高速磨削方法简介共26页文档
- 格式:ppt
- 大小:3.37 MB
- 文档页数:26
高速磨削高速磨削是国内外正在大力研究并逐步推广的一种先进的机械加工方法 , 它是近代磨削加工技术发展的一种新工艺 , 与普通磨削相比 , 其优点是能够大大提高被加工工件的精度 , 降低零件表面粗糙度。
随着科学技术的不断进步和发展 , 对零件的加工精度和生产率提出了更高的要求 , 高速磨削技术更加显示出它的重要性。
1 国外高速磨削技术的现状与发展趋势早在上世纪 50年代 , 国外就已经开始研究高速磨削 , 到 60年代 , 许多国家在高速磨削方面的研究更加得到普遍重视 , 并取得了许多成功经验 , 如日本京都大学工学部冈村健二郎教授首先提出了高效磨削理论 , 当时在日本也是盛行一时。
德国阿亨大学Optiz教授系统地发表了 60m /s高速磨削的实验结果。
在 70年代 , 高速磨削在许多工业国家迅速发展 , 60m /s以上高速磨床品种超过 50种 , 少数磨床磨削速度达到 125m /s, 到了 80年代 , 许多国家继续在提高磨削速度上进行努力 , 但是高速磨削并未按原先预料的情况发展 , 它受到许多条件的制约 , 如受到机床结构、动态特性、砂轮速度及磨料耐磨性等的限制 , 实际上在这个时期磨削速度的提高也受到了一定的限制。
近年来 , 高速磨削加工技术又有了很大发展 , 主要表现在以下几个方面 :(1)高速磨削机理方面。
在越过能产生磨削热损伤的国限带之后 , 磨削用量进一步加大不仅不会使热损伤加剧 , 反而会使其不再发生。
这一发现 , 开拓出一个广阔的高速磨削参数领域 , 为实现超高速的磨削提供了理论基础 , 加上人造金刚石和立方氮化硼在砂轮制造中的大量应用 , 高速磨削得以再度兴起 , 并实现了线速度高于普通磨削 5 - 6倍甚至更高的超高速磨削。
(2)高速磨削的有利环节。
继喷雾润滑轴承和空气润滑轴承之后 , 利用磁力承受负荷的磁悬浮轴承已进入实用阶段 , 它的转速可以在主轴强度所能承受的限度内任意提高。
机械制造技术高速切削与磨削概述Ø1931年德国切削物理学家C .J .S a l o m o m 在“高速切削原理”一文中给出了著名的“S a l o m o m 曲线”——对应于一定的工件材料存在一个临界切削速度,此点切削温度最高,超过该临界值,切削速度增加,切削温度反而下降。
ØS a l o m o m 的理论与实验结果,引发了人们极大的兴趣,并由此产生了“高速切削(H S C )”的概念。
Ø尚无统一定义,一般认为高速加工是指采用超硬材料的刀具,通过极大地提高切削速度和进给速度,来提高材料切除率、加工精度和加工表面质量的现代加工技术。
Ø以切削速度和进给速度界定:高速加工的切削速度和进给速度为普通切削的5~10倍。
Ø以主轴转速界定:高速加工的主轴转速≥10000r /m i n 。
3.8.1高速加工概述q 高速加工定义33.8.1高速加工概述图3-31Salomon 切削温度与切削速度曲线切削适应区软铝切削速度v /(m/min)切削不适应区6001200180024003000青铜铸铁钢硬质合金980℃高速钢650℃碳素工具钢450℃Stelite 合金850℃16001200800400切削温度/℃切削适应区非铁金属图3-32高速与超高速切削速度范围10100100010000切削速度V (m/min )塑料铝合金铜铸铁钢钛合金镍合金q 高速加工的切削速度范围Ø高速加工切削速度范围因不同的工件材料而异,见图3-32◎车削:700-7000m/min ◎铣削:300-6000m/min ◎钻削:200-1100m/min ◎磨削:50-300m/sØ高速加工切削速度范围随加工方法不同也有所不同q高速加工的特点Real Real Ø加工效率高:进给率较常规切削提高5-10倍,材料去除率可提高3-6倍Ø切削力小:较常规切削至少降低30%,径向力降低更明显。
高速磨削加工工艺及应用徐少红( 广东工贸职业技术学院)摘要:高速磨削加工属于先进制造方法。
