)的电磁兼容性设计PCB是单片机系统中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接。
随着电子技术的飞速发展,PCB的密度越来越高。
PCB设计的好坏对单片机系统的电磁兼容性影响很大,实践证实,即使电路原理图设计正确,印刷电路板设计不当,也会对单片机系统的可靠性产生不利影响。
例如,假如印刷电路板的两条细平行线靠的很近,会形成信号波形的延迟,在传输线的终端形成反射噪声。
因此,在设计印刷电路板的时候,应留意采用正确的方法,遵守PCB设计的一般原则,并应符合抗干扰的设计要求。
要使电。
磁珠和电感在EMCEMI电路的作用磁珠是一种电子元器件,由铁氧体或磁性材料制成,通常具有一个或多个线圈穿过其孔内。
磁珠在EMC、EMI电路中主要起到以下几个作用:1.防止高频信号的波导现象:磁珠的线圈孔具有一定的电感性质,可以形成电磁感应场,进而阻碍高频信号在线路上的传播。
通过将磁珠串联到信号线路上,可以有效地抑制高频信号的波导现象,减少信号的辐射和传导。
2.滤波和抑制电磁干扰:磁珠能够对高频信号进行滤波和抑制。
由于磁珠具有一定的电感和电阻,可以形成一个带通滤波器,对高频信号进行滤波和抑制,从而减少其在线路中的传播和辐射。
同时,磁珠的电阻特性还可以吸收和消散电磁干扰,保护其他设备免受干扰。
3.增加传导电容:磁珠通过线圈穿过的方式,可以将信号线路与地面或其他线路形成电容耦合,从而增加传导电容。
这样可以降低信号线路的电压和电流变化对地面或其他线路的干扰,提高电路的抗干扰能力。
电感是一种储存电能的元器件,其主要作用是阻碍变化电流的流动。
在EMC、EMI电路中,电感主要发挥以下几个作用:1.抑制电流突变:电感的阻抗随着频率增加而增加,可以阻碍高频信号的流动。
当电路中的电流突变时,电感会阻碍这种变化电流的流动,从而起到抑制电磁干扰的作用。
2.滤波和降噪:电感可以形成LC滤波器,对高频信号进行滤波和降噪。
通过将电感串联到信号线路中,可以形成一个低通滤波器,将高频信号滤除,从而减少信号的辐射和传导,降低电磁干扰。
3.平衡电流:在差分信号传输中,电感可以平衡信号中的共模干扰。
通过将两个信号线圈串联,可以形成一个差模电感,将共模干扰抵消,提高信号的抗干扰能力。
总之,磁珠和电感在EMC、EMI电路中的作用主要是抑制高频信号的传导和辐射,滤除电磁干扰,并提高电路的抗干扰能力。
它们是保证电子设备满足EMC要求的重要组件。
马达电磁兼容(EMC)的解决方法马达,特别是带电刷的马达,会产生大量的噪声。
电器要满足电磁兼容标准的要求,必须对这些噪声进行处理。
解决电磁兼容的手段无非是电容、电感(扼流圈)、电源滤波器和接地。
不幸的是,电磁兼容问题通常是在产品已彻底完成设计并组装完毕时发现。
这时考虑电磁兼容是十分困难的。
制造商不仅面临着时间上的紧迫而且项目预算已经用完,责任工程师已经调到其它项目上,不能随时解决有关的问题。
解决这些问题的最好时机是在产品的设计阶段,而不是产品开发周期最终阶段。
许多试验是可以在产品装入最终机壳之前进行的。
电容电容通过向噪声源的公共端提供一条阻抗很低的通路来将电压尖峰旁路掉。
尖峰电压主要是由马达电刷产生的。
电容可以接在马达的每根引线与地之间,也可以接在两根引线之间。
如果尖峰噪声是共模的,则跨接在引线之间的电容几乎没有什么效果。
但是这种由电刷产生的随机噪声通常是差模的。
尽管这样,在电刷与地之间接入电容会有很大效果。
电容安装什么位置或怎样连接主要取决于所面临的噪声的种类。
电压尖峰是由电刷与换向片触点的断开产生的。
尖峰的幅度可以通过将电刷材料换成较软的材料或增加电刷对换向片的压力来减小。
但是这会缩短电刷的寿命周期和其它一些问题。
要使电容具有较好的滤波效果,它与噪声源的公共地之间的联线要尽量短。
自由空间中的导线的电感约为每英寸1nH。
如果电刷产生的噪声频率为50~100MHz,与电容连接的导线的长度为4~6英寸,那么即使不考虑电容的阻抗,仅导线电感的阻抗也已经有:XL=2πf L=3.77总阻抗还需要加上电容(0.1μF)的阻抗,XC=1/2πf C=0.159Ω。
从结果可以看出,单看电容的阻抗,这是一个非常好的旁路型滤波器。
但是由于引线电感的影响,已经根本不起滤波器的作用了。
如果将导线的长度缩短为1英寸,则电感的阻抗仅为0.628Ω,这时滤波电容的效果提高了20%。
用马达外壳做接地端时,壳体上的漆必须去掉,以便导线能够良好的与地接触。