与普通磨削比,它有很多优点,且集粗精加工于一身,能达到与车、铣、刨等切削加工相媲美的金属磨除率,能实现对难磨材料的高性能加工。
阐述了高速磨削加工工艺的确定,高速磨削加工在工业中的具体应用,以及进一步提高磨削速度的设想。
关键词:高速磨削;加工工艺;应用1 高速磨削概述高速磨削是通过提高砂轮线速度来达到提高磨削效率和磨削质量的工艺方法。
它与普通磨削的区别在于很高的磨削速度和进给速度,而高速磨削的定义随时间的不同在不断推进。
20世纪60年代以前,磨削速度在50 m/ s时即被称为高速磨削;而20世纪90年代磨削速度最高已达500 m/s。
在实际应用中,磨削速度在100 m/ s以上即被称为高速磨削。
高速磨削可大幅度提高磨削生产效率、延长砂轮使用寿命、降低磨削表面粗糙度值、减小磨削力和工件受力变形、提高工件加工精度、降低磨削温度,能实现对难磨材料的高性能加工。
随着砂轮速度的提高,目前比磨削去除率已猛增到了3 000 mm3/mm·s以上,可达到与车、铣、刨等切削加工相媲美的金属磨除率。
近年来各种新兴硬脆材料(如陶瓷、光学玻璃、光学晶体、单晶硅等)的广泛应用,更推动了高速磨削技术的迅猛发展。
高速磨削技术是适应现代高科技需要而发展起来的一项新兴综合技术,集现代机械、电子、光学、计算机、液压、计量及材料等先进技术于一体。
日本先进技术研究会把高速加工列为五大现代制造技术之一。
国际生产工程学会(CIRP)将高速磨削技术确定为面向21世纪的中心研究技术之一。
2 高速磨削加工工艺高速磨削的加工工艺涉及磨削用量、磨削液及砂轮修整等方面,下面将分别进行阐述。
2.1 磨削用量选择在应用高速磨削工艺时,磨削用量的选择对磨削效率、工件表面质量以及避免磨削烧伤和裂纹十分重要。
表1给出了磨削用量与砂轮速度的关系。
除了砂轮速度以外,决定磨削用量的因素还有很多,因此应用中需综合考虑加工条件、工件材料、砂轮材料、冷却方式等因素,以选择最优的磨削用量。
先进磨削方法简介1.高速磨削普通磨床的砂轮速度为30—35m/s。
当砂轮速度高于45或50m/s以上时,称为高速磨削。
(1)高速磨削机理:砂轮速度提高后,使单位时间内通过磨削区的磨粒数增加。
若进给量保持与普通磨削时相同,则高速磨削时每颗磨粒切削厚度变薄,同时使每颗磨粒的负荷减小。
(2)高速磨削有如下特点:①生产率高。
生产率比普通磨削高30%—100%。
②砂轮使用寿命可提高。
由于每颗磨粒上所承受的切削负荷减小,则每颗磨粒的磨削时间可相对延长,因此可提高砂轮的使用寿命。
③可提高精度和减小磨削表面的粗糙度。
由于每颗磨粒切削厚度变薄,每颗磨粒在通过磨削区时,在工件表面上留下的磨痕深度减小。
同时,由于速度提高,使磨削表面由于塑性变形而形成的隆起高度也减小,因此可减小磨削表面粗糙度。
有利于保证工件(特别是刚性差的工件)的加工精度。
④改善磨削表面质量。
在高速磨削时,需要相应提高工件转速,使砂轮与工件的接触时间缩短,这样使传至工件的磨削热减少,从而减少或避免产生烧伤和裂纹的现象。
2.强力磨削强力磨削就是以大的径向进给量(可达十几毫米)和缓慢的纵向进给量进行磨削。
(1)强力磨削的机理:普通磨削的纵向进给速度通常为0.033—0.042m/s(2—2.5m/min),而强力磨削的纵向进给速度则为0.000166—0.005m/s(0.0l一0.3m/min)。
这样就使单个磨粒的切削厚度大为减小,因而作用在每个磨粒上的力也减小。
(2)强力磨削的特点:①生产效率高:由于采用缓速纵向进给和大的径向进给,这样就可在铸、锻毛坯上直接磨出零件所要求的表面形状及尺寸。
同时由于径向进给大,砂轮与工件的接触弧长要比普通磨削时的接触孤长大得多,单位时间内同时参加磨削工作的磨粒数目随着径向进给量的增大而增加。
因此,能充分发挥机床和砂轮的潜力,使生产效率得以提高。
②扩大磨削工艺范围:由于径向进给量很大,对毛坯加工能一次成形,所以能有效地解决一些难加工材料的成型表面的加工问题。