三脚电容和共模电感较普通二脚电容和普通电感对EMC的效果优势对于电容来说,在频率的低端电容的阻抗很大,低频共模干扰信号一般难以通过;但当频率升高到一定某一个数值的时候,电容的阻抗就会降低,共模干扰信号就会很容易通过,X安全电容就是我们俗称的普通二脚电容,是经过安全检测部门认证过后才能使用的安全电容。
X电容的耐压一般都标有安全认证标志和AC250V或AC275V字样,但其真正的直流耐压达2000V以上。
X电容一般都选用纹波电流比较大的聚脂薄膜安全电容,这种电容体积一般都很大,但其允许瞬间充放电的电流也很大。
实际上,光靠X电容就想把传导干扰信号完全滤除是不可能的。
因为干扰信号的频谱非常宽,基本覆盖了几十KHz到几百MHz甚至上千MHz的频率范围。
对低端干扰信号的滤除需要很大容量的滤波电容,但受到安全条件的限制X电容的容量都不能用大(IEC60745-1:2003的21.21条规定滤波电容量大于0.1uF时候,切断电源1S 后,插头两端的电压不能超过34V);除了以上所述,还有一种更有效的电气滤波方式,即我们通常俗称的三脚电容接法,其电路连接如图所示,也是提高干扰抑制效果的有效方法。
该方法是为干扰电势提供一个低阻抗的通路,以抑制干扰值。
图中,C1为安全电容X电容,一般为0.1~0.33uF;C2、C3选用Y电容一般为2200~4700pF。
C2、C3的功能是对共模干扰信号进行抑制,因两个电容串联起来的容量很小,其主要功能是低频差模干扰信号进行抑制;增加该电容的目的是为了抑制低频差模干扰,同时抑制对称和不对称干扰。
比起普通的X电容的干扰抑制效果会有比较明显的作用,所以,三脚电容(即X2+Y2电容)比二脚电容(即X2)的效果会更好。
对高端干扰信号的滤除,大容量电容的滤波性能又相对较差,特别是聚脂薄膜电容的高频性能一般都比较差,因为它是用卷绕工艺生产的,并且聚脂薄膜介质高频响应特性与陶瓷或云母相比相差很远,一般聚脂薄膜介质都具有吸附效应,它会降低电容器的工作频率,聚脂薄膜电容工作频率范围大约都在1MHz左右,超过1MHz其阻抗将显著增加。
一、电感器的定义电感的定义:电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。
当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。
根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。
当形成闭合回路时,此感应电势就要产生感应电流。
由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。
由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。
电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。
总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。
这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。
由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。
电感线圈与变压器电感线圈:导线中有电流时,其周围即建立磁场。
通常我们把导线绕成线圈,以增强线圈内部的磁场。
电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。
一般情况,电感线圈只有一个绕组。
变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。
两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。
电感的符号与单位电感符号:L;电感单位:亨(H)、毫亨(mH)、微亨(uH),1H=10*10*10mH=10*10*10*10*10*10uH。
电感的分类:按电感形式分类:固定电感、可变电感;按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈;按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈;按绕线结构分类:单层线圈、多层线圈、蜂房式线圈;按工作频率分类:高频线圈、低频线圈;按结构特点分类:磁芯线圈、可变电感线圈、色码电感线圈、无磁芯线圈等。